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Surface superconductivity and the MOS system

M. J. Kelly' and W. Hanke

(Received 21 July 1980)

%e solve the superconducting gap equation in the weak-coupling approximation for the elec-

tronic quasiparticles in metal-oxide-semiconductor devices, paying particular attention to the ef-

fects of the proximity of a surface on (a) the phonon-mediated and (b) screened Coulomb in-

teractions between electrons. The frequency-dependent kernel is calculated using effective-
mass-model wave functions and energies, and a microscopic description of the screening for the
Si(111)-Si02 system, in several respects the most favorable Si system. The value of T& over

the wide range of accessible electron densities is obtained by a matrix-inversion technique ap-

plied to the gap integral equation. Values of —10 mK are predicted at r, =1 (-5& 10 cm )
with the intervalley-phonon-mediated electron-electron interaction dominant at this density.
Vertex corrections, fluctuation phenomena (crucial in this quasi-two-dimensional system), and

strong-coupling corrections are considered, as are the possibilities of devices fabricated from
other materials.

I. INTRODUCTION

The inversion-layer system at the Si-SiG2 interface
has proved a fruitful testing ground for ideas on
many-body theory. " The electron density in the
inversion layer of the MOS (metal-oxide-
semiconductor) device can be altered by more than
two orders of magnitude as the applied voltage is in-

creased. This flexibility is gained at the cost of the
third dimension (away from the interface); as the ap-
plied voltage bends the conduction band below the
Fermi energy, the self-consistent distribution of
mobile charge is confined to a layer of order 30 A in

thickness, which is comparable to an effective Bohr
radius in silicon. In this system the relevant
energies —Fermi energy, optical interband absorption,
deformation potential shifts of the bands under ap-
plied stress, cyclotron frequencies, and even
temperature —are all on the same scale of milli-

electron-volts. ' As a result, quite modest magnetic
fields, stresses, temperature or gate-voltage changes
produce large fractional changes in the ground-state
or transport properties of an electron gas which is
free in two dimensions and space quantized in the
third. A rich variety of data has been collected and
many-body effects seem to play a prominent role in
arriving at a quantitative interpretation of transport or
optical data. 2

In this paper we set up and solve the superconduct-
ing gap equation for the MGS system, paying particu-
lar attention to the local geometry and the proximity
of the Si-SiG2 interface in the'construction of the
relevant electron-electron (e-e) interactions. The
plasmon-mediated interaction has been considered
before, but we consider the phonon-mediated in-
teraction and the electron-hole excitations for the

first time. Several reasons have prompted this work.
(1) The anomalous transport data (especially in terms
of occupied valley degeneracy) of the Si(111)-Si02
system have not been convincingly explained in
terms of a paramagnetic ground state, and the role of
intervalley phonons as a possible source of an ex-
change mechanism' for inducing broken-symmetry
states has required the detailed calculation of
electron-phonon matrix elements (EPME) for the
MGS system. %'hile the phonon mechanism is too
small, "of itself, to induce the charge-density-wave
distortions that could account for the data, they prove
sizable enough to prompt the present calculation. (2)
Gur results show that the phonon mechanism of su-
perconducting pairing is dominant at high electron
densities, well into the metallic regime of conduction
and away from the effects induced by disorder at the
interface, so that experiments should prove relatively
clean. (3) While mean-field theories, such as the
one presented below, are inappropriate for two-
dimensional systems which are dominated by fluctua-
tions at finite temperatures, ' they provide estimates
of the temperature regime where transport anomalies
could be expected and sought experimentally. (4)
The specifically surface effects have induced signifi-
cant changes in the structure of the theory and the
results from those derived for bulk systems at com-
parable electron densities. (5) The fact that all ener-
gies are on the same scale provides for unusual
results as common assumptions for other systems
cannot be made here.

The structure of the paper is as follows: in Sec, II
we outline the theory of the MGS inversion layer,
and in Sec. III we set up the gap equation for our
two-dimensional system. Sections IV and V are de-
voted to the construction of the electron and phonon
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kernels required for the gap equation. The solution
of the gap equation in the weak coupling limit and
the presentation and discussion of results are given in
Sec. VI. Further considerations including the correc-
tions due to strong coupling, finite temperature fluc-
tuations, and vertex corrections, as well as the possi-
bilities afforded by the use of other materials are dis-
cussed in Sec. VII, and the principal conclusions are
summarized in Sec. VIII.

II. MOS SYSTEM
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FIG. 1. The metal-oxide-semiconductor system with typi-
cal dimensions, including those of the inversion layer. The
electrostatic potential energy of a test charge is included
schematically.

In Fig. 1 we present a schematic picture of the
MOS system, including the typical dimensions and
the potential of a test charge. ' ' The self-consistent
potential of the electrons in the inversion layer con-
fines them to a region typically 30 A thick on the Si
side of the Si-Si02 interface, where the conduction
bands of silicon are bent below the Fermi level.
Space quantization in the direction normal to the in-
terface is to be expected, and the system must be
described in terms of the solution for the Schrodinger
equation whose potential is integrated up from the
inversion-layer charge density via the Poisson equa-
tion, and the whole system must satisfy the Bloch
condition in the plane of the interface, as imposed by
the Si periodicity.

%hile the full armory of density-functional tech-
niques has been brought to bear on the calculation of
the electronic ground state, a simple variational treat-
ment of the Hartree total energy has been shown to
yield a good qualitative and a reasonable quantitative
description of the lowest occupied subband (derived
from the lowest bound state in the direction normal
to the interface). Electrons in the inversion layer are
described by a wave function of the form

y(r) = X ~„F„(r)$„(r)
valleys o

where $„(r ) is the full Bloch function at the
conduction-band minimum in one of the (100)
directions of the bulk Brillouin zone (so that v sums
over the valleys, and the n„are normalization con-
stants), while the F„( r ) are relatively smooth en-
velope functions satisfying an effective-mass
Schrodinger equation of the form

[e„(—iV)+ U(r)]F„(r)=eF„(r) (2)

where a„(k) is the second-order expansion of the
conduction band about the vth minimum, and U( r )
is the potential set up by the inversion layer charge
density (with further contributions from the deple-
tion charges, etc. , being included if necessary). A
convenient variational form for F„( r ) in the half
space z & 0 is given by

F„(r, g, k)= 2g ize &'e'"'' (3)

and this allows one to obtain U( r ) in terms of the
total electron density per unit area p, and the inverse
profile thickness A. is our variational parameter. This
simple form for F„reproduces quite well the results
of more accurate self-consistent solutions of the
whole problem. T]M k refers to the (small) value of
the crystal momentum (parallel to the interface) away
from the center of the vth valley, and it is used to
count allowed band states in the inversion layer sub-
bands. [Higher subbands corresponding to bound
states of Eq. (2) will have envelope functions orthog-
onalized with respect to z.] The total Hartree energy
can be obtained as a function of p and X and the gate
voltage V~. A simple linear capacitance relation holds
between p and Vg, and the total energy is minimized
subject to this relation, with the result that the profile
parameter satisfies'

&/3

15m
8a' (4)

where a' is the effective Bohr radius given by
es;ll'/(m„e') for this system, where m„ is the effec-
tive mass in the direction normal to the interface.

At the Si(111)-Si02 interface, ' all valleys project an
equal mass m„, and the kinetic energy of confine-
ment in the z direction h'X'/2m„ is the same for all
valleys which we expect to be equally occupied in a
paramagnetic ground state. In the Si(100)-SION sys-
tem, two valleys present a larger m„ than the other
four, and only the former two are ever occupied in
practice. The initial and persistent observation' "of
an occupied valley degeneracy of two for the
Si(111)-Si02 system lead to a number of theoretical
explanations, "'"no one of which is completely sa-
tisfactory, and some of which would not account for
the recently observed sixfold degeneracy' in devices
prepared by a novel and as yet incompletely under-
stood set of processes. One explanation relies heavily
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experimentally accessible electron densities range
from 10" to 10' cm ', or equivalently, the electron
spacing parameter r„ in units of a', varies from —7
to —0.7,

III. GAP EQUATION

FIG. 2. The (111) surface Brillouin zone and the Fermi
lines for the Si(111)-Si02 system.

on quantities that are calculated in Sec. V below, The
surface Brillouin zone and the Fermi lines for the
Si(111)-SiO, system are shown in Fig. 2. The in-

plane dispersion is anisotropic, but we replace this by
an isotropic but equal-mass dispersion in order to car-
ry the ana]ytic aspects of the theory one step further.
The appropriate masses are accessible to cyclotron
resonance studies and give ample evidence of the im-

portance of many-body effects '5

The starting point of our discussion is the paramag-
netic ground state in which all six valleys are equally
occupied by inversion layer electrons whose normal
effective mass is m„=0.256m, and whose band effec-
tive mass is m = 0.358I?1 . With a = 45.7 a, u. , the

The possibility of superconductivity in bulk doped
silicon was investigated a number of years ago by
Cohen, ' and, while the transition temperatures were
extremely small, the attractive pairing was dominated
by the exchange of intervalley phonons. Since then a
number of imptovements in the construction of the
gap equation and its solution have taken place, and
the formulation by Takada, 4 following Kirzhnits
et al. " is particularly suited to our problem, as it has
already been used to examine the plasmon mechan-
ism of superconductivity in MOS inversion layers. In
this section we summarize the important aspects,
namely, the form of that gap equation, the kernels
required for it, the form of the solution at T and for
Tc, and the practical process of solving the equation.
For further details one is referred to earlier papers.

The full Hamiltonian of our present problem con-
tains electron, phonon, and electron-phonon parts in
a completely standard manner, except for the fact
that the k summation is two dimensional and we ex-
plicitly &nclude the multivalley nature of our problem
by restricting the k summation to small k and includoo

ing an index i to sum over the valleys in the electron-
ic part. Thus

6

&o~ = X X«7 c;~V c;7 + —, $ g X V ( q )c,.'-„c', c, ,c,.-„+
i ~ 1 k Ij ~~/ ~~pQ'

I

ph —,(q)(aq aq + —,), e„.p„—— g, ,(a, ,+a, , )c.-„c
ikjk ty' ( k+Q,.—k —Q. )cr —( k+Q.—k —Q . )0 ' 0' j k

tI tl ij kk
/ J I J

where c;k is the annihilation operator of the electron
of momentum k with respect to the bottom of valley
i (centered at Q;) and spin rr, whose single-particle

energy ~-k is independent of i, and has circular

dispersion so that we can define a frequency variable
such that

A k
f69 =- 6 kF =- —

+
I' F

2m

Vo(q) is the two-dimensional Fourier transform of
the Coulomb potential

V'(q) =-2'

ee'-

«Iql

I

with silicon dielectric constant e, a, „ is the annihila-
tion operator for a phonon of wave vector q in
branch v and with frequency co„(q), while the g's are
the electron-phonon matrix elements (EPME).

In the weak coupling limit the formulation of the
gap equation" (using the finite-temperature
Green's-function formalism" ) leads to the form

oo F

d (ru) = —&, tanh K(co, cu')h(ru'), (8)
F 2Ql 2kb Tc

where the kernel K (in a two-dimensional system,
with the definition q = k —k ) is given by

2m' I ib+bqdq 0, , " 2 1m V (q, 0)
4n' g' " lb b'I kk'sin0, -"o ~ 0+ Ia&I+ Ice'I
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where A is the area of the device, and the frequency
variable defined in Eq. (6) above has been exploited.
In the above equation q =

~ q ~, and Va is the retarded
irreducible e —e interaction as mediated by all possi-
ble boson fields. The usual form of the BCS equa-
tion can be recovered from Eq. (8) once the sum~l ~l
over k in the former is converted to a sum over

~
k

~

(and hence the integral over pp') and a sum over the
angle 8 between k and k which is incorporated into
the kernel. Sections IV and V of the present paper
are devoted to the construction of Va(q, D).

The solution of the gap equation for Tc follows
from Zubarev, ' with the introduction of a reduced
energy x =tcujFF and a reduced gap function

and, since $(0) =1

I =—,tanh P(x')K(0,x')EFx'
4 —] 2x' 2ksTC

%ith the definition4

A.p
——K (0, 0)

we can combine the two equations as

(12)

@(x)=4(x)l~(0). The gap equation becomes
t

@(x)=—,tanh y(x')K(x, x') (10)
'" dx' EFx'

~-& 2x' 2kaTC

1

( )
K(xp0) dx' (,) K( i) K(xp0)K(0, x')

(13)

where the tanh factor has been replaced by unity (because the term in square brackets vanishes at x'=0). This
@(x) can be rewritten into Eq. (11) and rearranged to give

Tc = 1.134EF exp —+ P(x) ' —O(1 —lx I)I " dx K(0x)
~-~ 2lxl A.p

(14)

where the energy scale is set by EF and the static
()ip) and dynamic contributions to Tc are clearly
separated.

Early theories involved explicit approximations to
the kernels, such as replacing them by constants up
to frequency cutoffs determined by the Fermi energy
and Debye frequency (the two-square-well kernel" ),
which in turn resulted in simple (constant) values of
$(x) in the frequency ranges above and below those
determined by E~ and eoD. It is precisely because EF
and coD are of the same order of magnitude here, that
we must allow greater flexibility. This can easily be
seen following Takada4 and introducing an ansatz for
the structure of the kernel, namely, that it is separ-
able in the form

K (x x') = [Xp+F(x)+F(x') ]O(1 —)x ()O(l —(x'()

(15)

the condition for superconductivity is that

[K(1,0) —K(0, 0)] ) 2uK(0, 0) (19)

IV. COULOMB KERNEL

implying that the sign of A, p is not critical for super-
conductivity, but rather the slope of the kernel as a
function of frequency between 0 and EF.

Once the kernel has been set up as in the next sec-
tions, the solution of the gap equation follows a
standard numerical procedure in which the kernel is
regarded as piece-wise constant in its two variables,
and the integral equation reverts to a matrix equa-
tion. For details, one is referred to Takada's work4

which we have followed in constructing the spacing
of the intervals for the kernel and in choosing an ef-
fective upper limit on the integral in Eq. (12).

where F (x ) must satisfy only F (0) = 0. With the
definition of an average

(F)
" dxF(x)

the condition for superconductivity becomes

(F') ) )tp

(16)

In this section we calculate the dynamically
screened Coulomb interaction Vac,„~ (q, m) and hence
the Coulomb kernel for the gap equation, the static
part V (q) having been factored out. The Coulomb
interaction we seek can be written as"

y „(r )y 7 ( r ) Vcog[( r, r )

and

Tc=1.134EF exp
—(1+ (F) )'

F' —h.p
t

(18)

As Takada emphasizes, if F(x) —~x ~
for small x,

xP, (r )P-„(r )drdr, (20)k).

where the P are given by Eq. (3), and the k are as-
sumed to be associated with one valley or another.
In turn the Coulomb interaction in the Fourier
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representation is given by

(21)

next section.
Our matrix element can now be written in the form

(with q = k —k)

with r being the (x,y) component of r. The evalua-
tion of the standard Coulomb interaction between
two electrons with Bloch functions in different valleys
requires an intervalley wave vector argument in the
matrix element. The two-stage integration of
effective-mass wave functions (over unit cells for the
Bloch functions, assuming the envelope locally con-
stant, and then over the larger volume with the slow-

ly varying envelope function) produces a factor
(h./q)z from the second stage. 3 In practice, this fac-
tor never exceeds 10 ' and we can neglect intervalley
matrix elements. In the case of the intravalley terms,
the integration over the unit cell yields a normalizing
factor, and we can write the intravalley terms using
the envelope functions only. A different conclusion
is reached on the relative importance of inter- and in-

travalley contributions to the phonon kernel in the

x („(zz)(~(zz)dz~dzz (22)

I co I( Iq I ~;zi z2)

=
J~ v(IqI;z), z3)a '(IqI, co,z3, z2)dz3

(23)

where e ' is the dynamical screening of the effective
Coulomb interaction u(I q I; z~,z, ) between two elec-
trons in the inversion layer, which, taking into ac-
count the image charge, is written as

where tk„(z) has been introduced to denote the pure-
ly z part (i.e., 2h. '~'ze "*' of the envelope function.
In fact we can now write the dynamically screened in-
teraction as"

2

(I I )
2me

I q)a

~s;I q I&&&

+Si ~SiO -I q Ii~+g 'I

~si+ ~sio
2

(24)

The appropriate form for e,:given the introduction of ks; into the expression for v(Iq I; z, z') is now

k '(Iq I, ruz z ) =5(z —z') + „I u(Iq I;z z )X(Iq I, co,z', z")dz" (25)

where X is the interacting susceptibility of the electron gas, which in turn is obtained from the bare polarization
Xo(Iq I, co;z,z') by the solution of an integral equation of the form" '4

X(IqI, o),zz') =X (IqI, o),zz')+ ~ dz(J dz)X (IqI, ru;zz~)u(IqI, z~, z )Xz(IqI, cd'zzz ) (26)

In the above equations Aii is the area of a surface
unit cell. %ith the use of the envelope functions of
the type derived from Eq. (3), the bare polarizability
is separable in z and z', "and the integral equation is

easily solved. '
We then obtain, via Eq. (22) a matrix form for V-

with the indices given by the subbands involved. In
the present calculations, we consider two cases, one
where we include only the lowest subband
(m = n =0) and the second where we also include
the first excited subband. It is clear that the dom-
inant contributions to the Coulomb kernel will come
from the regions of (cu, q ) space where k ' is singu-
lar. In the first calculation which retains only the
lowest subband, the singular structure is that of a
plasmon in the inversion layer with a ao —q' disper-
sion. Indeed the value of X in this case is the pro-
duct of the envelope functions and the standard two-

dimensional susceptibility as obtained by Stern

2
&'(

I q I, ~;z,z') = go(z )
q2A

k ) «(~ k+-, )
x lim

' ' tk02(z')
~-0 —E- —E-—h o) —ih ak k+q k

(27)

where fo are the Fermi occupation factors. In the
long-wavelength limit the plasmon (as, for example,
derived by Stern) can be expected to contribute to an
attractive electron-electron interaction, as has been
considered by Takada4 for a strictly two-dimensional
plasmon-pole model for e '. In contrast to Takada's
calculation, we have not made a pole approximation
but taken the intrasubband e ' as extracted from Eq.
(27), including the "thickness" effect via the z and z'

dependence. In the second calculation, additional
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structure comes from the intersubband excitations, ~4

which have not been considered before in the present
context. We include only the first excited subband,
but with the increasing energy to the higher excited
subbands, we do not expect major corrections to arise
from our neglect of these levels. That these levels
are important at all, is a reflection of the energy
scales mentioned in the Introduction.

Before completing this section, two points should
be noted. (1) The Coulomb interaction is not posi-
tive definite, and at high frequencies it becomes at-
tractive. Indeed in three dimensions (as in a doped
semiconductor) a Thomas-Fermi expansion of the in-

verse dielectric function takes the form"

2

e '(q, m) = 1+
cu' —co,'( q )

(2g)

and we see that for co & r0~(q ) the dielectric function
changes sign. In most metals, this is irrelevant since
lao~ —10 eV, while the relevant energy scale is—1 rneV, but in our system the energies are com-
parable. A similar comment applies to the e-h excita-
tions. The Coulomb kernel is able to induce mean-
field superconductivity from the lowest subband only,
and this tendency is enhanced by the inclusion of e-h
excitations. (2) It is clear that E(0, 0) is an impor-
tant ingredient in the theory outlined in Sec. III, and
the results of our calculations for the two cases con-
sidered give at r, = I,

and we see that the reduction of K (0, 0) in the latter
case is an aid to the superconducting possibilities.

~o«,»bb»a (() ()) p 13g ~go»bb»ds (() p) p ()9g

(29)

V. PHQNON KERNEL

The phonon-mediated electron-electron interaction
in the Bardeen-Pines" form is

t~, ( q ) Ig, ( q ) ('
Vpb q. ~ =X

[ta)J(q) ]' —(tcu)'
(30)

where j sums over all phonon branches and g is the
electron-phonon matrix element (EPME). In this
section we calculate V for a system which is an ap-
proximation to the MOS system. In bulk silicon,
selection rules limit the number of modes which yield
a nonzero EPME. ' The presence of an interface
with amorphous SiO~ on the other side changes the
nature of the selection rules, as well as the electron
wave functions and the phonon modes, so we can ex-
pect different results. At the same time, the explicit
calculation of g, below requires in principle solving
for phonon modes of the composite system, and ex-
tracting the amplitudes of the phonons in the region
occupied by the inversion layer. This is inordinately
difficult, and we have performed detailed and micro-
scopic calculations on a 24-layer slab of silicon
bounded by (111) surfaces to which different boun-
dary conditions have been applied, as a crude simula-
tion of the MOS system. The discontinuities of the
conduction band wave functions on the two sides,
means that free boundary conditions is not unreason-
able for the electrons. We probably overestimate the
changes induced by the interface on the phonon
modes by using free boundary conditions for them as
well, but we argue below that the overestimate is not
too great.

For the EPME that measures the scattering from
electrons in one Bloch function minimum to another
(a to b), we calculate6

g)(qb) = J yb(r)
&

~ '(r, r ) XSK,"VV~»(r —K)dr p, (r)dr
R

(31)

where the term in square brackets is the effective
ionic potential as screened by a nonlocal dielectric
function ~, set up when the silicon ion potentials
are shifted rigidly by amounts SRJ by the mode j.
The Q's are the full effective-mass wave functions,
and the retention of k as a good quantum number
means that a k selection rule still applies. .If we were
to take the amorphous silicon into account, even that
selection rule is blurred.

In the slab calculation which we perform, the index

j comprises both a branch index rt [running from 1 to
6 to reflect the degrees of freedom in a bulk unit cell,
and the fact that our electron wave functions are ex-
panded in Eq. (36) below over bulk antibonding orbi-

tais, so that our calculation is actually done on twelve
double-layers] and q, running from 1 to 12. In the
case where we impose periodic-boundary conditions
in the direction normal to the slab, q, becomes a
good quantum number, and, in the absence of the
envelope function a selection rule is. recovered; with

any other boundary condition, it merely counts the
degrees of freedom. In fact, in our detailed calcula-
tions for intervalley phonon contributions (which,
just as in the case of bulk systems, we find to provide
the dominant attractive pairing mechanism) the cal-
culations performed on a slab and without the en-
velope function can be carried over with a minor
modification. If we denote by 5VJ""( r ) the term in
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Eq. (31) in square brackets, and periodic-boundary
conditions are applied, then the integral

Gp = ~l re, ( r ) 5 Vp""( r )P, ( r ) d r~ cellijk
(32)

is the same from one cell to the next, except for a
phase factor and one recovers the selection rule by
summing over all cells in the kth layer, and the
EPME with the inversion layer wave functions can be

'
written as

g =N'" X t[g(z, )I'e"*'"G, ,
cells k

(33)

where the $'s are normalized to a unit cell, t is the
thickness of one double layer (which goes out in the
conversion of the sum over k to an integral over z),
and Nll is the number of unit cells in a layer. This

iq zk
last term and the factor e ' " come from the normali-
zation and the phase factor parts of the phonon am-
plitude

5R =
P e '*

ep(q q ), (34)
2/tfNsNL~p( q )

and, since A. is rather smaller than q; t „ ll y only the
smaller values of q, contribute to the EPME's as they.

appear in the kernel in Eq. (30), with its summation
over all modes. Indeed, if we consider the zero fre-
quency value of Vp„{q,0) the sum over j becomes a
sum over branches q and modes q„ the latter being
converted to an integral over q, with a prefactor
Nt t/(2rr), NL being the number of layers, and t the
thickness of each layer. One thus obtains

the polarization vector of which (ep), we obtain ex-
plicitly below. Our phonon kernel is dominated by
the q, = 0 contributions since, on the assumption
that the Gp is a slowly varying function of q, [recall

p = (rt, q, ) ], the integral in Eq. (33) is trivial and
leads to

2A,
gP = Nll GP 2'. +iq,

where I sums over the layers, k is a two-dimensional
(2D) wave vector parallel to the surface, i an index
(i = I —4) for the antibonding orbital as specified by
its axis, and R is a site in the hexagonal lattice in
the Ith layer, of which R is the 20 component. Be-
cause of the expansion over antibonding orbitals, I is
strictly a double-layer index in practice. The coeffi-
cients c/(k, k, ) are determined by solving a secular
equation resulting when interactions out to fourth-
nearest neighbors (in a tight-binding sense) are in-

cluded, just as in the calculation of Hanke and
Sham. ' In turn, we use their form of the antibond-
ing orbitals

X, =N [h„(r —R) —h „(r—R —bv;)], (37)
I I

where N is a normalizing constant, b the bond
length, and v; the normalized vector of the antibond,
while the "sp " hybrid orbitals are expanded as

h„(r —c) = [R, ( r —c )+J3 v
4 m

( r —c)R,(r —c)] (38)

where R, and RP are each expanded over Gaussians
to reproduce the charge densities from more ela-
borate calculations, (2) a simple two-parameter
force-constant model for the phonons, with a bond
bending to bond stretching ratio of 0.7 (cf. Lax)."
The resulting displacement for mode j with wave vec-
tor q and frequency Ott ( q ) is precisely as given in

Eq. (34), (3) a simple ionic potential of the form

(39)

GP in greater detail.
The ingredients of our calculation6 include (I) an

expansion of the conduction-band wave functions
over a basis of antibonding orbitals as

N -l
L

@-„( r ) = X Xe/(k k)e Xt( r —R )
t o;,-

(36)

Vph(q, 0) = — P.Nt $—
lt co„( q )

(35)

If we choose to normalize the @'s in Eq. (32) to the
entire system the factor N is absorbed in the normali-
zation. Before proceeding to convert Vph(q, 0) into
the value of E (0, 0), we describe the calculations for

with parameters fitted to reproduce the small-q re-
gime of the silicon bulk pseudopotential {Q=4,
p=1.5, u '=1.71 a.u. ) and finally (4), a nonlocal
dielectric formulation of the screening. In the plane
of the inversion layer, we work in Fourier space and
write

e '{q+G q+G z.z') =8—(z —z')+)tv(lq+GI, Iz —z"I)x(q+C, q+6', z",z')dz", (40)

where v(I q I, Iz I) is again the Fourier transform of the bare Coulomb potential, and X the response function
which, for the present calculations we take to be.of the form '

X= XA,'(q+G, z)[N '(q) —V"'(q)] ', A, (q+G, z')
t

$,5

(41)
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where, in turn, N ' is a generalized susceptibility, t "' the Coulomb interaction plus the exchange-correlation
corrections, and A, the charge-density form factors

(42)

with a composite index s —= [ij,i, i', R, j. We consider the system in terms of hexagonal double layers, with o I keep-
ing track of the registry of the different layers. The precise range of the summation over s and R, is considered
further below.

With these ingredients the calculation of the EPME of Eq. (31) follows a parallel development to that of Bar-Sagi
and Hanke with the result

g, (k, k) = sw„
2M', (q)

(43)

where the force-form-factor F „is modified from its bare form
sl

f,(q) = X dz —i ( q + G ),—V~,„(q+G,z —z „)A,(q+G, z)e
V z

by the matrix factor

F,I = ( I+ VK ),7,

(44)

(45)

involving the Coulomb matrix

V, (q) = X dzdz'A, "(q+G,z)v([q+6[, ~z —z'[)A, (q+G, z')
G

(46)

and the screening matrix

S(q) = N '(q ) —V"'(q ) (47)

In the inversion layer problem, the factor (&/q )'
again arises in the evaluation of the Coulomb matrix,
and again, ' we can neglect (for the intervalley part of
the screening I + VS ' = I) the correction in Eq. (45)
and write F =f, and the calculation proceeds directly
from the formulation. We first calculate the charge-
density form factors including in the summation over
R, all on-site and nearest-neighbor terms, and all

terms in the l, t' summation. The real-space part of
the problem is slowly convergent, and this is the
principal reason why the present formulation is not
useful in obtaining the EPME for intravalley (i.e. ,
small-q) phonons. The secular equations are solved
for the electron and the phonon systems, and the
EPME's calculated just as in Eq. (43). The imposi-
tion of periodic-boundary conditions on the secular
equations is trivial. The free surfaces were assumed
to have no dangling bonds, as the Si02 bonding
would remove these away from the conduction-band
minimum in a MOS system. The phonon boundary
condition imposed on the free surface was as to
guarantee the k =0 translational invariance, although
the results are not very sensitive to this at large q.
In this context we argue that the discontinuity in

0.0701 p R '~
Vph(qpb, 0) = a0 i3 Ry

~ 2/3
(48)

where A is the device area, ao the atomic Bohr ra-
dius, r, the electron spacing parameter [the r, depen-
dence following from the factor X in Eq. (35)], and
R'b the numbers (in Table I) taken directly from the
calculations. One sees from the table that a 30'to in-
crease in Vph follows from the use of free boundary
conditions. Calculations on a six-double layer slab
provided a 100% increase (but here a different value

elastic properties at the interface is not unreasonably
modeled by these boundary conditions.

The results of the calculation can be summarized
qualitatively as follows: the periodic-boundary condi-
tions impose q, as a good quantum number and re-
strict the number of phonons that can couple. While
this restriction does not hold for the free boundary
conditions, and all modes can couple, most couple
weakly and using Vph(q, 0) as a measure, we find it
enhanced by the removal of periodic-boundary condi-
tions.

The calculations were performed on a system with
force constants of order unity and thereafter normal-
ized. Referring back to Eq. (35) the value of Vph

coupling electrons associated with valleys a and b is
given by
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TABLE I. The computed phonon-mediated electron-
electron interactions [normalized as in Eq. (48)].

Periodic-boundary
conditions

Free-boundary
conditions

g12
g13
g14

24.2
10.1
13,5

32.5
14.0
18.5

of k, provided the conduction-band minima). These
interactions compare with those obtained for bulk sil-

icon by other methods, and are of themselves too
small by a factor of 5—10 to induce density waves in

the inversion layer that would account for the
anomalous transport data on the Si(111)-Si02 system.
The form of Vph given above can be introduced into
Eq. (9) to yield the result that

K ( o) = 0 co' = 0) =— 0.002 0
7 2/3 f

bca "s
(49)

gj(q) =I h

2M&i'&L~)( q )

1/2 3
2A,

e JDaa
2P —iq,

'
(50)

where D is one of the principal deformation potential
constants. If one inserts this into Eq. (9) the value
of the kernel is

K(O, O) =-0.009~D ~'r,-'~', (51)

which we see to be considerably smaller than the
contribution from intervalley phonons at all values of
r„given that D, expressed in rydbergs, is always less
than unity. The phonon dispersion is approximated
by the linear portion at small q, with an average
speed of sound being employed. As in the calcula-
tions for bulk silicon, the contribution of intervalley
phonons to the attractive pairing is dominant, and
especially at high r„which is one important reason
for choosing this particular system.

which provides results of K (0; 0) = —0.22r, ' ' with
the free boundary conditions, and K (0, 0)
= —0.16r, ' with periodic-boundary conditions. A

comparison of these results with those of Eq. (29) re-
veals that at high densities, i.e., r, ——1, there is a
strong cancellation between the Coulomb and phonon
kernels, and the resulting Tq-'s that we obtain rely on
the enhancement of the phonon kernel near the in-

terface.
The intravalley contribution to the phonon kernel

is obtained in a continuum approximation, where we
follow Vinter" and int'roduce a deformation potential
into the expression for the EPME as

VI. RESULTS
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FIG. 3. Calculated values for T& vs r, for the Si(111)-
Si02 system. The kernels used correspond to including (a)
only intrasubband electronic excitations, (b) electron-hole
excitations to the first excited subband as well as intrasub-
band excitations, and (c) intra- and intersubband excita-
tions as well as the phonon-mediated interaction.

We have solved the gap equation for three kernels,
one which includes only the lowest subband contribu-
tion to the Coulomb kernel and with no phonon ker-
nel, a second also includes the intersubband contribu-
tion to the Coulomb kernel as well, and finally one in

which the phonon kernel is also included. The
results are displayed in Fig. 3, with the electron spac-
ing parameter as the variable. We comment on each
in turn.

(a) At large r„we can obtain a reasonably large
transition temperature because the dynamically
screened Coulomb interaction is sufficiently attrac-
tive. There is a "threshold" for superconductivity at
r, =3, and the maximum Tc occurs for r, —10—20,
before T~ drops. The maximum arises since Tc is
the product of two factors, E~ which varies as r, '
and a negative exponential function of an interaction
which increases with r, . Our result corresponds with
that of Takada, 4 except that we have incorporated the
finite thickness of the inversion layer throughout.
The low densitites at which the plasmon contribution
is dominant correspond to threshold densities, and
surface roughness and disorder in the oxide, which
have been ignored in the present calculation, are like-
ly to reduce the effectiveness of the pairing. We do
not expect to be able to see the plasmon mechanism
producing superconductivity on its own.
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(b) The inclusion of intersubband excitations pro-
vides an additional pairing mechanism. The
Coulomb matrix includes off-diagonal terms in the
subband indices, and when inverted the Coulomb
kernel is reduced, and Tc is enhanced by a factor of—2 over the range of experimentally accessible den-
sitites. The remaining excited states which we have
ignored could -be expected to further enhance the
values of Tc by a factor of order 2.

(c) The phonon mechanism with its r, 'i' depen-
dence provides the dominant pairing mechanism at
high densities, while at low densities it provides a
modest enhancement of Tc over the values obtained
with just the Coulomb kernel. The results show a
qualitative similarity in the effectiveness of the
mechanisms as that obtained by Cohen' for bulk sili-

con, but here a number of 2D effects play a role in
raising Tc. It is the intervalley phonon mechanism
that we would expect to dominate any superconduct-
ing effects in MOS devices.

While we consider a host of corrections in the next
section, the following points are to be noted:

(1) The use of the smaller phonon kernel derived
with the use of periodic-boundary conditions results
in a significant cancellation of the Coulomb and pho-
non kernels at low frequencies at r, =1
[Kph(0, 0) = —0.16, Kc,„~(0,0) =+0.09S ] and a
reduction by a factor of —20 in Tc from that shown
in Fig. 3. The correct phonon kernel should lie
betwe'en the two we have calculated. In each case we
have used a frequency dependence of the form such
that K (0, ao) = K (0, 0)a/(a+ co) where a is a dom-
inant phonon frequency, obtained by a weighted
average of the contributions of the phonons. The
inversion layer at high densities is of a thickness that
is comparable to the slab, but in the MOS system,
there is one interface, rather than two surfaces.

(2) At higher electron densities, the increase in A.

brings the charge into a thin region near the inter-
face, and the effective-mass assumption of an excess
potential that is smooth on the scale of a unit cell
breaks down, "as do corresponding approximations
made in the calculation. The electon density cannot
be increased without limit, as dielectric breakdown.
occurs.

VII. FURTHER CONSIDERATIONS

In this section we consider: (1) corrections to the
mean-field theory we have presented; (2) special
features of the superconductivity; (3) possibilites of
other broken symmetries in the MOS system; and (4)
the use of other materials than silicon.

'

(1) The present theory is a modification of the Kir-
zhnits et al. ' development of the BCS theory which
takes the MOS energy scales into account. A number
of corrections to the BCS theory can be estimated for

our system. In his consideration of the plasmon
mechanism in. doped silicon, Takada considered the
vertex corrections induced by local fields and electron
correlations (in a model with approximations due to
Hubbard and with further corrections for short-
range correlations'8) on the kernel and Tc. The ef-
fects were small, and while the quasi-two-dimensional
nature of the system may further enhance the correc-
tions, we do not expect them to be dramatic. We
have repeated the calculation with the one-subband
model for a '(q, co) and estimated the corrections
due to electron-hole ladder diagrams which enter the
screening e ' and have an important effect on the
electron-electron interactions at large r, .' this correc-
tion is indispensible for obtaining the correct short-
range behavior for the pair-correlation function. The
corrections are modest, as are the effects of paramag-
non corrections. ' Of greater importance are the esti-
mates of the strong coupling renormalization correc-
tions which can be estimated in a variety of ways and
result in a decrease by up to a factor of about 2 of T~
over most of the accessible range of densities.

(2) The most important aspect of the MOS system
(other than the range of r, that can be achieved) is
the quasi-2D nature of the electron gas, and hence
the effectiveness of finite temperatures in destroying
long-range correlation in the mean-field order param-
eter. ' It is clear in thin-film studies that the "excess
conductivity" indicates this destruction has only a
minor effect on T, and details of the ternperature-
dependent resistance of the film. ' At the same time,
the analysis of Aslamov and Larkin ' indicates that
the range of temperatures over which critical fluctua-
tions can be expected is greatly enhanced. In the
MOS system, however, the precise resistance of the
device near T~ will be masked by contact resistances
and the external circuit. It is to be hoped that mea-
surements as a function of r, as well might be able to
detect the "two-dimensionalness" of the system in
the fluctuations as the third dimension is squeezed
out [cf. Eq. (4)].

The disorder induced by amorphous Si02 is expect-
ed to alter the phonon kernel from the bulk
equivalent in a way that differs in detail from that we
have estimated in Sec. V. The appearance of good
quantum oscillations at the higher densities puts an
upper bound of the effects of impurities and arnor-
phous oxide on the scattering. " The possibility of
singly charged defects near the interface can be ex-
pected to have a deleterious effect on the pairing and
T&, especially at low densities. This is certainly true
for the plasmon mechanism of superconductivity.
This mechanism, in contrast to the phonon mechan-
ism, introduces a long-range attraction between elec-
trons which is particularly sensitive to defect potential
fluctuations.

The coherence length in this system is dominated
at high densities (r, = 1) by the phonon contribu-
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tion, and is of order

(0= 0.1 gvF/Tc = 6 x 104 A (r, = 1)

=gx 10' A (r, =0.73),
which is td be contrasted with the interparticle spac-
ing of 32 A at r, = l. Our system is akin to that of
bulk doped SrTi03 which is superconducting as medi-
ated by the strong coupling to intervalley phonons. 4'

The effects of magnetic fields are likely to be more
important than in bulk systems; since all our energy
scales are small, very small critical fields will follow.
As mentioned in the Introduction, the conduction-
band minima can be moved with respect to each oth-
er by the application of stress. ' We have exam-
ined the Si(111)-Si02system since, in the absence of
stress, the intervalley-phonon-mediated interaction
can be most efficiently exploited. We expect stress to
reduce T~ in this system. By contrast, the application
of stress to the more commonly studied Si(100)-Si02
system enables the simultaneous occupation of two
light-mass and two heavy-mass valleys, (although the
quantum oscillations seem to yield an occupied valley
degeneracy of two) in which case intervalley phonon
coupling could again play a role, with the unusual
prospect of stress-induced superconductivity, and the
phase diagrams that would parallel those obtained for
other broken symmetries. 44

(3) We have alluded to the possibility of other bro-
ken symmetries. Our phonon-mediated interactions
seem to be too small, by a factor of 5—10 to induce
intervalley charge-density waves' [which would ex-
plain a ~hole host of otherwise anomalous transport
data on the Si(ill)-Si)2 system] on their own. One
cannot rule out the possibility that several interaction
mechanisms are acting cooperatively to produce these
density waves. Further, if this were the case, and the
higher transition temperatures for these other broken
symmetries were realizable, the superconducting state
would be suppressed. At the low-density range, (for
which the appropriate parameters can be further ex-
trapolated in the electrons-on-helium-surface sys-
tem4') the possibilites of Wigner crystallization46 are
under active investigation. In this regime we would
need to treat electron correlations with much greater

care than we have above, in order to test the relative
instability of the paramagnetic ground state with
respect to these broken symmetries.

(4) We have seen that the familiar bulk mechan-
ism of phonon-induced electron-electron interactions
can be enhanced near an interface, and the possibility
exists of superconducting inversion layers at tempera-
tures where a bulk system of comparable electron
density is still normal. We have concentrated on the
Si MOS devices, as these are available with high-
quality interfaces. The choice of other substrate ma-
terials, with large electron-phonon interaction, such
as GaP, lnAs, or even SrTi03 (which can be made
superconducting in bulk doped samples) would in-
crease the range of parameters over which supercon-
ducting phenomena might be expected. At present
the fabrication of interfaces that are clean on atomic
scales for other than the Si-Si02 interfaces is exceed-
ingly difficult, as evidenced by the poor quality of
quantum oscillations from Te and Ge substrates, 4'

but the possibilities of new types of phenomena to be
studied might well increase the effort applied in this
direction.

VIII. CONCLUSIONS

The flexibility afforded by the MOS system has
been exploited in previous studies of aspects of elec-
tron gas theory. It offers the same flexibility for the
study of superconductivity. While the Si(l 1 l)-SiO,
system [or the Si(100)-Si02 system under stress] is
the best characterized, other substrate materials
might be tried on the principle that the proximity of
the interface can enhance the phonon-mediated pair-
ing mechanism.
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