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The complete linearized Poisson s equation for the impurity-ion potential incorporating the spatial
variation of the semiconductor dielectric function is treated numerically as a boundary-value problem with

the finite-difference method. The impurity-ion potential so derived is shown by direct substitution to be a
superior solution to the differential equation than that obtained by an equivalent variational-principle

approach, or by the straightforward replacement of the dielectric constant by the dielectric function of the

Dingle potential. Theoretical electron mobilities for silicon, germanium, and gallium arsenide based on this

potential are compared with the Dingle mobility. It is found that the result of including the spatial variation
of the dielectric function in the theory of ionized-impurity scattering is to reduce the electron mobility from
that calculated using the Dingle potential. This effect is small, except in the cases of heavy and very heavy

doping, where it is found that the difII'erence increases monotonically as the doping density is likewise

increased.

I. INTRODUCTION

The scattering of mobile charge carriers by
ionized impurities in a doped semiconductor at
finite temperatures has been widely studied in

terms of the Born-approximation theory of Brooks
and Herring' (BH). A less rigorous semiclassical
treatment given earlier by Conwell and Weisskopf'
(CW) considers the same physical problem in
terms of Rutherford scattering. The BH formal-
ism is distinguished by a self —consis tently deter-
mined screened Coulomb potential which incor-
porates the electrostatic shielding of a (point)
impurity ion by the mobile carriers that collect
around the ion and also by the other static ionized
impurities. Depending on whether the carriers are
described by quantum or classical statistics, the
shielding parameter is generally called the Thom-
as-Fermi' or Debye-Huckel4 screening length,
respectively. Screening effects in the C% approach
are simulated by arbitrarily cutting off the scatter-
ing cross section at a radial distance equal to half
the average separation between neighboring ion-
ized impurities. In the nondegenerate regime,
providing the carrier concentration coincides with
the concentration of ionized impurities, both
theories yield essentially the same results for
ionized- impur ity-scatter ing limited mobility.
However, when the carrier concentration is less
than that of the ionized impurities, only the BH
theory accounts for the decrease in screening and
predicts a smaller carrier mobility, as expected. '

While the BH and CW theories give qualitatively
correct results, there. are refinements by which

they may be improved. One of these refinements
is of current interest and involves a more ac-
curate description of dispersive valence screen-
ing. The dielectric response of the valence elec-
trons to the pure Coulomb field of CW or to the
screened Coulomb field of BH is accounted for in
these theories simply through seal. ing by the
static dielectric constant z, of the semiconduct-
ing medium. In the very recent literature, two
quite different schemes have been proposed for
generalizing the BH theory of screening to in-
clude more realistic valence screening effects.
Both approaches generalize Ding]. e's' form of the
BH theory. It also seems worthwhile to consider
similar extensions of the C% theory for compari-
son. This problem is presently under investiga-
tion.

In a previous paper, ' we used a variational-
principle procedure to obtain an approximate
solution of the complete linearized Poisson's
equation describing an impur ity-ion potential
which includes these more accurate valenee-
screening effects. Here, we present a purely
numerical approach to the problem of solving this
equation. The resulting potential is compared and
contrasted with that developed in Ref. 7, and with
the standard Dingle potential. Electron mobilities
corresponding to the new potential and the Dingle
potential are displayed graphically for silicon,
germanium, and gallium arsenide over a wide
range of electron concentrations at T =300 K.
Except for thy case of heavy doping, very little
difference is founa between the mobility including
dispersive valence-screening effects and the stan-
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dard Dingle mobility. The discrepancy between
this finding and the conclusion in Ref. 7 concerning
a similar comparison is believed to be due to an
approximation made in the variational calculation.

with either two parameters n and C, or one param-
eter, a, to be determined numerically from the
variational calculations. In the former case

y, (r) = y, (r)[Cs"""0+(I- C)s ""'"0],

II. TEMPERATURE-DEPENDENT IMPURITY-ION
POTENTIALS INCLUDING DISPERSIVE

VALENCE-SCREENING EFFECTS

while in the latter

Q, (r) =(t),(r)[l +(v, —1)e '"]. (6)

p = —(«,/4'', ) (t)(r), (2)

where A, the Dingle screening length depends on
the impurity concentration n;, the carrier effec-
tive mass m, and the temperature T. Equation (1)
is rooted in an assumed local algebraic generaliza-
tion

Z(r) =~ '(r)D(r),

of the usual macroscopic constitutive relation be-
tween the electric displacement vector D of the
point charge and the screened electric field E.
The approximate analytical form of K '(r) used by
Csavinsky for silicon' and germanium, "namely,

(4)

is based on the fit of a five-parameter function to
the wave-vector-dependent dielectric function e(k),
evaluated numerically within the context of the
homogeneous and isotropic model semiconductor
of Penn. " The parameters e, P, y, A, , and B are
constants specific to a given semiconductor and
are tabulated in Refs. 10 and 11.

Approximate solutions of the linearized version
of Eq. (1), with the neglect of the right-hand
side, have been formulated in terms of an equiva-
lent variational principle. ' These potentials are
conveniently but arbitrarily taken to be linear
combinations of two screened Coulomb potentials

A. Local linear-response theory

The first attempt at generalizing Dingle's model
of the screening of impurity ions in doped semi-
conductors at nonzero temperature by incorporat-
ing valence-screening effects beyond those carried
by the static dielectric constant is due to Csavin-
sky. ' He proposes the Poisson equation

2, 47(p «'(r)
r ~ e(r) Ic(r)

for the impurity-ion potential p(r) Here. p denotes
the free-carrier screening charge density, while
«(r) is the so-called spatial dielectric function,
conventionally defined as the ratio of the un-
screened potential due to the point probe charge
to the effective potential (t) modified by the screen-
ing effects. In the linear approximation, p is
given by

Calculations of ionized-impurity limited mobility
based on (t), and P, yield results that, respectively,
either overestimate" or grossly underestimate"
the mobility based on the standard Dingle potential

In a subsequent development, Richardson
and Scarfone, ' making use of a functional devised
by Brownstein, "obtained an approximate solution
of the complete linearized Poisson equation. The
potential (t), (in Ref. 7, p, was referred to simply
as (t)) was chosen to have the form exhibited in

Eq. (6) and gives an accurate account of valence
dielectric screening as proposed by Csavinsky. '
The corresponding mobility is a meaningful im-
provement over the Dingle mobility and over pre-
vious treatments" "of the problem.

As previously noted, the particular form of (((r)
appearing in Eq. (4) is founded on fitting a specific
five-parameter function to a calculated c(k).
Whether one employs the Penn model, or some
other description of e(k), the continued use of this
approach entails a cumbersome fitting procedure
for each semiconductor of interest. Because e(k)
in the simple Penn model alrealy involves com-
plicated integrations in k space, it is understand-
able that even simpler theories" of dielectric
screening are sought, and that various analytical
interpolation formulae have been advanced in the
literature" to represent the linear response in k
space, or its spatial equivalent, in applications.

(7)

for the case of a point probe charge e, in the usual
homogeneous and isotropic model semiconductor.
Equation (7) implies that the linear response of
the valence electrons to the point perturbation is
nonlocal in r space. In this theory the convolution
integral

i(r)= J e '()~r r ))D(r )dr (8)

B. Nonlocal linear-response theory

A different scheme also aimed at modifying
valence-screening effects in the Dingle model has
been forwarded by Resta, "who deals with an integro-
differential Poisson equation,

er'Q -.R r f e '((r —r'))((r')dr' =-4re e '(r),
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plays a central role. It is obvious from Eqs. (3)
and (8) that these expressions of dielectric be-
havior. are on completely different conceptual foot-
ings. While both theories assume a linear relation-
ship between the screened electric field and the
displacement vector, Eq. (3) is a local algebraic
relationship invoking the spatially variable dielec-
tric function «, whereas Eq. (8) is a nonlocal op-
eration involving the linear response e '. This
fundamental difference between the two schemes
has been stressed by Resta. "

The solution of Eq. (8) may be stated in the form

2e, k sinkr dk
vr, k'e(k)+~+, ' (9)

«(r) = «,qB/[sinhq(A —r) +qr], r c Jf
K'0, r ~R. (10)

The quantity q in Eq. (10) is an abbreviation for
(4k'/v)'", while R is the screening radius beyond
which the screened potential of a point charge has
the pure Coulomb form scaled by vo. Continuity
of the electric field at r =A provides the condition
sinhqR jqR =~, for the determination of A for each
semiconductor considered.

Given an expression for e(k), the generalized
Dingle potential in this case is determined from
Eq. (9). In the previous case, the development of
an ionized-impurity potential via Eqs. (1) and (2)
assumes, among other things, that an analytical
expression for tc(r) has been obtained from the
given e(k) for each semiconductor of interest.
The potential expressed in Eq. (9) has been com-
pared with p, and found to be stronger only at
small r." This comparison was implemented in
terms of Thomas-Fermi' " (TF) dielectric func-
tions e(k) and «(r), rather than the Penn-model
dielectric functions. In the former case one first
finds v(r) and then e(k) follows, while in the latter
the order is reversed. The TF dielectric func-
tions are found to be in excellent agreement with
Srinivasan's" Penn-model calculations, and with
the random-phase approximation results of Walter
and Cohen. " The primary advantage in using the
T F dielectric functions is that of having simple
analytical forms to work with, not to mention that
at low values of k, Penn's model is very unreliable.
As in the Penn model, the only input data required
for the TF dielectric functions are Ko and the
valence Fermi momentum k~.

The spatial dielectric function used by Resta to
establish e(k) in Eq. (9) has the simple analytical
form

III. NUMERICAL SOLUTION OF THE LINEARIZED
POISSON EQUATION BY THE METHOD OF FINITE

DIFFERENCES

The approximate solution of the complete lin-
earized Poisson's equation

y" +{2/r)y'+« '(«' —~,/Z', )y =0

given in Ref. 7 makes use of the Azuma-Shindo
dielectric function and an equivalent variational-
principle procedure. Another possible method of
solution is a purely numerical approach. ' As the
differential equation of interest poses a boundary-
value problem, it is natural to think of using the
method of finite differences. " The reasons for
seeking another solution are twofold. First, a
solution derived by alternative means will serve as
a comparison for the variational calculation. Sec-
ond, the algebraic manipulations necessary for the
final extremalization in the variational approach
are long and tedious. Thus, if we desire to obtain
the impurity-ion potential using another analytical
dielectric function z(r), we would have to either
parametrize that function to have the same form as
the Azuma-Shindo expression Eq. (4), or rederive
the entire function F used in the equivalent varia-
tional principle, ' and perform the subsequent cal-
culations with some new «(r). A numerical ap-
proach makes the shift to another «(r) much less
cumbers ome.

The chief advantage of this complete numerical
treatment is that any «'(r) may be used without ad-
ditional difficulty beyond the adjustment of a few
lines in the computer program. The drawbacks
of a numerical approach are first, that the poten-
tial must be solved by a separate calculation for
each Dingle screening length A, of interest. As
the curves presented in this paper use approxi-
mately fifty different values of R, each, this pro-
cess demands a large quantity of computer time.
Second, the results from the finite differences
techniques are not immediately applicable to fur-
ther calculations since the numbers generated by
the program must first be fit to some convenient
analytical function.

Dielectric functions s(r).considered in some de-
tail for use here are due to Azuma and Shindo, "
Schulze and Unger, "and Resta. " The first and
third of these have been already noted in Eqs. (4)
and (10), respectively. The Schulze-Unger r depen-
dent dielectric function is based on a simple ana-
:lytical form for e(k) which accounts correctly for
the limiting cases 4 =0 and asymptotic large 0
values. For the limiting case of a metal, the
screening is not allowed to be stronger than that
in a free electron gas, and finally, the spatial
polarization of the valence electrons around a
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point charge should reach its full strength in a
certain distance related to the nearest-neighbor
distance. For silicon, the Azuma-Shindo function
does not reach its static value as rapidly as do the
other two. Since Srinivasan" has noted that the
dielectric function should attain its limiting value
at a distance of the order of the nearest-neighbor
distance, we find this behavior unsatisfactory. On
the other hand, the Schulze-Unger function displays
a slight peak, overshooting the static value. Again,
Srinivasan, and Winsome and Richardson'2 have
noted that overshoots of this type are generally the
result of some delicate numerical imbalance and
should not be endowed with any physical signifi-
cance. Therefore, although the Schulze-Unger
has a simple analytic form and is readily extended
to any semiconductor for which a, and k~ are
known, we find the presence of the overshoot to be
less than desirable. The Resta dielectric function
in Eq. (10) does not have these various short-
comings. We use this function in our finite dif-
ferences calculations because of its smooth mono-
tonic behavior and adaptability to different semi-
conductors. This function leads to e(k) functions
with the same behavior as, and numerically quite
close to, the accurate results of Walter and Cohen,
as already mentioned.

It is useful to fit the numerical results from the
finite differences calculation to some simple ana-
lytical expression. For this purpose, we have
chosen the one-parameter form given in Eq. (6).
To distinguish this potential from previous ones,
we shall call it P, and let t be the corresponding
parameter. Tables I, II, and III of t as a function
of R, for silicon, germanium, and gallium arsen-
ide, respectively, are included. Because t varies
only slightly with P, and the computer time nec-
essary to generate each value of t is not insignifi-
cant, some of the t values presented are a linear
interpolation between calculated values. The
values listed arise from data produced under the
assumption that P, =P, at r =25 a. u. This assump-
tion is somewhat arbitrary, but necessary in view
of the fact that correspondence at infinity cannot
be achieved on a computer. The total number of
steps used to obtain these results is 1200.

In Fig. 1 we have graphed the three potentials
yo, @„and P, for silicon at R, = 15 a.u. , as a
function of r. Note that P, approximates p, at a
distance of about 2 a.u. , whereas Q, does not ap-
proach P, until closer to 9 a.u. That there is a
discrepancy between the two solutions is probably
due to the nature of an approximation" made in
the variational solution. It is not entirely clear
why the variational method failed to yield a root
(extremum) without the use of this approximation.
However, it did produce a potential with a more

Ro (a.u.) t (a.u. "~)

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0
135.0
140.0
145.0
150.0
155.0
160.0
165.0
170.0
175.0
180.0
185.0
190.0
195.0
200.0
205.0
210.0
215.0
220.0
225.0
230.0

2.5950
2.5972
2.5994
2.6016
2.6038
2.6060
2.6075
2.6089
2.6104
2.6118
2.6133
2.6145
2.6157
2.6170
2.6182
2.6194
2.6255
2.6252
2.6289
2.6314
2.6340
2.6358
2.6375
2.6389
2.6402
2.6411
2.6421
2.6430
2.6440
2.6441
2.6442
2.6443
2.6444
2.6446
2.6447
2.6448
2.6450
2.6451
2.6453
2.6454
2.6456

- 2.6458
2.6472
2.6436
2;6500
2.6501
2.6502
2.6502
2.6503
2.6503
2.6503
2.6502
2.6502
2.6505
2.6508
2.6510
2.6513

TABLE E. Values of the parameter t corresponding
to a in Eq. (6) for the impurity-ion potential Q4 for sili-
con.
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TABLE II. Values of the parameter t corresponding
to a in Eq. (6) for the impurity-ion potential g4 for
germanium.

TABLE III. Values for the parameter t corresponding
to p in Eq. (6) for the impurity-ion potential P4 for galli-
um arsenide.

Ro (a.u.)

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0
140 ~ 0
145.0
150.0
155.0
160.0
165.0
170.0
175.0
180.0
185.0
190.0
195.0
200.0
205.0
210.0
215.0
220.0
225.0
230.0

t (a.u. ~)

2.4796
2.4804
2.4812
2.4820
2.4828
2.'4836
2.4848
2.4860
2.4873
2.4885
2.4897
2.4905
2.4913
2.4921
2.4929
2.4937
2.4992
2.4999
2.5028
2.5053
2.5078
2.5092
2.5106
2.5117
2.5128
2.5136
2.5140
2.5144
2.5161
2.5167
2.5170
2.5172
2.5184
2.5186
2.5187
2.5189
2.5193
2.5198
2.5199
2.5201
2.5205
2.5206
2.5203
2.5210
2.5212
2.5215
2.5217
2.5219
2.5221
2.5224
2.5226
2.5229
2.5228
2.5228
2.5227
2.5226

Ro (a.u. )

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85 ~ 0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0
135.0
150.0
145.0
150.0
155.0
160.0
165.0
170 ~ 0
175.0
180.0
185.0
190.0
195.0
200.0
205.0
210.0
215.0
220.0
225.0
230.0

t (a.u. ')

2.4716
2,4732
2.4748
2.4763
2.4779
2.4795
2.4809
2.4822
2.4836
2.4849
2.4863
2.4872
2.4882
2.4891
2.4910
2.4910
2.4972
2.4975
2.5011
2.5033
2.5056
2.5074
2.5092
2.5104
2.5117
2.5126
2.5135
2.5144
2.5153
2.5156
2.5160
2.5164
2.5167
2.5172
2.5178
2.5183
2.5188
2.5191
2.5193
2.5196
2.5198
2.5200
2.5202
2.5205
2.5208
2.5210
2.5211
2.5211
2.5212
2.5212
2.5213
2.5215
2.5217
2.5219
2.5221
2.5223
2.5222
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FIG. 1. Impurity-ion potentials $0, $3, and $4, as a
function of the distance y from the origin. The curves
are for silicon with the Dingle screening length HO=15
a.u.

f(r) = P" —[tc~o'g —z'(P' —g/r)]k ' (12)

for all three potentials. Obviously, a "perfect"
solution to the differential equation will yield f(r)
=0. Figure 2 displays values of f(r), for silicon
at Rp= 15 a.u. , as a function of x. The crosses
(squares} correspond to the function P, (P,) derived
from the variational (finite-differences) calcula-
tion. It is evident that, for all values of r, f(r) is

physically reasonable behavior than either p, or
In any case, at this point, we feel that p,

embodies the best solution of Eq. (11) of the four
impur ity -ion potentials.

We may demonstrate this more explicitly by
calculating the value of the differential equation for
the three potentials P„g„and p„ that is, we
seek an evaluation of the function f(r) defined in
terms of $=(rear/eo)p by

closest to zero for P~, rather than P3. We have
also shown in Fig. 2 the values of f(r) using a po-
tential of the form

ep
(~) — 0 e rlso-

v(r)r

as proposed by Theodorou and Queisser. ' This
potential is obtained in a non-self-consistent man-
ner by simply replacing the static dielectric con-
stant in p, by the spatially dependent dielectric
function. In their case, which deals with compen-
sation effects, this is justified by the low concen-
tration of free carriers. It is seen that

~
f(r)

~
for

QTu is greater than
~ f(r) ~

for &f&, at low values of
z (0.75 a.u.). At larger values of ~, the converse
is true, and, as' increases, the values of ]f(r)~
interchange their relationship frequently, although
too slightly to be visible in Fig. 2. However, since
it is the smaJ. l~ region which is the most critical,
it follows that the behavior of P, there is the more
satisfactory. Additionally, Fig. 2 shows the values
of f(r} for the Dingle potential po. It is seen that

P, consistently yields the lowest results for (f(r) ~.

Actually, this is merely a curiosity because P,
does not satisfy the boundary condition at the ori-
gin which is necessary when spatial variation of
the dielectric function is considered.

Thus P4 is an impurity-ion potential which is
constrained to be a factor of zp times greater than

P, at the origin, but which rapidly decreases with
r and approaches $0 well within a nearest-neigh-
bor distance. The adjustment which is made in
the potential by the consideration of the spatial
behavior of the dielectric function is, therefore,
confined to a region very close to the origin.

IV. CALCULATION QF THE CONDUCTIVITY
MOBILITY

C4 -4-
C$

C,
\ This section is concerned with the electron con-

ductivity mobility, g„arising from P4. The
procedure here is the same as that used' for Q,
and, therefore, we immediately write down an
expression determining p~ in the first Born ap-
proximation, namely,

-10-

8~&'o(ksT)'I' -,
)

F, (q)
P4 p/2 e3/-g 'Q4(alax y, ()~i p 1/2 0

where Q~ is defined by

(14)

0.0 0.2 0.4 0.6 0.8 l.0

r (a.u.)

I

l.4

FIG. 2. Values of the differential equation f(z) Kq.
(12) as a function of the distance from the origin. These
are plotted for the impurity-ion potential functions $0,
$3, $4, and tI~ (omitting the common eo factor in all
cases). The curves are for silicon at go= &5 a.u.

q, =]in(I+g)- ', (+(~, -1)']in(1+v)-

+«. -»»('X+"+"+'}-I l:[»
(15)

Here we have defined bp 2kRp and 54= 2kB4, where
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FIG. 3. Theoretical electron conductivity mobilities,
pp and ltJ4, for silicon at T=300 K as a function of elec-
tron conc entr ation.

FIG. 5. Theoretical electron conductivity mobilities,
pp and p, 4, for gallium arsenide at T = 300 K as a function
of electron concentration.
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FIG. 4. Theoretical electron conductivity mobilities,
pp and p4 for germanium at T = 300 K as a function of
electron concentration.

k is the electron wave number, and R, =R,/(1+tR, ).
The quantity E„(rI) is the Fermi-Dirac integral of
order cy, defined, for example, in Blackmore" as
a function of the reduced chemical potential q.
As usual, the derivation of Eq. (14) involves an
integral that averages the relaxation time for
ionized-impurity scattering over the Fermi-Dirac
distribution function. Following the original tech-
nique of CW, we evaluate Q, in Eq. (14) at that
value of k (k,„) that maximizes the integrand re-
maining in this integral after the removal of Q(k, „).
Finally, ks in Eq. (14) is the Boltzmann constant.
For the particular case of the Dingle potential the
corresponding mobility, p, follows from Eq. (14)
by retaining only the first quantity in large paren-
theses on the right-hand side of Eq. (15).

In Figs. 3, 4, and 5 we have graphed p, , and p, 4

as a function of electron concentration, which here
is the same as yg, , for silicon, germanium, and
gallium arsenide, respectively, at 7=300 K. Also
in Fig. 6, the mobility ratio p, ~/p, , is presented as
a function of electron concentration for these semi-

conductors at the same temperature. In the inter-
est of a clear illustration of the difference be-
tween p. , and p, „we have not included any experi-
mental points, as to do so would cause the verti-
cal scale to be enlarged. Furthermore, for gal-
lium arsenide the only points available to us did
not extend into the very heavily doped region.

It is seen from these graphical results that the
change in p. 4 from p, is very slight, except for
high levels of doping. However, the trend is in
the proper direction, toward the experimental
points, so that the effect of including dispersive
valence-screening effects is to reduce the theo-
retical electron mobility resulting from ionized-
impurity scattering compared with the original
Dingle mobility. This is to be expected physically
since P, is much stronger than P, in the small-r
region. The deviation of p, 4

fr'om p, p is much less
pronounced than was the case in Fig. 4 of Ref. 7

where P, was used. The reasons for this differ-
ence are twofold. First, for the case of silicon,
we are here using a dielectric function which
reaches its limiting value in approximately half
the distance at which the Azuma-Shindo function
reaches theirs. That is, the physical region
wherein the dielectric function is not a constant
has been decreased by a factor of 2. Second, and
most important, we believe the discrepancy of
results has its roots in the approximation' that
was necessitated to obtain a solution in the varia-
tional approach. We would expect, without proof,
that the results from the unapproximated varia-
tional approach should closely resemble those
derived from the finite-differences method.

V. CONCLUDING REMARKS

We have seen that a purely numerical determina-
tion of the impurity-ion potential satisfying the
linearized Poisson equation (11) provides the most
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accurate and efficient means of incorporating the
spatial variation of the dielectric function into the
theory of ionized-impurity scattering. We con-
clude that the electron mobility based on this po-
tential is lower than the Dingle mobility at high
impurity concentrations and approaches the latter
at low doping densities. The effect is negligible
for doping less than about 10" cm ' for silicon and
germanium, and less than about 10" cm ' for gal-
lium arsenide. As shown in Fig. 6, the ratio g,/g,
remains greater than 0.90 for most concentrations
of interest; that is, our result, for the effect on
the theoretical electron conductivity mobility cal-
culated from a self-consistent impurity-ion poten-
tial which incorporates linear screening effects
due to valence electrons and free change carriers,
is that the change in the mobility from the Dingle
mobility is a small effect except for cases of very
heavy doping.

We wish to note that while the calculations in
the present paper are based on the linearized
Poisson's equation, we can also think of calcula-
ting electron mobility in terms of the nonlinear
Poisson equation. " It is expected that nonlinear
impurity screening effects will be important.

Finally, we mention that after the present work
was completed, we became aware of the numeri-
cal results of Meyer. " His potential in the linear
case, although similar to ours, was obtained using
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the Azuma-Shindo dielectric function which, as
discussed above, is not currently the most ac-
curate description of dispersive valence screen-
ing.
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FIG. 6. Ratio of electron mobilities, p.4/po, for sili-
con, germanium, and gallium arsenide at T = 300 K as
a function of electron concentration.
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