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Mutual voltage locking in linear arrays of Josephson weak links
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A linear array of superconducting weak links with a common bias current can exhibit syn-

chronization provided there is nearest-neighbor coupling between the links. A perturbation
method is applied to the equations governing this system, and the results indicate how the
domain of locking depends on various parameters. Numerical simulations confirm the predicted
behavior,

I. INTRODUCTION

It is now generally understood that a series pair of
current-biased superconducting weak links will syn-
chronize their Josephson oscillations (frequency or
voltage locking) provided a coupling mechanism ex-
ists between the two-phase slip sites. ' From a
theoretical point of view, a variety of publications
have investigated inductive coupling, 2 capacitive cou-
pling, ' resistive shunt coupling, " wave-function mix-

ing, and quasiparticle nonequilibrium coupling. The
latter is now generally regarded as operative in situa-
tions where the two microbridges are situated in close
proximity to one another. This point has been made

by Jillie et al. ,
' Lindelof and Hansen, Palmer and

Mercereau, 9 and Meyer and Tidecks. ' In two recent
papers, Jillie et al. " and Nerenberg et al. " examined
this synchronization phenomenon in detail with par-
ticular emphasis on the range of locking.

A logical extension of the system of two links
would be a series chain of N microbridges with or
without individual bias currents. Sar&dell et al. " stud-
ied the radiated power and linewidth from resistively
shunted arrays containing up to eight microbridges.
Palmer and Mercereau measured the Josephson rf
potential as a function of interbridge spacing for a
series chain consisting of 100 weak links. They
found that for spacings of less than 1.5 p, m the po-
tential was proportional to N, the number of ele-
ments, while for spacings greater than 5 p, m the pro-
portionality was to JN. This provided direct evi-
dence of complete synchronization in the chain.
Between 1.5 and 5.0 p, m the synchronization is

presumably incomplete. Another important conclu-
sion of this study, based on the failure of ground
plane or strip line coupling to alter the results, was
that the coupling mechanism was internal and not
electromagnetic —that is nonequilibrium quasiparticle
distributions are mediating the interaction. Jillie'4

also noted the apparent partial coherence in series ar-

rays.
In this paper we examine the behavior of a linear

chain of weak links in which nearest-neighbor cou-
pling is operative and show that complete synchroni-
zation will occur if the system parameters are located
within certain subregions of the entire parameter
space.

It is interesting to note that such a mutually syn-
chronized state may be possible in other extended
nonlinear systems", however, little theoretical work
has been done. In particular, analytical calculations
are very rare, computer simulation being virtually the
exclusive tool. In biology the alpha rhythm of the
brain" and the heart pacemaker' are two examples
of phenomena which may be due to mutual syn-
chronization of electrical or chemical rhythms in large
clusters of cells. An advantage of such a state biolog-
ically is that cells may, without being exactly identi-
cal, produce a signal whose strength is reinforced by
coherence, as in the case of microwave emission
from voltage-locked welk link arrays.

II. THEORY

The equations for a pair of closely spaced links in
series are"

2er ]

[i~ —i,
,

si @n~ n+~(i 2i,, sing )2], (i)

2ef 2
[i2 i, i s@n2n+(—i2~

—i, sing, )], (2)
i

where @~ and $2 are the phase differences across
junctions 1 and 2, respectively, r [ and r2 are their
respective shunt resistances, i, and i, their critical

1 2

currents, i
~ and i 2 the bias currents, and finally n[

and cx2 are coupling parameters measuring the
strength of the mutual interactions.

A linear array of N links connected in series may:
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(i) have each link independently biased; or (ii) have
a common bias current for the entire chain. The
generalization of Eqs. (1) and (2) become for the
former case

2er„
[(„ t sin]t]„+a„„+l ( i„+l—i~ sing„+l )

III. PERTURBATION CALCULATION

We solve the system (4) by a general perturbation
procedure based on the assumption of o. being small.
For reasons which will become apparent below it is
convenient to write @„(t')as a general asymptotic
expansion in the parameter 0. '.

+ ~n,n-l('n-] 'n„]S]n]t'n-] }j (3) d (t") —X [4t( '(a t')la~, a-0 .
m 0

&n, n+1 &yn, n+1 ~ n, n-l &yn, n-l t n=1, 2, . . . , N

(where to include the end junctions in the chain we
define y] 0 and ytt]]]~] to be zero). The parameter a
will be a measure of the smallness of the coupling
generally, awhile yn n+1

—1 and ynn 1
—1.

This allows Eq. (3) to be written as

]t]„=A„—C„sing„—a(8„„]sin]t]„]—D„„,)

ln(8n n+l S(nkn. +l Dn, n+] }

n=1, 2, . . . , N

where (n) refers to differentiation with respect to t',

Bn,n+1 = Rnle +[rn, n+1, Dn, n-1 = Rn In —[yn, n —1

n=1, 2, . . . , N
I

The symbols have the same meaning as in Eqs. (I}
and (2) except that the subscript n refers to the nth
link in the chain, and cx„„+1and n„„=1are the cou-
pling parameters between nearest-neighbor links n

and n +1, and n and n —1, respectively. The "end"
links can be subsumed in Eq. (3) by artificially defin-
ing both a[ 0 and a~&+1 as zero.

It is easy to see that if the links are commonly
biased, Eq. (3) is still valid except that all i„must be
set at a common biasing current, i.

%e now convert to dimensionless quantities by
measuring time in units of tt/(2ert, ), currents in
units of the average critical current i„and resistance
in units of the average resistance r. Thus
t"= 2ert, t/tt, l„=i„/i„I, =i, /i„and R„=r„/r In.
addition, assuming that coupling is small and approxi-
mately equal between nearest-neighbor pairs we write

Equation (5) will be a truly asymptotic expansion
p1 ov1dlng

[P™+~(at")1n +'=0([g( (]u, 't))a ), (n-0 .

This order relation will be satisfied in particular if all
]]]]( (]a,t') are analytic functions of a [with
y„'&(o,t') ~ oj.

Then substituting Eq. (S) into Eq. (4) leads to

y„'=A„—C„sin]t]„'0', tl = I, 2, . . . , W

as the zeroth order system, while the first-order sys-
tem is

@„"'= (C„cos]t„'')]t]„'"+D„„+]—8„„+]sing„'+'l

(0)+ Dn. n ]8n,n —lalnkn-1-(

n=1, 2, . . . , N

(7)

]t] = (n C sin]t] ~(8nn ]sin]t]n —] D, n—n l.-
+ 8n, n+I s(n]t]n+] Dnn+] + irn },

(8)
where co„=A„+ek„.

The new zeroth order and new first-order equa-
tions are, respectively,

The systems (6) and (7) can be solved analytically,
ho~ever a "secularity" arises in the solving of Eq.
(7}. ]t]„"]will be found to oscillate with an amplitude
which tends to infinity linearly with time (see Appen-
dix). This means in particular that there is no aver-
age value for dP(]]/dt' in the limit as time tends to
infinity —the first-order term is meaningless. This
problem can be remedied' by a "renormalization"
process at the cost of ]t]„(0'becoming an (analytic)
function of o., instead of being independent of this
parameter while ]t]„("becomes O(1) as t'

To see this most clearly we, rewrite Eq. (4) adding
and subtracting a constant k„in each equation

and

Dn, n+1 = Rnl. +1r.,n+1 .

]t] (0' = (n„—C„sin]t]„',n = I, 2, . . . , N (9)

The cases n = I and n = W are subsumed in Eq. (4)
by taking B1,0. D1 0, B»+1, and D~ ~+[ all zero.
Writing the equations in this form permits us to
proceed to a perturbation solution of them.

(C cos]t] (0& ) ]t] ( ] )

+8„,„]sing„(0]l—D„„,
+8„„+]sin]t n+] —D„„+,(0) (10)
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The k„areconstants to be chosen so that
Q„"I=0(1)as r' ~. If this is possible, then clear-
ly the secularity problem will have been solved {to
first order). In addition, since there is no voltage
locking region in zeroth order of the original pertur-
bation theory this procedure becomes essential to the
analysis, and crucial to establishing that a region of
voltage locking does indeed exist in parameter space.

Solving the new zeroth-order Eq. (9) yields
i

@„IOI(t')=2 tan ' C„+0„tan +Q„
, n

where 0„=(in —C )' and

V„=i,r 0„,Qn

We therefore see that voltage locking at equal vol-
tages of the entire system is given by

0) = 02 —03 — = 0g (14)

We next determine the appropriate k„,which in
turn will give us the final expression for.the 0„.

From Eq. (11) it can be shown that

where T'= 2eri, T/h. Assuming that the k„canbe
found so that Iti„I"(r') = 0 ( I ) as r' ~, and using
Eq. {12)„wefind, accurate to first order of perturba-
tion theory, that

'

ru„tan[it „IOI(0)/2] —C„'
i]in = tan ' 0„ I + Z„sin(0„t'+ (I„)

siniti„IOI( r') =
Z„+sin(0„r+(I„) (15)

From Eq. (11) it is clear that

y„"'(t")= 0„t'+O(1)
as t'~~, for all n. Now the dc voltages V„are
given by

(12)

d4n . i r rr" rtnV„=—lim-
I dt = lim, I, dt'

T-~ 2eT 4 o dt y~ T' "o dt'

where Z„=in„/C„,and II„=tan '(C„/0„)+2III„. It
will be useful below that from Eq. (15), sinIt o{r'),
aside from a zero-frequency part, contains only the
frequency 0„and its harmonics.

Solving Eq. (10) in the same fashion that Eq. (7) is
solved in the Appendix, results in the condition that
k„bechosen so that

n, ' —k„—D„„+I—D„„I+B„„+Ising„+I(r)+B„„I sinit„' 'I(r)
I —' Z„sinit„'o'(r)

de = O(1) as t'~ oo, n = 1 2, . . . , N . (16)

[B, o and BiiN+I are defined as zero in order to handle the end-link cases in Eq. (16).] Using Eq. (15) we obtain
for one part of the integral

( kn Dn, n+I Dnn I), -
J

' („' dr = ", {k„—D„„,I D„„,)r +O{1)—as r'-~ .
I —Z„sin@IoI (r ) 0„'

One of the two remaining parts of the integral on the left-hand side of Eq. (16) [again using Eq. (15)] is

(17)

siniti„IO,II (r )
d7. =

I —Z„sin@„''(T ) 0„
I + Zn+I Sin{0n+Ir + (I +I)n

d~
Z„+I+ sin( 0„+I+ II„+I)

Oi„
I

I'I' I+2„+ISin(0 +Ir+ntln+I)+ " z„'~ sin(0„7+0„)dv0„"o Z„+I+sin(O„+Ir+ I)„+I)
(18)

The second integral on the right-hand side of Eq. (18) is O(l) as r' ~ unless 0„=M0„+I,M = I, 2, . . .
Since we are interested in the totally licked state at equal voltages given by Eqs. (14) we consider Eq. (18) oniy
when 0„=0„+,. Evaluating both integrals on the right-hand side of Eq. (18) under this condition we get

V

1

sinit „I+II(r) Oi„' Z„,0„+,dr= ", (Y„+I—Z„+I)I+ " " cos((I„—(I„+I)t" +O(1) as t'~~
I —Z„sin@IOI(r) 0„' " "

Zn ~n+I
(19)

where Y„=0„/C„andthe second term in large brackets is present only if 0„=0„+I.
The final part of the left-hand side of Eq. (16),

sinitI„IOII (7 )
d7

1 —Z„si P„'n(r )o
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is evaluated in fhe same way so that Eq. (16) will be satisfied if the constants k„aregiven by
1

Zn+1 +n+1
k, =Dnn+, 1 + Dnn ,t —+ linn+1 , ( Y +n1 Zn+1) +

Zn n+1
cos(8„—8„+t)

r

+8„„i( Y„ i
—Z„,) 1+ cos(8„-8„i),Zn —1 +n —1

Zn ~n —1

n=1., 2, . . . , N (20)

where the terms involving cos(8„—8„t) and
cos(8„—8„+t)are present only if Q„~= A„and
0„+t= 0„,respectively. (The end cases are again
contained within the formalism by choosing B1 0

= 0
and Bn&+& =0.)

The condition for voltage locking (accurate to first
order) therefore consists of the self-consistent combi-
nation of the expressions (20) for the k„,and [from
Eq. (11)] those for

0„=[(A„+ak„)'—C„']'i', n =1,2, . . . , N, (21)

together with the equal-voltage locking equations
(14). The circumstances under which the system will

satisfy this condition are discussed below.

IV. VOLTAGE LOCKING (SYNCHRONIZATION)

As mentioned above, the condition that all the dc
voltages be equal is given by Eqs. (14) thereby justi-
fying our interest in including in Eq. (20) terms
present only when 0„=0„1and when 0„=0„+1.
Voltages may also lock in a harmonic relation, "and
this formalism can deal with such a situation. How-
ever the number of possible different combinations
for an extended system is staggering, even if we
would restrict ourselves to the first few harmonics in
each link. Therefore only the case of equal-voltage
locking is considered here.

The parameters of the differential system (4) are:
I, (I, ]„,, (R„]„,, {y„„+,]„:,', (y„+t„)„:,', and tn.

There are not in fact 1 + N + N + ( N —I ) + (N —I )
+ 1 = 4N independent parameters, but rather 4N —2,
because the normalization of the currents and resis-
tances implies X„,l, =1 and X„",R„=l. We have

for definiteness restricted ourselves to the case of
common biasing.

Equations (14) comprise (N —1) independent con-
ditions and hence would apparently serve to deter-
mine (N —I ) parameters in terms of the remaining
(3N —1) parameters in order to have voltage locking.
It would seem that once (3N —I) parameters were
fixed, one, or possibly a few, set(s) of parameter
values for the remaining (N —1) would result in vol-
tage locking. One implication might be that this state
would be impossible to achieve in reality since experi-
mentally one cannot fix precisely the values of param-
eters. Stated more mathematically, the voltage lock-

n=2, 3, . . . , N

Using A„=I„R„andretaining terms to first order in
o, yields

1(~zz. z)f/z I
(k~3 &knRnln)

n=2, 3, . . . , N
(23)

For a A 0 the system of Eqs. (23) must be solved
iteratively for the (l„]„nz since the right-hand side of
this system contains them implicitly (in the k„)as
well as explicitly; however it is clear that there will be
a spread in the I„values satisfying Eq. (23), due to
the variation of (cos(8„n.t —8„)}n:t' {the latter set of

ing condition would seem to restrict the parameters in
the (4N —2)-dimensional space to a (3N —I)-
dimensional subspace, a region of measure zero in
the entire space.

However as can be seen from Eq. (20) in the syn

chronized state there are additional (N —I ) free vari-
ables which are related to the initial relative phases of
the links, viz. , (cos(8„—8„~)]n z. Therefore, in

fact, the constraint that Eqs. (14) places on the
parameters is that they be such as to preserve the ine-
qualities (cos(8„—8„~){~1, n =2, 3, . . . , N. This
then restricts (N —1) of the parameters to a bounded
region, but one of positive measure in their subspace
of (N —1) dimensions, while the remaining 3N —1

variables are essentially free. Synchronization is seen
to be (in principle) experimentally realizable in that
one can have random fluctuations in the parameters,
yet still remain in the region of voltage locking. It
should be noted that this region will shrink to zero as
o. goes to zero. That is, the finite interaction
between junctions is essential for synchronization.
The spread in the (N —I) "nonfree" parameters is a
result of the intervention of the relative phases in the
kn. Now, although the kn do not vanish in the limit
as o tends to zero, as we shall see, the equal voltage
condition will determine a region in parameter space
which scales ~ith n.

This is easiest seen in detail in the case where
I,, I,, . . . , Itv are those chosen as the (N —I ) "non-
free" variables. Equations (14) become with the use
of Eq. (21)

[(A +uk )' —C']''=[(A +nk )' —C']'' (22)
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variables appearing in the set (k„j~~), and that to
first order this will be linear in o.. The region thus
disappears in the limit as o, tends to zero.

In the ensuing discussion we therefore take n to be
one of the (3W —1) free parameters. We also as-
sume that yn, n+i yn+i, n' n =1, 2, . . . , N —1, belong
to this set of free parameters and that none of them
are zero. That is we ensure a non-null interaction
between all nearest neighbors. If this were violated
an examination of Eq. (20) would reveal that the re-
gion of synchronization for the entire system would
revert to zero measure in parameter space.

On the basis of this analysis one would expect the
following. First assume (3N —1) parameters are
fixed. Then there corresponds to each set of values
for the (W —I) relative initial phases a single point in

the (N —1)-dimensional space of the remaining
parameters which permits locking. This mapping is
mediated by the voltage locking condition (14), via
the dependence of the k„onthe relative phases
through Eq. (20). Therefore if the system has such a

set of parameter values it will synchronize provided
the relative initial phases are the corresponding
correct ones. However if the initial phases are not
correct, the frequencies will consequently start out
being unequal, thereby causing the relative phases to
slip. This will lead to the correct alignment of phases
at some later time, and from then on synchronization
will ensue. Certain qualifications need to be added to
this last scenario, however we postpone this to the
next section.

It is of practical significance therefore to map the
region of synchronization and this is discussed below.
%'e have also performed a numerical simulation of
the exact equations to verify the predictions of the
perturbation calculation and to determine the sensi-
tivity of voltage locking to the initial relative phases.

the locking region in critical-current space. By our
choice of units I, +I, + +I, =1. Fixing all

other parameters of the system we can find the re-
gion in this hyperplane which produces synchroniza-
tion.

On the other hand, in the case of individually
biased links it is more suitable to fix all other param-
eters as well as one bias current (say I~ ), and then
determine the locking region in the (W —I)-dimen-
sional space (I2, l3 ~ ~ IN

In order that computer runs be moderate, N had to
be chosen to be rather small. %e selected a common
bias triple junction for the main calculation to be
presented here. The region of synchronization in the
plane I, + I, + I, = 1 was first determined using the

1 2 3

perturbation results.
Next the numerical simulation was employed. This

was performed using Adam's predictor-corrector
scheme. The critical currents and initial relative
phases were selected using the perturbation results as
a guide. As Fig. 1 shows the projected region as
determined numerically matches almost exactly the
perturbation results. The average relative phases at
different locking points tested were also virtually ex-
actly as predicted by perturbation theory. (Under
synchronization the short-time-average relative
phases remain constant for all time. )

l.l5-

I.IO-

V. NUMERICAL SIMULATION AND COMPARISON
%ITH PERTURBATION THEORY

A numerical simulation of an arbitrarily large sys-
tem of differential equations cannot be carried out.
In our case, finding and mapping the region of syn-
chronization for a system even of moderate size
(10)W ~ 3) would be virtually impossible by nu-
merical methods alone. The perturbation approach
does have the merit of solving the problem for any
N, albeit approximately.

Various tests were performed. As a guide and for
comparison the region of synchronization for the case
N = 3 was determined easily with the perturbation
results by applying the condition as described in the
final paragraph of Sec. III. One has various possible
choices of the (N —I) parameters to be linked with
the (W —I ) relative phases. In the case of the com-
mon bias current case, it is appropriate to determine

I.oo
I

I.05
I
Cp

I

I.10
I

I.15

FIG. 1. Projection of region of synchronization from the
plane defined by I, + I, + I, = 1 to a plane perpendicular

to the I, axis. 1=2, Ri =1.0, R2=0.95, R3=1.05,

y ~ 2
= y2 I

= y2 3
= y3 2

= I, and ~ = 0.1. The solid line

represents the border of this region determined by perturba-
tion theory, while the dashed line represents the border as
determined by the numerical simulation of the exact equa-
tions.
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It was found in some cases that if the starting
values of the relative phases were too different from
those predicted for locking by perturbation theory,
the system would not fall into the totally synchron-
ized state. This is explained as follows. The region
of total synchronization for the entire system of N
links may intersect regions which permit subsets of
junctions to be voltage locked (still at equal voltage),
but with each subset at different voltage. If we are at
a point within this intersection, with the initial rela-
tive phases more appropriate for this situation rather
than those "correct" for the totally locked state, then
the oscillations in internal relative phases within each
subset may not be of sufficient amplitude to permit
the eventual requisite alignment of phases for total
locking, despite the slipping of relative phases
between subsets. Nonetheless, it was dramatic to
restart these cases with only roughly correct relative
phases (according to perturbation theory), and find
total locking taking place almost immediately with a
dc voltage close to that predicted by perturbation
theory yet different from each of those voltages pre-
vailing in the partially locked state; this with the
parameters of the system remaining the same.

Stated more mathematically, the totally locked state
was always found to be stable, but its domain of at-
traction, though large, was not always the entire
space of possible phases. The consequences for ex-
periment of this property wi11 be discussed below.

A further test of the perturbation calculation was
carried out for seven links in series, again with

o, =O. l and other parameters similar in value to the
three link chain. A few points in the lsix-dimen-
sional region of locking (on the plane I, +I, +

1 2

+ I, = 1) were determined easily from the perturba-

tion results. The numerical. simulation again verified
the prediction of total locking; the relative phases and
the voltage at locking matching extremely closely the
analytic calculation.

In all calculations the dc voltages were in agree-
ment usually to about 0.2'/o and always better than
0.5%. These discrepancies are in fact of the same or-
der of magnitude as the fluctuations in $„(t')/r' (at
large t') as determined numerically. For stronger
coupling (larger a values) undoubtedly greater differ-
ences between perturbation theory and numerical
simulation would result. However the simulation in-
dicates (as might be expected in a nearest-neighbor
situation) that the magnitudes of the discrepancies
are independent of the number of links.

VI. DISCUSSION

The perturbation calculation shows that the linear
chain of N weak links can be totally synchronized
over a region in parameter space. The numerical
simulation verified this behavior in particular cases

using N = 3 and N = 7. However, the simulation also

pointed to a problem of starting the system correctly.
On occasion, if the initial phase' differences were far

from those required for synch'ronization, the system

should not synchronize totally despite the parameters
being in the domain of synchronization. This hap-

pens only when subsets of the units lock in at dif-

ferent frequencies, and the internal oscillations within

these subsets are insufficient to allow the relative

phases to align themselves as required for total syn-

chronization.
This latter observation may have consequences in

attempting to produce synchronization in large-scale

systems. Since initial phases cannot be adjusted ex-
perimentally it could happen that total synchroniza-

tion ~ould not be achieved, despite the parameters

being in the correct domain. However since the. syn-

chronized state is stable the natural fluctuations
(noise) in the parameter values might serve to pro-

duce sufficient phase slippage for the correct align-

ment to take place. Or, if this is insufficient, a

means of disturbing the system until locking occurs
would be needed. It might be noted that thermal

noise has otherwise been neglected in this discussion.
We have not, for example, considered the possibility

that it could in some circumstances break the locking.
The foregoing suggests that a linear chain of micro-

bridges under some circumstances may achieve a

kind of "domain" structure in which synchronization

exists only within subgroups of the weak links. If m

domains contain N~, N2, . . . , N links, respectively,
(where N~+N2+ +N =N), then the radiated

power from the linear array would fall between the
values for a totally coherent single domain of N junc-
tions and for N decoupled single junctions, i.e.,
N )N +N + +Nm )N. This could be the
origin of the experimental results apparent in Fig.
1(a) of Ref. 9, in which there is a region of transition

from total coherence to total incoherence as a func-

tion of interbridge spacing.
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APPENDIX

We show here the existence of a secularity in the
original first-order equations. We solve Eqs. (6) and
(7), that is the perturbation equations prior to the
"renormalization. "

Solving Eq. (6) yields

P, (t') =2tan ' C„+Q„tan +P„Q„t
N ' t
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where here O„=(A —C )'i and

,
[A„tan(@„'0'(0)/2)—C„]

Q„=tan '

which translates into

(A 1)

Now the integrating factor for the n th of the equa-

tions in Eq. (7) is exp( C„cosg„'0'dr').

Since dr'= ($„'0') 'd$„'0' and in view of Eq. (6) we

get this factor to be

1+Z„sin(Q„t'+t)„)
sin@„(r')= Z„+sin(O„r'+tl„)

(A2)

C„cosg
exp A„—C„sin@„"'

1

A„—C„sin@„'"

Z„=,e„=tan ' +2/„
n n Solving the nth equation in Eq. (7) we obtain

(A3)

(0) Dnn I , ~—nn I s,
&n—4n-1

(A4)

From Eq. (A2) it follows that

A„—C„sing„''= " (Z„'—1)[Z„+sin(Q„t'+tt„)]z.

(AS)

Using Eqs. (A5) and (A2) in Eq. (A4) we see that
the integral in Eq. (A4) in general will have a term
proportional to r" As ca. n be seen from Eq. (AS),
the prefactor of the integral in Eq. (A4) has an oscil-
lating term and therefore we have a "secularity. " In
particular, @„"'(t')/t'will have no limit as t'~ ~.
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