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The temperature dependence of the structure factor S(k, T) of liquid 4He is studied on the
basis of a model density matrix based on the elementary excitation picture and with roton exci-
tations described in terms of the Feynman wave function. S (k, T) is constructed starting from
the experimental low-temperature S (k), the energy spectrum el, ( T), ind the linewidth 5k( T).
No assumption is needed on the form of the Hamiltonian. The main peak 6f S(k, T) has an
anomalous behavior, it increases its height and becomes sharper as the temperature is increased;
this is due to thermal population of roton states that causes an enhancement of the short-r &nge

order. This anomalous behavior ends slightly above T„when rotons become overdamped. Our
result is in good quantitative agreement with experiment. This temperature effect becomes
stronger at high density.

I. INTRODUCTION

The temperature dependence of the radial distribu-
tion function g (r, T) and of the related structure fac-
tor S(k, T) of liquid 'He has recently attracted much
interest" because of its anomalous behavior. ' In a
liquid heated at constant density we expect that the
short-range order diminishes because of the increased
thermal motion and in fact this is shown by the main
peak of S(k, T) that decreases in intensity and be-
comes wider with increasing temperature. In liquid
helium the opposite behavior is observed as long as
the temperature remains below T&, the temperature
of the superfluid phase transition; the trend of
S(k, T) becomes normal above T„.

Two explanations have been proposed for the
anomalous behavior or S(k, T) below T„The first6.
attributes this behavior of S(k, T) to the hy-

pothesized presence of Bose-Einstein condensation in

the superfluid phase of 4He. At a qualitative level it
is said that He atoms in the condensate are delocal-
ized and therefore do not contribute to spatial order.
Since the condensate fraction no( T) is a decreasing
function of T that should vanish at and above T&, the
anomalous behavior of S (k, T) arises because more
particles, [1—no(T) ]N, contribute to give spatial or-
der when the system is heated. This mechanism
ends at T„and the normal behavior of S (k, T) is rea-
sonably expected thereafter.

The second explanation' attributes the anomaly to

the thermal excitation of rotons. The structure factor
S(k, T) was computed starting from a model density
matrix that incorporates the Landau picture of super-
fluid He in terms of a gas of almost independent ele-
mentary excitations, phonons and rotons, and the
Feynrnan picture of a roton as a density oscillation
with a wave vector ko of order of the inverse of the
interparticle distance. Phonons are more readily ex-
cited than rotons but they are long-wavelength distur-
bances and do not affect the short-range order to an
appreciable extent. Above 1 K rotons become the
dominant excitations and the thermal population of
these states increases the probability of density fluc-
tuations of wave vector k = ko. Since S(k, T)
= (p„p k) r/N where pk is the density fluctuation
operator of wave vector k, and ko is close to the
position of the first maximum of S (k, T) one con-
cludes that the main peak of S (k, T) increases its
height with increasing T at least as long as rotons can
be considered good elementary excitations. De
Michelis, Masserini, and Reatto' (DMR) computed
explicitly S(k, T) from that density matrix and subse-
quently this result was found in good agreement with
experiment. '

We have extended the computation of DMR in
several respects. The model density matrix contains
the ground-state wave function Po and DMR used a
Jastrow wave function pJ to approximate po. Howev-
er, within this approach it has been shown' that in
order to compute S (k, T) it is not necessary to know
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explicitly the complete wave function but only the
ground-state radial distribution function go(r) is

needed because the thermal correlations are weak
with respect to those due to $0 so that a suitable per-
turbation scheme can be used. The availability of ac-
curate experimental data' for S(k, T) in 'He at iow

temperature permits one to deduce go(r) so that this
perturbation scheme to compute S (k, T) can be used
for 4He. This is an important step forward with

respect to the computation of DMR because S(k, T)
can now be deduced using only other experimental
data: the low-temperature S(k, T) and the spectrum

e& of elementary excitations. No assumption is need-
ed on the form of the Hamiltonian and of Po.

In view of the observed change in the temperature
dependence of S(k, T) at T„we have extended the
computation of DMR at higher temperature by in-

cluding in the density matrix the effect of the finite
lifetime of the roton states in an empirical way. In
this way we are able to describe the behavior of
S(k, T) even at T„or slightly above.

The content of the paper is the following. In Sec.
II we discuss the model density matrix. In Sec. III
our method to compute S(k, T) is discussed and the
results at several temperatures and densities are
presented and compared to experiment. Finally Sec.
IV contains a discussion of our results.

II. DENSITY MATRIX

There is good evidence that the lowest excited
states of liquid 4He have the form

pr, (rI rv) =Fq(r~ rz)$0(rI rz), (l)
where FI, is a function that carries a momentum hk
and contains co'rrelations only between a small
number of particles. If Fi, contains no correlation at
all we have the Feynman' choice

Fg(ri ' ' rg) = [NSO(k) ] ' 'pq, pq = Xexp(i k r;)
(2)

whereas the Feynman-Cohen wave function" corre-
sponds to assume that FI, contains correlations only
between pairs. So(k) is the ground-state structure
factor and appears in Fi, as a normalization constant.
Penrose" has shown long ago how to construct the
density matrix for an ensemble of such states (1) and
(2) assuming that the excitations are independent so
that the total excitation energy is E,„,= X„ei,Wq Wi, .

is the number of- excitations with wave vector k and
~I, is their energy. Penrose considered only the case
of phonon excitations so that eq =tck and So(k)
=tk/2mc, where c is the sound velocity. His compu-
tati~&n, however, does not require this specialization"
and the full density matrix reads, in the coordinate
representation

rwlplri rg) 0/v ljJo(rI r~)$0(r, rN)exp —
—, X[h~(r —rj )+h~(r; —r, )+h2(r —r, )]

i,j
(3)

where 0A is the normalization constant determined
by

dr~ dr~(r~ rw lplrI r~) =1 . (4)

h;(r) and h2(r) are given by the Fourier integrals
'I

2I
h, (r) =

(2m)'p " So(k) 1 —yj

y„=exp( —eg/ks T ) (7)

The only condition for the validity of the density
matrix (3) when the complete spectrum e„ is con-
sidered, is that the wave function corresponding to

multiple excitations, for instance Fq "$0/ JW„!when
N~ excitations of wave vector k are present, is nor-
malized for arbitrary k and this has been proved

h, (r)= ———
3

d k —;e''' . (6)I7. f

(2~)'p S,(k) 1 —y2

p is the density and y& is the Boltzmann factor

under the separability hypothesis, i.e., the effects of
the excitations of different wave vector'" are additive.
This is true when the number of excitations is finite
and is a reasonable approximation when the average
number of excitations is small compared with the
number of particles.

The energy spectrum in Eq. (7) should be the one
consistent with the wave function (1) and (2), i.e., it
should be the Feynman spectrum

eg =g'k'/2mSO(k) (8)

but this is quantitatively unsatisfactory in the roton
region and Feenberg" has justified the use in Eq. (7)
of the empirical eI, . If T„ is approached closer than
roughly 0.5 K experimentally it is observed that roton
excitations have a temperature-dependent energy,
eI, (T) and acquire a finite lifetime. These are man-
ifestations of roton-roton interaction and therefore
are outside the description given by the density ma-
trix (3). Feenberg'4 has already suggested the use of
a& ( T) in the density matrix3 as a way to take into ac-
count part of the effects of the interaction. This will



23 THEORY OF THE TEMPERATURE DEPENDENCE OF SPATIAL. . . 1131

introduce more complicated correlations than the
ones contained in Eq. (3) but one of its effects is

simply to change the counting of the states by chang-
ing the average energy necessary to excite a roton.

We propose to make one further step in the inclu-
sion of the interaction effects in the density matrix
and precisely to take into account the finite lifetime
of rotons. When the lifetime is infinite there is a one
to one correspondence between the wave vector k of
a density fluctuation in Eq. (2) and the energy in the
Boltzmann factor (7). This correspondence is lost
when the lifetime is finite and a density fluctuation
p-„can correspond to many different energies cen-
tered around ek(T) with a dispersion Sq(T) of order
of the inverse lifetime. A reasonable assumption is
that the spectral density is a Lorentzian and the
linewidth Sk(T) can be assumed to coincide with the
linewidth measured by inelastic neutron scattering.
Now each excitation of wave vector k does not carry
the Boltzmann factor y„=exp( —ak/ks T) but the
modified one

1 5, (T) —e/k Tk B

rnk 4'k' ' 5„'(T)+[a—ek(T)]' (9)

long-wavelength phenomena phonon excitations
should be considered.

The density matrix (3) does not take into account
explicitly the effect of backflow' of the roton states.
This problem is considered in Sec. IV.

III. TEMPERATURE DEPENDENCE OF
CORRELATIONS

The radial distribution function is expressed in

terms of the diagonal part of the density matrix

W(W —1)g(r] f), T)= ) ~
dl 3' ' ' nfl''n

& I ) rn I p I.I. .i ~, )

and on the basis of the model form (3) we can ~rite

(r1 rNlplri ' ' ' rn) =Ox Po(ri ' ' ' In)

1x exp ——, ~ v&(1.; —I. )
i wj

The density matrix turns out to have still the form
(3) but in the expressions (5) and (6) for h~(r) and

hq(r) yk replaces y„. In Eq. (9) the integral has the
lower limit 5„(T) because we assume that only exci-
tations nor overdamped (a ) Sk) contribute to the
coherent part of the density matrix. mk is the nor-
malization constant

Sk(T)
fP1k = d6

2'k'r' Sk (T) + [e —e„(T) ]'

where

vr(r) =—,d'k2 "
1 yk

(2vr )'p " So(k) I + y„

(12)

1 ek(T)= —m —arctan 1—
2 5, (T)

(10)

yk = exp [—e„(T)/ka T ] (14)

and yk is the Boltzmann factor with the empirical en-
ergy spectrum ek( T)

In conclusion the density matrix (3) with yk given

by Eq. (7) with the low-temperature excitation spec-
trum is a well-founded density matrix of liquid 4He

for temperature, at vapor pressure, up to —1.7 K.
Above this temperature interaction between rotons
becomes important but the density matrix (3) still

represents a useful model when it is used together
with the empirical data for the energy ek(T) and

linewidth Sk(T) of roton states. In the range
1.8' & T & 2 the lifetime of roton states is long

enough (Sk/ak & 0.2) that it can be neglected but
above 2 the lifetime becomes short and the
Boltzmann factor (7) should be replaced by y„given
in Eq. (9). It should be noticed however that our
treatment of the roton lifetime is only empirical and

it lacks a microscopic justification. Our aim is princi-

pally to indicate the change of the behavior of
S(k, T) that takes place near T„. We have limited

our considerations to the roton excitations as the
most significant for short-range correlations. For

if we do not take into account the finite lifetime of
the excitations. If we take into account this finite
lifetime in Eq. (13) yk should be replaced by yk
given by Eq. (9). Instead of averaging yk as in Eq.
(9) we have also considered the energy average over
the Lorentzian distribution of the thermal factor,
—2y„/(1+yk), contained in vr. We find no signifi-
cant difference between these two prescriptions be-
cause yk is small.

The computation of g (r, T) from this density ma-
trix is similar to the problem one encounters in the
case of classical statistical mechanics, the Boltzmann
factor for the potential energy exp[ —

—, g,. ~, v(r;
—r, )/k T']areplacing the diagonal part of the density
matrix in Eq. (11). In particular vr(r) has the same
role of an additional effective two-body potential that
modifies the correlations contained in Po'and
methods borrowed from the theory of classical fluids
can be used to compute g (r, T). If Qo is approximat-



1132 G. GAGLIONE, G. L. MASSERINI, AND L. REATTO 23

g(r, T) =gp(r) expCr(r)

where gp(r) is the radial distribution function at
T =0' and Cr(r) is given by

Sp (k)vr(k)
I +.&Sp(k)vr'(k)

(15)

(16)

Sp(k) is the structure factor corresponding to gp(r):

So(k) = I + p J d'r e' " ' " [go(r) —I ] (17)

and vr(k) is the Fourier transform of the "optimized"
perturbation vr'(r)

vr" (k) = JI d r e'" 'vr"(r)' (18)

This "optimized" perturbation is defined as follows:

vr(r) for r ) d
vr r

vrP(r) for r & d, (19)

ed by a Jastrow wave function

yp= Q exp[ ——,u(r„)]"1

i(J
the Monte Carlo method can be used with u (r)
+ vr(r) having the role of u(r)/ka T' in the problem
of classical fluids. u (r) and vr(r), of course, are a-
dimensional quantities and the similarity with the
classical problem is with the interatomic potential di-

vided by a temperature that we have called T'.
Such Monte Carlo computation has been per-

formed by DMR' and for u (r) the form was used as
given by variational computation of the ground state
of 4He when the Lennard-Jones interatomic potential
is assumed. In that computation vr(r) as given by

Eq. (13) was used with the experimental Sp(k) and
e(k, T).

The term vr(r) turns out to be weak compared
with u (r) and of somewhat longer range. This is ex-
actly the situation handled by the perturbation theory
of classical liquids": the interatomic potential v(r) is

decomposed in a strong short-range part vp(r) and in

a weak part w(r) of longer range and w(r) is treated
on the basis of a suitable perturbation scheme.
Therefore we can adopt this scheme in our quantum
problem if we identify the ground-state Jastrow corre-
lation function u (r) with the "reference" potential
up(r)/kaT' of the classical system and the tempera-
ture-dependent term vr(r) with the perturbation
term w (r)/kaT'. In a previous work' (hereafter
called I) we have followed this approach and we have
computed g (r, T) with the use of the so-called "exp"
approximation of Andersen and Chandler. 'P g (r, T)
was computed also by the Monte Carlo method and
from the good agreement between the two computa-
tions it was concluded that the "exp" approximation
is very good indeed in this problem,

g (r, T) in the exp approximation readsp 'p

where vrp(r) is such that Cr(r) =0 for r & d, and d
represents the diameter of the equivalent hard-sphere
system. " In the theory of classical fluids the motiva-
tion for using this optimized potential is the follow-
ing': the strong repulsive part of the interatomic po-
tential at short distance renders in practice inaccessi-
ble those configurations in which at least one couple
of particles has the relative distance i r, —rj I less
than a distance d that can be considered as the diam-
eter of an equivalent hard-sphere system. This im-
plies that any measurable quantity, in particular g (r),
does not depend on the form of the perturbation
w(r), that in our case is vr(r), for r & d, i.e., the
shape of w(r) for r & d is arbitrary. Thus one takes
advantage from the arbitrariness of w (r) for r & d by
choosing that particular form w'(r) for which the
perturbation series is the most rapidly convergent and
this gives'p the condition Cr(r) =0 for r & d. The
same can be said in the quantum case: because of
the strong repulsive part of the He-He interatomic
potential pp vanishes rapidly whenever i r; —

r&i & d
and the concept of an equivalent quantum hard-
sphere system is a good approximation" (if one uses
the Lennard-Jones potential to represent the He-He
interaction, it turns out that d =0.810-, o-=2.556
A). Thus the use of Eq. (19) as optimized perturba-
tion is justified and in I we have verified the good ac-
curacy of this approximation. Moreover we have also
verified that g (r, T) is not affected by small varia-

tions of the equivalent hard-sphere diameter d
around the value 0.81'.'

The possibility of using the perturbation scheme to
compute g (r, T) is important because it gives the pos-
sibility of computing g (r, T) by using only experi-
mental data. In fact within the perturbation scheme
[Eqs. (15) and (16)] one needs to know of the
ground state Pp only gp(r) and Sp(k) and these
quantities can be deduced from accurate neutron or
x-ray scattering experiments performed at low tem-
perature as the one recently completed. ' Of course
the exact ground state does not have the simple Jas-
trow form but the "exact" computation' of the
ground state of the quantum Lennard-Jones fluid
with the Green's-function Monte Carlo method con-
firms that the dominant correlations in |irp are well
represented by the Jastrow form gl. The most im-
portant correlations absent from pl are three-particle
correlations' " but also for these one can develop an
analogy with a problem in classical statistical mechan-
ics of a fluid with three-body interatomic interaction
in addition to the two-body one. For the purpose of
c'omputing g (r) it has been shown" that a three-
body interaction can be replaced by an effective two-
body potential and thus the analysis leading to [Eqs.
(15) and (16)] can be repeated. We conclude that we
are justified in using those expressions together with
the experimental go and So to evaluate the tempera-
ture effect on correlations.
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This approximation is adequate as can be seen in Fig.
1 where we compare the temperature effect on the
structure factor

ES(k, T) =S(k, T) —S (k) (21)

computed with the full spectrum'4 at 2.1' and with
the parabola (20) with the value of the parameters
(5=7.33', ko=1.91 A ', and p, =0.13mH, ) fitted on
the same data. In the region of the main maximum
of S(k) there is good agreement between the two
results and all other computations on which we report
have been obtained with the analytic representation
(20) of s„(T)

In agreement with the result of DMR obtained
from a Monte Carlo computation of g (r, T), the main
temperature effect on the structure factor is an in-
crease and a sharpening of the main maximum of
So(k) and this corresponds to the characteristic
behavior of hS (k, T) positive at the peak of So fol-

1.5.
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0.5—
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I
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In our computation at the equilibrium density"
p„=0.145 gcm 3 for So(k) we have used the S(k)
of Svennson et al. 5 at T = 1 K modified at small k so
that they are consistent with the hk/2mc behavior
characteristic of the ground state. go(r) has been ob-
tained'from this So(k) by Fourier inversion of Eq.
(17). The temperature-dependent correlation term
vr(r) has been computed using in Eq. (14) the ex-
perimental spectrum ek(T). Only few complete spec-
tra have been measured in 4He and for this reason
we have considered only the roton contribution, that
in any case is the most important for our purpose,
with the energy spectrum represented by a parabola:

ek(T) =6 (T) +t~[k —ko(T)] /2p, (T) . (20)

where 1 and G are two constants that depend on
temperature. The slope 6 ho~ever is rather small
and we have neglected it also in view of the approxi-
mate representation of ek(T) by the parabola outside
the region of the minimum. In Fig. 2 our result for
S (k, T) at T = 2.15' is shown when we take into ac-
count the finite lifetime and when we consider sharp
excitations. The shape of ES(k, T) is not affected by
the finite lifetime of rotons but the.amplitude of the
temperature effect is reduced and this effect becomes
more significant with increasing temperature because
1'=5k /ek increases very rapidly when T —T„. In

Fig. 2 also the experimental data5 are shown [we re-
port the unsmoothed differences S (k, T) —S (k, T
=1')). There is an overall good agreement between
theory and experiment in the shape and in the ampli-
tude of ES(k, T), the main difference consisting in a

D.Oa- /
I
I
I
I
I
I

lowed by two negative minima at both sides. There
is also a rather smali displacement ( —0.1 A ') to
lower k of the position of the maximum of AS com-
pared with that of Sp. The difference between our
present result and the one of DMR is not due to the
different method used to compute g (r, T) but to our
use of the experimental go(r) instead of using a vari-
ational ground-state wave function. In addition now
we have computed the temperature correlation vr(r)
using the most recent data5 for So(k).

In order to compare our results with the experi-
mental data' we have computed S(k, T) at the same
temperatures of the experiments. For the parameters
of the roton spectrum (20) we have used the experi-
mental data"' that have been smoothed and inter-
polated. The values we have used are listed in the
Appendix. We have also computed S(k, T) taking
into account the finite lifetime of rotons by using Eq.
(9). Below T„ the linewidth Sk(T) is almost propor-
tional to the energy ek(T) and good representation of
Sk is given by

(22)

Q [

K(A )

FIG. 1. Temperature effect, AS(k, T) =S(k, T) —Sp(k),
at peq and T = 2.1' with the use of the full spectrum (solid
line) and of the roton parabola (20) (dashed line). Sp(k) is

also shown.

-D.DI-

FIG. 2. ES(k, T) at p,q and T =2.l5'. Experimental data

(Ref. 5) (crosses) and theory for finite linewidth (solid line)

and for sharp excitation (5I, =0) (dashed line).
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small (-0.1 A, ') displacement of the theoretical
curve compared to the experimental one. In fact ex-
periment shows almost no displacement with T of the
position of the maximum of S (k, T). On the con-
trary our result shows a systematic even if small dis-
placement of the maximum of S(k, T) compared with

that of So(k) to a smaller wave vector. For instance
at T =2.15' the maximum of S(k, T') is found at
k =2025 A ' in place of k = 204 A ' for So(k).
The origin of this displacement can be easily under-
stood. The maximum of AS(k, T) is for that k for
which the density fluctuation is most easily thermally
excited and for our model density matrix this corre-
sponds roughly to the position ko of the roton
minimum because we have-adopted the Feynman
wave function. The roton minimum is at a smaller
wave vector than the maximum of S(k), the dis-
placement is roughly -0.1 A ', and we believe that
this is responsible in our theory for the displacement
of the maximum of S(k, T) As we d. iscuss in Sec.
IV the agreement with experiment should improve if
one takes into account the backflow associated with
roton excitations.

The shape of ES(k, T) reported in Fig. 2 is typical
also for the other temperatures (see Fig. 4 below for
the result at T =1.97') and we report only the max-
imum value of the difference ES(k, T) as function of
T in Fig. 3. When we do not take into account the
finite lifetime of rotons the maximum of S(k, T)
steadily increases with T because rotons become
more easily excited for the direct effect of the in-
creased thermal energy and also because the roton
energy t5, (T) decreases with increasing T. When we

0.15—

0.10—

take into account the finite lifetime of rotons the
temperature effect on S(k, T) is strongly reduced for
T = T& because the linewidth becomes comparable
with eI, and as a consequence the temperature effect
is no more concentrated on density fluctuations of a
well-defined k value. This effect is so important that
the increase of the maximum of S(k, T) with tem-
perature ends slightly above T„where 51, & eI, , in .

0 0'

good agreement with experiment. We recall that the
theory does not contain any adjustable parameter.
We find that the maximum value in the temperature
effect on S(k, T) is about 20% below the experimen-
tal value but we believe that this difference is not sig-
nificant. Experiments are not accurate enough to
permit a very precise determination of these small
differences on the structure factor. On the other
hand the theoretical results are affected by the preci-
sion of the data available on eq(T). In fact the
scatter in the values'4 of the roton parameters of the
parabola (20) given by experiment is rather large par-
ticularly around T&. We believe more important,
however, that when T & T„ the linear relation (22)
between Sq and eI, does not give a good representa-
tion of experiment because St,/eq has a maximum' at
k = ko. Unfortunately the published data are not
complete enough to allow for this effect in our com-
putation and only the value of this maximum
I'=8& /et, is available. As a consequence our com-

0 0

putation overestimates the effect of the finite lifetime
of rotons with k in the neighborhood of ko when
T & T&. To give an estimate of this effect we have
performed a computation at two temperatures
(T = 2.20' and 2.27') decreasing the experimental
value of I" by 20%, a change that is reasonable in
view of the available data. " As it can be seen in Fig.
3 our result is rather sensitive to the value of I" and
we conclude .that theory and experiment agree within
their reciprocal uncertainty. We are not able to com-
pare our result with the x-ray data of Robkoff et al. '

because they do not report the complete S (k) and
their data do not extend to low enough temperature,

If in the computation of S (k, T) one makes the ap-
proximation of separability of the effect of excitations
of different wave vector the result will be the simple
formula"

S(k, T) =So(k) coth[et, (T)/2ktt T] (23)

0
1.5

1

2.0
I

2.5

This approximation coincides with the so-called RPA
(random phase approximation) in the theory of clas-
sical fluids and it corresponds to

g (r, T) =go(r) + Cr(r)

FIG. 3. Maximum value of bS(k, T) =S(k, T) So(k) as

function of temperature at p,q. Experimental data (Ref, 5)
(crosses) and theory for finite linewidth (dots connected by
a solid line), for reduced linewidth 0.8I" (dotted line) and

for sharp excitations (dots connected by a dashed line) ~

in place of Eq. (15) with Cr(r) given by Eq. (15) but
without "optimization" of the perturbation vr(r)
The approximation (23) is not satisfactory as it can
be seen in Fig. 4 because it overestimates the in-

crease of the maximum of S (k, T) and hS (k, T)
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0.08-
0.10—

0.04—

/ --x-
x
2'
I

x x

/
x~x~ x x

x x x

3
I

][(3I-')

-O.D4-

FIG. 4. AS(k, T) at p«and T =1,97'. Experimental data

(Ref. 5) (crosses) and theory for sharp excitations with the
"exp" approximation (15) (solid line), with the linear ap-

proximation (24) with "optimized" perturbation (19)
(dashed line) and with Feenberg formula (23) that corre-
sponds to Eq. (24) used with the bare perturbation v&(r)
(dotted-dashed line).

0
1.5

]

2.0
T (K)

I

2.5

FIG. 5. Maximum value of AS(k, T) as function of tem-
perature at three densities: pzq (dots), 1.1 && p, q

(crosses),
and 1.2 p~q (triangles). The corresponding temperatures of
the A. transition are shown by the arrows.

= Sp(k) [coth(eg/2k& T) —1 ] is always positive so
that there is no sharpening of the maximum. In or-
der to understand the origin of the failure of the
separability hypothesis we have also computed
S (k, T) on the basis. of the linear relation (24) but we
have used for Cr(r) the "optimized" perturbation
vr(r) as given by Eq. (19). From the comparison of
the different results reported in Fig. 4 we conclude
that the failure of (23) is due primarily to the ab-
sence of the optimization condition. When one com-
putes a correlation function the effect of exciting
density fluctuations of different wave vectors is not
simply additive because the necessity of satisfying the
core condition [g (r) =0 at small distance] forces a
correlation between the different wave vectors and
this is exactly the role of the optimization condition.

The temperature dependence of S (k, T) is
enhanced at higher densities. We have computed
S(k, T) along two isocores, at p = 1.1 x p„=0.1595
gcm ' and at p=1.2 x p„=0.174 gcm . This corre-
sponds roughly to p = 10 and 24 atm. Above the
equilibrium density accurate enough data for S(k)
are not yet available and we have used for g p(r) and
Sp(k) the results'p of the Green's-function Monte
Carlo method for the Lennard-Jones potential. The
smoothed roton energies and lifetimes obtained from
literature" are reported in the Appendix. The
behavior of S(k, T) is very similar to the one found
at equilibrium density (see Fig. 5): the temperature
effect on the maximum of S(k, T) reaches a max-
imum slightly above T„and there is a small displace-
ment of the maximum of S(k, T) to smaller wave
vector. The height of the maximum of S (k, T) in-
creases significantly at higher densities because the
more pronounced short-range order present in the
ground state at high density makes it easier to excite

additional density fluctuations [cf. the presence of
Sp ' (k) in Eq. (13) for vr(r) ] and the effective mass
p, of rotons decreases so that the temperature effect
is more concentrated around ko. The decrease in the
roton energy b, at high density is responsible only for
the overall displacement of the curve at lower tem-
perature because the ratio 5/T„ is roughly indepen-
dent of p. Experimental data are not yet available for
a detailed comparison with our result. The only mea-
surement, in fact, along different isocores is the x-ray
data of Robkoff et al. ' but unfortunately they did not
measure S(k) to low enough temperature to allow a
determination of Sp(k). In any case their data are
consistent with an increase of the temperature depen-
dence of S(k, T) at high density and the difference is
of the same order as the one we find. For the max-
imum of S(k, T) they find [S,. „(2.1') —S„.,„(1.8')]/
S .„„(1.8') =0.041 at the higher density p =0.1625

gem
' against [S,. „(2.2') —S„,„. „(1.9') ]/

S „. „(1.9') =0.031 at the lower density p=0. 1503
gcm '.

A careful determination of the temperature depen-
dence of S(k, T) at different densities is important~'
because it can discriminate between the present
theory and the interpretation of the T dependence of
S(k, T) in term of Bose-Einstein condensation. In
this last case, in fact, the T dependence of S (k, T)
should decrease, and not increase, as one approaches
solidification because the condensate decreases for in-
creasing density.

IV. DISCUSSION

The main features of the temperature dependence
of the structure factor S(k, T) of liquid 4He are well

explained in terms of thermal population and renor-
malization of roton states. We have shown in fact
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that Penrose's density matrix constructed with the
empirical temperature-dependent spectrum and
linewidth of roton states give S(k, T) in good agree-
ment with experiment. On this basis we get a clear
picture of the origin of the anomalous behavior of
4He. In a fluid where classical mechanics is a good
approximation the static correlations are decoupled
from the dynamics and in fact g (r) does not depend
at all on the mass of the atoms. In this case the tem-
perature dependence of correlations is due only to
the trivial T dependence of the Boltzmann factor for
the potential energy and from this the decrease of the
short-range order with increasing T follows directly.
In a quantum system, instead, static correlations and
dynamics are strictly related. In a Bose fluid like 4He

the presence of short-range order is at the basis of
the existence of roton excitations, i.e., of excitations
of low energy at a nonzero wave vector that roughly
corresponds to the wave vector of the short-range or-
der. Thus the temperature dependence of the prop-
erties of the fluid, and in particular of g (r), are
determined by these excitations. By increasing T
more rotons are present but this corresponds to an
enhancement of short-wavelength density fluctua-
tions and therefore of the short-range order. This
trend continues as long as rotons are well-defined
elementary excitations. W hen the lifetime becomes
too short the correspondence of energy to wave vec-
tor is lost and an increase of temperature does not
preferentially enhance density fluctuations of a well-

defined wave vector. Thus the behavior of S(k, T)
found in 4He is expected to hold in any high-density
Bose fluid. The strict relation between correlations
and dynamics has already been noticed8 in the
ground state of strongly interacting Bose fluid.

An interesting question is if this anomalous
behavior is present also in a Fermi liquid, for in-

stance in liquid 'He. The results for a Bose fluid can-
not be transposed to this case because a short-
wavelength density fluctuation does not represent an
elementary excitation in a Fermi system because the
continuum of particle-hole excitations gives a channel
for decay. However inelastic neutron scattering"
shows that the average energy transfer as function of
k has a modulation reminiscent of the roton spec-
trum in 4He. To be precise the inelastic peak is quite
wide but still the modulation is evident and one can
wonder if also in 'He S(k, T) has an anomalous
behavior. At saturated vapor pressure (SVP) the
linewidth is so large that we do not expect that
S(k, T) of 'He has the anomalous behavior of 'He
but this might appear at high pressure near solidifica-
tion where the peaks become narrower. An experi-
mental determination of the temperature dependence
of S(k, T) in 'He would be very interesting.

Our computations are based on a model density
matrix that is based on certain assumptions that we
now discuss. At the basis of the density matrix is the

separability hypothesis that allows the construction of
the wave functions with many excitations simply in
term of the single excitation ones. The hypothesis is
correct in the long-wavelength limit but for arbitrary
k it is rigorously true only when the number of exci-
tations is finite. In the density matrix the average
number of excitations is of order of the number of
particles and separability is no more rigorous. Justifi-
cations for the use of this hypothesis even in this
case have been given ' but some doubt can arise be-
cause we have shown in Sec. III that this hypothesis
leads to inaccurate result when it is used to compute
S (k, T). We notice however that this hypothesis
enters in a different way when we compute S (k, T)
or when we construct the density matrix. In the
computation of S(k, T) we have shown that separa-
bility fails because it leads to violation of the core
condition that g (r) = 0 at short distance. In the con-
struction of the density matrix separability is used"
in order to express the normalization constants that

N

involve averages of type (PJ)p„) (p, j "Qp) in

term of product of the simple average (pp~~ pq ~'gp)
= NSp(k). By using the exact Sp(k) the core condi-
tion is automatically satisfied and the result of Sec.
III does not object to the use of separability for the
density matrix.

If we try to describe 4He near the A. point it is
necessary to take into account the finite lifetime of
rotons. We have included this effect in an empirical,
but we believe reasonable, way. We have assumed
that in averaging the density matrix over the distribu-
tion of the energy of the excitations we can treat each
excitation independently of the others and this is
consistent with our picture of elementary excitations.
More questionable is the introduction of the lower
limit Bq in the average (9) of the Boltzmann factor.
The assumption here is that overdamped (a ( Sq)
excitations cannot be treated as the underdamped
ones on the basis of a wave function of the form of
Eqs. (I) and (2) and that these overdamped excita-
tions give some different kind of contribution to the
density matrix that is spread out more uniformly in k
space so that it can be neglected. In any case our
results do not depend significantly on the exact value
of this lower limit. In fact we have also performed
computations of S(k, T) when the average (9) is over
the interval (0—~) and the results are quite similar
to the ones presented in Sec. III. Our model density
matrix gives always a finite Bose-Einstein condensate
no even when we apply it to temperature T ) T&.
This is clearly an unsatisfactory aspect of our density
matrix but we do not believe that it is very significant
for our purpose: no is related to the off-diagonal ele-
ment of the density matrix when ~r;

—r, ~

whereas g (r, T) I4 determined by the diagonal part
when couples of particles are at microscopic mutual
distances.
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The accuracy of our computation is limited by the
limited amount and by the scatter of the data on the
spectrum el, (T) of the roton states. On the other
hand we do not believe that one can ask from our
model density matrix more than a semiquantitative
agreement with experiment because at not too high
temperature (T —1.5') where our density matrix is
well founded the difference S(k, T) —So(k) is just
too small to be measured reliably whereas at higher T
it is our density matrix that becomes approximate.
However experiment and theory differs in one signi-
ficant feature. Our theory gives a systematic dis-

placement, not present in the experimental data, in

the position of the main maximum of S (k, T) to a
lower k value when-the temperature is increased. We
have already discussed in Sec. III that this is due to
the different position in k space of the minimum of
fk and of the maximum of So(k). We attribute this
discrepancy to the use of the Feynman form [Eqs.
(1) and (2)l for the wave function of the excitations.
It is known that a roton is not simply a density fluc-
tuation but important correlations are present in the
form of) backflow. " The excitation spectrum
ek =k k /2plSo(k) computed with the Feynman wave
function has the roton minimum roughly at the posi-
tion of the maximum of So(k). When the backflow
is included the roton minimum is displaced to a
smaller wave vector in agreement with experiment.

Therefore it is conceivable that if the effects of the
backflow were included in the density matrix this
would modify the position in k space where the tem-
perature effect is more effective. The effect of the
backflo~ on the ground state has been considered in

I and a similar argument can be extended at finite
temperature. One finds that the backflow associated
to rotons modifies the two-body term (13) but in ad-
dition introduces three-body correlations that are
temperature dependent. Also in this case methods
borrowed from the theory of classical liquids could be
used to compute S (k, T)

The anomalous temperature dependence of S(k, T)
has also been interpreted"' as a manifestation of
the T dependence of the Bose-Einstein condensation.
The theoretical foundation of this interpretation how-

ever, has been shown" to be very feeble; in any case
since our density matrix does have a finite Bose-
Einstein (BE) condensate, it might be asked if the
Cummings et a/. formula is in some way related to
our theory. We do not believe that this is the case
for the following two reasons. For a two-dimensional
system our density matrix does not have any BE con-
densate" but still S(k, T) has an anomalous tempera-
ture behavior as in three dimensions as long as ro-
tons are well defined. No anomaly is predicted on
the basis of the Cummings et aI. formula. Second
our theory predicts that the change in the height of

TABLE I. Parameters of. the roton spectrum (20) and reduced linewidth I used in our
computations.

p, /In«

P =Peq
1.77
1.97
2.07
2 ~ 12
2. 15
2.20
2.27

p=1, 1 peq
1,80
1.90
2.00
2,05
2.10

p=1.2 x p,
1.60
1,70
1 ~ 80
1.85
1.90

8.32
7.62
6,57
5.81
5.27
4.43
3.32

6.68
5 ~ 86
4,72
3.93
3.02

5.81
5.09
3.65
2.85
1.88

0. 154
0.144
0.132
0.126
0.123
().117
0.109

0.135
0.130
0.122
0.120
0.116

. 0.120
0.120
0.120
0.120
0.120

0.02
0.20
0.36
0,50
0.62
0.85
1.35

0,21

0.36
0.58
0.79
1.13

0,23
0.35
0.61
0.84
1.41
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the main maximum of S(k, T) between T„and low
temperature increases strongly when the density is
changed from the equilibrium value to the solidifica-
tion one. On the contrary on the basis of the Cum-
mings et al. formula a strong decrease is expected
under the same conditions because all theories
predict a decrease of the value of the BE condensate
when the density is increased and an "exact" compu-
tation'9 has given a reduction of the BE condensate
for more than a factor of 2 when the density is
changed from the equilibrium value to the solidifica-
tion one. An experimental verification of the tem-
perature dependence of S(k, T) along different iso-
cores will be able to discriminate between these
two different theories,
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APPENDIX

Parameters of the roton spectrum (20) and reduced
linewidth 1 = g„ /e„at different temperatures and

0 0

densities. The position of the roton minimum ko is

kept constant at different T with the values
kp= 1.915, 1.98, and 2.025 A at density p =p„,
1.1 x p«, and 1.2 x p«, respectively. The values of
the parameters have been obtained from interpolation
of the experimental data (Refs. 25 and 26). (See
Table 1.)
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