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Stability of helium films charged with electrons
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The linear stability of 100-A films of helium coated with high densities of electrons ()) ~ 10
cm ) is investigated. We find that the van der Waals force stabilizes such films and th;lt such
systems offer a new and intriguing experiment;ll system.

I. INTRODUCTION

Recently, there has been a great deal of interest in

the system composed of electrons trapped at the free
surface of liquid helium. " The system is important
because it is extremely well defined and displays a
wide range of physically interesting phenomena which

may be varied by the application of external fields
and voltages. The freezing of the electron liquid and
the behavior of the surface near its maximum sup-
portable charge density' are two of the more interest-
ing phenomena.

In the experiments on the Coulomb solidification, '
the surface of bulk helium, whose thickness d —1

mm, is charged with electrons to densities n & 10
cm '. The temperature is then lowered through the
transition temperature T, (n ~ Tz). For n =109
cm ', T, = 0.3 K. In this regime of density and tem-
perature, the system is pursy classical, i.e, ,
ka1; » n& n/m =—EF (EF =10 ka for n =10
cm '), the Fermi energy of the electron liquid. The
evidence so far seems to suggest that such classical
melting occurs in a way described by Kosterlitz and
Thouless, i.e. , by virtue of the unbinding of pairs of
defects. At zero degrees, another kind of freezing
(melting) should occur. The so-called Wigner transi-
tion, from liquid to solid in the purely quantum re-

gime, occurs as the density of the electron gas is
lowered. ' Although the value of r, = (m/n )'i'me'/t'
at which this occurs is not known precisely, we ex-
pect it to occur for n ~ 10" cm ', a value far in ex-
cess of that which the bulk helium surface can sup-
port. Quantum-mechanical melting, i.e., the entire
phase diagram' of the two-dimensional (2D) electron
liquid would be very interesting to investigate. It re-

quires that we somehow manage to stabilize the heli-
um surface to higher charge densities.

In addition to electron liquid solidification, the in-

stability of the helium surface has been studied. It is
an interesting phenomenon in its own right, i.e. , it
gives us a simple variable system for studying many
types of hydrodynamic phenomena. Without going
into too much detail, it suffices to say that the sur-
face is unstable because the frequency ao of the rip-

plons (capillary waves) softens as the density of the

electrons is increased. For bulk helium having a
mass density p with surface tension v in the limit
(k/2') /n « 1 (Refs. 6 and 7):

2 2

co =gk +—k
4me n

k
p p

Here, g is the gravitational constant. The wave
number at which the instability occurs is given by

k, = (gp/r)'~'

The corresponding critical density is given by

n, = (rg p) 'i4/(2rre') ' ' (3)

For helium, r/p—- 2 dyncm'/g, k, =30 cm ', and
]), ——109 cm 2

In this paper, we would like to anal ze the
behavior of thin (approximately 100- ) films of heli-
um when they are charged with electrons. %e will

show that large electron densities can be expected to
be stabilized and that a wide range of new and in-
teresting physical possibilities exist for such systems.

II. SUPERFLUID FILM

3A

(z+d)4 (4)

along with the incompressibility condition

'0 v=0

Here, v is the fluid velocity, p is the pressure, $ the
electrostatic potential, n is the van der %'aals con-
stant characterizing the force between the substrate
and the helium, and a is the deviation of the surface
from equilibrium position. %e have chosen the z

%hen the film of helium is superfluid and at low
enough temperatures, the problem has in some sense
already been solved. The linearized equations
governing the fluid motion are"

't
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axis perpendiculhr and the x axis parallel to the heli-
um surface. %hen there is no pertur'bation, the sur-
face is at z =0. The bottom of the helium film
z =—d contacts a solid insulating substrate. Pt
thicknesses of 103 A or less, the bulk force in Eq. (4)
is dominated by the van der Waals attraction,
—3a/(z +d )4.

%e examine a surface perturbation of the form
exp(ikx —i cut) by employing the methods described
in Refs. 7 and 8. Using a boundary condition
7 z = 0 at z = —d, one obtains the dispersion relation
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ao' = ruo2 tanh(kd ) (6)
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FIG. 1. The maximum supportable density n, and the
critical wave number k, as a function of film thickness.

k, = (3n/r)' '/d (9)

when n & n, . Both n, e' ' and k, are plotted in Fig. 1

as a function of d for a glass substrate.
In deriving Eqs. (6) and (7), the electrostatic term

in Eq. (4) is taken into account by assuming that the
electric field is continuous and that it instantaneously
forms an equipotential surface. For linear distur-
bances, such an assumption is valid when the fre-
quencies of the mode at the wave number is small
compared to the two-dimensional plasmon frequency

when the surface is fully charged by the electrons.
Hereafter, we consider thin films (kd « 1), so that
F(k) = e, the dielectric constant of the insulating
substrate. The function F takes into account the ef-
fect of image charges in the insulating substrate. All

image charges, because they reduce the Coulomb
repulsion between electrons, tend to destabilize the
surface. In addition to insulator substrate, a metal
electrode is required. It is the conductor to which the
voltage is applied which binds the electrons to the
surface. The image charges on this metal electrode
would also tend to destabilize the surface, i.e., pro-
duce an additional factor analogous to F. However, if
the conducting electrode is at a distance far from the
surface, (kd' )) 1), then there is no effect from
such image charges.

It is important to note that for typical materials like

glass a =9.5 x 10 '5 in cgs unit 3a/(pd4g ) = 2 x 108

for d =100 A. The van der %sais attraction to the
substrate acts to stabilize the surface. The maximum

supportable electron density limited by the hydro-
dynamic instability is now given by

n, = (3nr)' '/(2we'e)' 'd

and instability occurs at a wave vector

cu~2(k) = (2m ne2/tn)k, and that the electron fluid is
continuous, i.e., that (k,/2m)' « n The .first condi-
tion is well satisfied for density n & 10' cm '. To ex-
antine the second condition, (k, /2m)' is plotted as a
function of d. The continuous fluid approximation is
valid for densities above this line. Thus down to
thickness of 100 A, the fully charged system is
described by our approximation and is hydrodynami-
cally stable.

Although the hydrodynamic analysis indicates that
n = 10" cm ' is supportable, the electric field at this
density becomes as high as 180 kV/cm. At this high
field, the surface may become unstable to tunneling
of the electrons through the 1-eV barrier at the sur-
face into the liquid. As long as the tunneling does
not occur, the thin film provides a hydrodynamically
stable situation for high density (or electric field).

III. STABILITY WITH VISCOSITY

For the case of viscous helium films, for example,
He or He I, the linearized capillary wave problem for

arbitrarily thick films, to our knowledge, has not
been solved. This regime is interesting for at least
two reasons.

The dynamics, i.e., the growth rate of unstable
capillary waves will be dominated by viscosity and the
ultimate nonlinear evolution of these waves will be
quite different from the zero-viscosity case. In addi-
tion, it is important to know the hydrodynamic
dispersion relation of ripplons near k = (2rrn )' ' if
one is to do experiments analogous to the Grimes-
Adams experiment at temperatures higher than the
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lambda point. In this section, we will analyze the
linear stability problem of a viscous He film charged
with electrons.

The equations governing the fluid are the Navier-
Stokes equations with viscosity p„ i.e.,

9v„ 8 v„ 8 &„
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and v = p, /p.
In some limiting cases, it is possible to write down

approximate expressions for this dispersion relation.
In the thick limit, e k~=0 and e ~=0, Eq. (16)
reduces to

t t
l t/2

OJ OJp OJ
2 I + —4 1 —i =0

vk2 v2k4 vk

for the incompressible fluid.
The solution which depends on x and t as

exp(ikx —i rut) is of the form,

where coo2 is given in Eq. (7). Equation (17) is the
result given by Landau and Lifshitz slightly modified
by the electrostatic, surface tension, and van der
Waals effects. If Otoz/v'k" » I, one obtains

(Q e kz + pe —kz + Ce mz +pe™)ei kx itzt—
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co = +(s)')'t' —i 2vk'

We have purely damped (or growing) modes
z 2

ldp
cu = —I, —I vk

2vk

(18)

(19)

where

m = (k' —i Oz/v ) ' ', v= pip

The four coefficients 3, 8, C, D are determined by
four boundary conditions. Two boundary conditions
at the liquid surface, z =a, are obtained by integrat-
ing Eqs. (10) across the surface, i.e., no shear,

~&x ~&z+
gz gX

(13)

and by setting

B Bv Ba B$—p —2p,
' +v —en =0
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The conditions at z = —d are simply

u„=0, v, =0 (15)

Following a prescription described in Ref. 7, one can
write n and B@/Bz in Eq. (14) in terms of a. On the
liquid surface, z in Eq. (12) equals a. Eliminating p
from Eqs. (12) and (14) and using Ba/Bt =v, at
z = a, we obtain an equation for v„and v, . The
determinant of the four boundary conditions gives us

when a&0/v'k (( 1. The stability, i.e. , the static
equilibrium is totally determined by the sign of aoo as
it is in the case of no viscosity. However, the growth
rate is dependent on the viscosity.

In the thin limit kd && 1, it is possible to approxi-
mate the determinant when ~co/k v'~ (( I and obtain

QJ
Ot = —i (kd)3

3vk'
(20)

The stability is again determined by the sign of ~Q.

The dispersion relation can be solved numerically
for a realistic case. If we employ a glass substrate
elevated from a bulk helium surface by 1 cm, a film
with d =400 A is formed. We adopt parameters of
He I; v = 2 x 10 4 P cm'/g, tk = 9.5 x 10 '5, and

r/p = 2 in cgs units. Under these conditions,
k, = 1.9 x 10 cm ' and n, = 6.3 & 10' e '~ cm Fig-
ure 2 shows the dispersion relation when the elec-
trons are almost fully charged, i.e., when
n =6.2X10' e ' ' cm When k ~8.4&&10' cm '

we find two roots cut and co2 where Re(cut+t02) =0,
Im(cut —co2) =0 as in Eq. (18). However, as shown
in Fig. 2 by dotted lines, Eq. (18) is not a good ap-
proximation because the condition Ozoz/v'k~ && I is
not satisfied very well for k shown in the figure.
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FIG, 3. The dispersion relation near the critical wave
number. The parameters are the same as those employed in

Fig. 2.
FIG. 2. The dispersion relation of ripplons when

d =400 A, v = 2 ~ 10 , 0, = 9.5 x 10 , v/p = 2, and
n =6.2 x 10' ~'l' in cgs units. tempt to analyze the nonlinear evolution of the un-

stable waves in this system.

Grimes and Adams employed plasmon-ripplon cou-
pling in order to detect the signer lattice. This tech-
nique works when the ripplon resonance is sharp,
i.e., when cu, /co; » 1 at k = (2n n ) ' '. For n = 10'0

cm ' (see scale shown in Fig. 2), co„/ru, = 6, indicat-

ing that plasmon-ripplon coupling could be observed
even at temperatures above the lambda point.

More details of the dispersion relation at smaller
wave numbers are shown in expanded Fig. 3. For
k (8.4& 10 cm ', cv, vanishes and two purely ima-

ginary roots appear. One has a large negative value
and very insensitive to n. The other one is expressed
by Eq. (20) within an error of a few percent for k
around k„which is 1.9 x 10 cm '. This is the
branch which determined the system's hydrodynamic
stability. For these 400 A films, the growth (or
damping) time to=10 p, sec. We will make no at-

IV. CONCLUSION

The simple analysis presented here shows that thin
100-A films of helium offer intriguing possibilities for
stabilizing high densities of mobile electrons in order
to observe quantum-mechanical effects in the 2D
solidification of the electron liquid. The presence of
a number of variable dielectric substrates also allows
one to think about dipolar gases, effective electpon
charges, and polaronic effects which could be physi-
cally very interesting.
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