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Systematic study of channeling stopping-power oscillations for- low-velocity heavy ions

Anand P. Pathak
School of Phi'sics, U»ii'ejsit~ of Ht deiabad, Htdeiabad 50000I, I»dia

(Received 21 September 1979)

The model used by Briggs and Pathak to calculate the electronic energy loss of low-velocity

channeled heavy ions has been explored further to study the velocity dependence of Zt oscilla-

tions in electronic stopping power. For increasing ion velocities, where the validity of neglecting

the target-electron velocities increases, it is found that the magnitude of Zt oscillations de-

creases and by about 2-a.u. velocity the first maxima at Z& =6 and the first minima at Z& =10
are washed out completely.

I. INTRODUCTION

The Zt and Z2 oscillations in the stopping power of
solids for low-velocity channeled heavy ions have
been studied in detail both theoretically and experi-
mentally, ever since these were observed first in ran-
dom situations' and later in channeling situations.
The theoretical interpretation for these oscillations
has been given by several authors. In the beginning
all attempts made' to explain these oscillations were
based on modifications of Firsov theory' by using a
detailed shell-structure model (for the projectile and
target atoms) instead of the Thomas-Fermi statistical
model. Such attempts were successful in explaining
many features of the stopping-power oscillations.
However, it was found that (i) the calculated magni-
tude of oscillations (maxima to minima ratio) was
much smaller than that experimentally observed, (ii)
the oscillations damp out for higher Z, and more re-
cently it has been found that (iii) the magnitude of
stopping is much too sensitive to the choice of wave
functions. 6

An alternative model for low-velocity stopping
power for channeled heavy ions was employed by

Briggs and Pathak, ' where one considers the scatter-
ing of the target electrons (assumed to form an uni-
form electron gas) in the potential field of the projec-
tile ion, and, in this process of scattering, the energy
is taken away by the target electrons. The energy
loss is related to the momentum-transfer cross sec-
tion for this electron-ion scatttering process, and this
cross section has oscillations with respect to Zt. This
approach was found to explain the Z~ oscillations in
the stopping power of channeled heavy ions rather
nicely. The major difference between the two ap-
proaches discussed above is that the Firsov-theory
modification is completely symmetric in Z~ and Z2,
the projectile and the target atomic number, respec-
tively, and therefore will yield complete symmetry in

Zt and Z2 oscillations both for channeling stopping in
solids as well as random stopping in solids and gas-
eous targets. However, the later model used by

Briggs and Pathak is»ot symmetric in Zt and Z2.
Here, the Zt oscillations are embodied in the
momentum-transfer cross section, whereas the Z2
variations come from the corresponding variations in

the effective charge density of the assumed uniform
electron gas. This point was discussed in connection
with Z2 variation in the channeling stopping power
and it was emphasized that in the channeling situa-
tion, Z~ and Z2 variations do have entirely different
origin and symmetry in Z~ and Z2 cannot be expect-
ed.

The aim of the present paper is to study the sys-
tematics of Z~ and Z2 variations in the channeling
stopping power with increasing velocity of the projec-
tile ion. Experimentally some attempts have been
made to study the velocity dependence of Zt and Z2
oscillations in random stopping power. This is be-
cause it is known that there are no such oscillations
in the high velocity Bethe-Bloch region where the
quantal perturbation treatment for stopping power be-
comes applicable. At these velocities, the above sim-
ple model based on elastic scattering of the target
electrons from the incident ion is not very useful be-
cause the cross sections are now effectively composed
of infinite number of partial waves that must be
summed. Similarly the Firsov or Lindhard theories
for low-velocity heavy-ion stopping (and hence the
modifications thereof) are not valid. Therefore a def-
inite knowledge of the velocity where Zt and Z~ os-
cillations are washed out will be very helpful in estab-
lishing more precisely the regions of validity and ap-
plicability of two kinds of treatments. Secondly, and
perhaps more significantly, such knowledge of sys-
tematics of Z~ and Z2 oscillations will be of great
help in extrapolation, empirical prediction and tabula-
tion of stopping-power data for all projectiles in all

targets. For example, lack of such knowledge forced
Northcliffe and Schilling to disregard the Z-oscillation
effects in their tables. '

A short summary of the formulas used is given in
the next section and the results are discussed in the
last section. Possible experiments have been suggest-
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ed to test certain new and interesting features in os-
cillations predicted here.

II. FORMALISM

Here, q( is the t th partial-wave phase shift and has
been determined by solving the radial part of the
Schrodinger equation

k2+U( ) ( + ) G 1)
dr f2

As is well known, for U(r) varying faster than 1/r,
the asymptotic form of the solution GI of Eq. (4) is

GI(r) —sin(kr ——, I sr + riI)
1 (5)

and without atomic field [ U(r) =Ol, Eq. (4) gives
the Bessel function solution whose asymptotic form is

f ~OO

GI(r) —j~(kr) sin(kr —
2

lm)1 (6)

The magnitude of the phase shift q( is then deter-
mined by the competition between the attractive po-
tential U(r) and repulsive centrifugal potential
I(i +1)/r2 and as such is computed by finding the
shift of nodes of the solution (5) with respect to the
corresponding node of the Bessel function (6) for
large r.

The atomic field U(r) in which the target electrons
are scattered is taken to be statistical Thomas-Fermi
potential. For use in the numerical calculations, this
was fitted to a sum of screened Coulomb form (i.e.,
Moliere type)

The mean energy lost by an ion of velocity v to an
electron gas of density n is given by'

dE
dX

=nrnu Q~

where m is the electronic mass and Qd the momen-
tum-transfer cross section, given by

Qg =, $ (I + 1) sin (gI —gI,I)
4m

I

Using atomic units, these two equations [(1) and (2)l
can be combined to read

dE =4rrnQd =4rrn $(I +1) sin (riI —riI+I) . (3)2

dX (

explicitly taken into account (for example the
Hartree-Fock potential) only gives rise to isolated
peaks7 which are not observed experimentally be-
cause they correspond either to large radii outer
shells (for example 3s in Na) or to Ramsaur-
Townsend effect, both of which cannot be expected
to be observed in a stopping-power experiment in
solid targets. The Z~ oscillations in stopping power
are essentially contained in the momentum-transfer
cross section Qd. The target electron velocity has
been neglected in all of the above equations because
the main purpose here was to establish an upper limit
of projectile velocity beyond which the Z oscillations
in stopping power should not be expected. In any
case, this assumption of neglecting target electron
velocity becomes more and more valid as the projec-
tile velocity increases beyond 1 a.u.

III. RESULTS AND DISCUSSION

Using the above equations, we have calculated the
various partial-wave phase shifts and evaluated the
momentum-transfer cross section Qd for k =0.75 to
2.0 a.u. in steps of 0.25. The results are displayed in

Fig. 1 for Z~ =2 to 24. The stopping power in the
uniform-electron-gas model is obtained simply by us-
ing the formula (1) with appropriate effective elec-
tron gas density. We notice from Fig. 1 that as k in-

creases, the magnitude of the oscillations (i.e., maxi-
ma to minima ratio) decreases systematically and by
k =2.0 a.u. , the first maxima around Z~ =6 and first
minima around Z~ =10 are completely washed out.
This decrease in the oscillation amplitude is also ac-
companied by a gradual shift in the positions of first
maxima and first minima towards the higher-Z~ side
by about 2 to 3 units.

We remember " that the origin of the Z~ oscilla-
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The reason to choose this simple potential is based
on our experience which has shown that the potential
in Eq. (7) demonstrates quite clearly7 s" the oc-
currence of stopping-power oscillations. Recourse to a
potential which is calculated, with the shell structure

FIG, 1, The variation of the momentum-transfer cross
section 0& with the projectile atomic number Z& for various

values of projectile velocity given in atomic units, by
k =0.75, 1.0, 1.25, 1.5, 1.75, and 2.0. The stopping power is

obtained through Eq. (3).
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tions is contained in the way the various shells are
filled in the Periodic Table. The first peak around
Zt =6 comes from I =1 partial cross section in the
expression for Qq since the p-wave phase shift goes
through a change by m corresponding to the filling"
of the 2p shell while the d-wave phase shift is zero.
Similarly, the second peak comes from t =2 partial
cross section corresponding to the filling of the 3d
shell. Now as the energy (and hence k) increases,
the near step-function increase (actually at k =0, the
phase shift increase is literally a step function'3) by 7r

in the appropriate phase shift q at given Z, tends to
be smeared out and by k =2 a.u. it becomes nearly
monotonic increase. Therefore, by the time the I =1
partial cross section in Qd has a chance to drop corre-
sponding to q~, going through m, the next partial
cross section (for I =2) has started contributing, and
as a result we get monotonic increase in the total Qd
with Z~, thus washing out first maxima and first
minima almost completely. These results are in

agreement with the experimental results of Ward
et al. for random stopping oscillations, where the Z~

oscillations are found to vanish at about k =2 a.u.
velocity. However, more experiments on channeled
stopping-power oscillations for a wider range of veloc-
ities will be useful. At the same time more calcula-

tions for higher Z~ values and for higher velocities
are required and are being attempted.

It may be mentioned that the Z2 variations in the
channeling stopping power have different origin and
interpretations. These are due to the corresponding
variations in the effective electron density encoun-
tered in the channels. ' Therefore these are expected
to show up until the onset of the high-velocity
Bethe-Bloch region where the long-distance plasma
excitations start contributing to the process of energy
loss. In fact, Ward et aI. do indeed find that Z2
variations persist up to 8 a.u. velocity. In this respect
it seems worth emphasizing that a detailed experi-
mental study similar to that of Ward et al. 9 for ran-
dom situations like gaseous targets regarding velocity
dependence of Z2 oscillations will be of great value
for investigations concerning the origin and interpre-
tation of Z2 oscillations. Specifically, because the Z~
and Z2 oscillations in the random materials and gas-
eous targets are found to be very similar"; as also
expected from modified Firsov theory, 4 as against
those in channeling situations, "a detailed compar-
ison of velocity dependences of Z~ and Z2 oscilla-
tions for gaseous targets will be extremely useful in
clarifying and establishing the basic similarities and
differences in the two situations.
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