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Electrical conductivity of a graphite layer
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The electrical conductivity of a charged layer of graphite is calculated from first principles within a tight-

binding framework. The Fermi surface consists of circles around the P points in the Brillouin zone. In the

neighborhood of these points we obtain analytical expressions for the electron-phonon coupling gk„. The

longitudinal and transverse phonons are shown to give exactly the same average contribution to scattering

(contrary to the case of simple metals). In the high-temperature limit we obtain a conductivity (at T = 300

K} that is about thrice that of copper. The significance of this result with respect to graphite intercalation

compounds is discussed.

I. INTRODUCTION

The long-standing interest in graphite intercala-
tion compounds has been spurred by recent re-
ports of electrical conductivities exceeding that of
copper.

Although detailed experimental inf ormation about
the Fermi surface is becoming increasingly avail-
able, ~ further progress in this field is hampered
by the fact that elementary questions concerning
the electronic structure of such compounds are
not yet settled. It is the purpose of this paper to
resolve some of the problems by asking the follow-
ing question. What is the conductivity of a single
layer of graphite as a function of the electronic
chemical potential? This question is of direct
relevance for intercalation compounds in which the
shift of the chemical potential of the graphite lay-
ers adjacent to the intercalate is sufficient to
make the Fermi surface essentially two dimen-
sional and for which an ionic picture is appropri-
ate. The conductivity in the graphite layers may
then be calculated from the carbon electron-pho-
non coupling constant as a function of the chemical
potential.

We describe the electron-phonon coupling start-
ing from a tight-binding Hamiltonian which is
known to be appropriate for the 7i bonds of graph-
ite. The maximum charge transfer per carbon
atom due to intercalation is of the order of a few
percent of an electron, ' and it is easy to esti-
mate that even in this case the scattering due to the
modulation of the tight-binding matrix element is
much larger than the one due to charge fluctua-
tions. From this point of view these systems are
more similar to strongly doped semiconductors
than to metals.

II. ELECTRON-PHONON COUPLING FOR
A TIGHT-BINDING ICAMILTONIAN

wher e

In~n, . s, s
a„, n, s, n', s' an tg ) (2.1)

J(u, u;u', u')= f P (r+R„„—R„,, „.+u„, -u„,, )

«(r) y(r)dr (2.2)

is the matrix element between orbitals belonging
to nearest-neighboring atoms and V(r) is the
atomic potential.

The electron-phonon coupling constant is ob-
tained by expanding Eg. (2.1) to first order in
u„„-u„., ~—= 5(n, s;n', s'). Wehave

J=J()+ &~ V J (), (2.3)

where & indicates a direction (x, y, z) and tip re-
fers to the undistorted case. The Hamiltonian is
then given by

In this section we derive the general expressions
for the electron-phonon coupling corresponding to
a tight-binding Hamiltonian. This is done under
the assumption that when the lattice is deformed
by displacing an atom on the site (n, s) (n indicates
the unit cell and s the position within a unit cell)
at the position R„„=R„+d, to the displaced posi-
tion R„,, + u„„, the orbitals follow the atoms with-
out appreciable deformation.

Introducing the operator a„„that creates an el-
ectron in the orbital (r —R„„—u„„), we can write
the tight-binding Hamiltonian for a general dis-
torted state as
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H =Ho+H„, ,

where

(2.4) given by

(2.8)

II0 — a„, 0 n, s, n', s' a„,~
ntn'i& P'

(2.5)
where b and b are the usual phonon operators.
We also write

and

n in'e S, S' 0'
a„„~ n, s,'n', s'

a„,,= ~Z e'" '"«U„p(k) c„
keP

(2.9)

x[V l(n, s; n', s')],a„„. (2.6)

We express now the components of the displace-
ments in terms of the phonon field:

where c„-,p is the creation operator for an electron
in the state k of the band p and U is the matrix
that diagonabzes the electronic Hamiltonian after
Fourier decompositiop. Using Eq. (2.9) we can
rewrite 00 as

u„„, = ~Q e''" S;.(q)
y N -,„ ~v ms

(2.7)
&0= . &k,P —&.~k,Pk, P ~

keP
(2.io)

where q is the wave vector, v is the phonon branch,
m is the mass, tu is the frequency, and S", ,(q) is
the polarization vector. The phonon field Q„„is

where E is the band energy and p is the chemical
potential. Inserting Eqs. (2.7) and (2.9) into Eq.
(2.6) we have

H„,=—g g g g e' ' "e'" '"«'U',
,~(k)U...~.(k)c„-,~c&,~ (N } Iz Q;,„+

q ~v n tn', s, s' n &p &p' k ek' (u-,„Nm,

x[e""«S"„(q)—e" "'S";', (q)][V Z(n, s;n', s')], .

After some algebra we can rewrite Eq. (2.11) as

(2.ii)

„,, Qf F,„U", ,~(k)U«, ~(k')~,~ay, ~'[& J(0, s;n', s')]0
v e n', s, S' k k,p,p' k-k', v~+ms~

x [eik' ~ „'S«(k kI) eik R«S (k k }]

and, since the electron-phonon coupling g is defined by the relation

=1+s«t ~y g 8 nip g +pai' p '~f-i' »
krak yvyp yp

we have

(2.12)

(2.12)

y)1/2
n'~ 'u N

[V J(0, s;n', s')]0
«', n;«, «' &p-i', v ms

x [e'" '" 'S ", (k —k') —e'"'" ' S" (k —k')]U*„ (k)U .(k'), (2.i4}

which is the final expression for the electron-
phonon coupling corresponding to a tight-binding
Hamiltonian. The present result is a generaliza-
tion of the case described by Barisic et al.7

displacements do not contribute to the linear coup-
ling.

The polarization vector for longitudinal modes
is

III. APPLICATION TO TWO-DIMENSIONAL GRAPHITE

In this section we derive the electron-phonon
coupling as given by Eq. (2.14) for the case of a
single graphite layer. We treat the phonons of the
layer as those of an elastic continuum and con-
sider only the modes with polarization vector
parallel to the plane. Phonons with out-of-plane

and for transverse modes

~l
S,(q)= ~ e (8.2)

where q =(-q„;q„) is a vector perpendicular to g.
Here and in the following we will give a full
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derivation of the longitudinal modes, while for the
transverse modes we only report the results that
can be obtained in an analogous way.

The term in the square bracket of Eq. (2.14) be-
comes, using Eq. (3.1),

we always have ~Rp„- R„,q =a, that, together
with Eqs. (3.9) and (3.10), allows us to rewrite
Eq. (3.8) as

(3.11)

&n (eik Rii ei(k k & dq ik Rq iik k ) dg)
W2 Ik-k'I

(3.3)

where we have introduced

F', ;= m e o, s'v', s' e' ' n' (s.i2)

As we shall see in the following, the Fermi sur-
face in a charged graphite layer is small with re-
spect to the Brillouin zone so that (k- k') d', « I
and we can expand with respect to this term.
Equation (3.3) then becomes

and

(s.is)
For the transverse modes. Eq. (3.12) has to be
replaced by

(k- k')(R,„-R„,)e""". (s.4) E', ~=Q[m e(0, s;n', s')]

If the matrix element J defined by Eq. (2.2) de-
pends only on the distance we can write

&& [m' e(0, s; n', s')]e"", (3.14)

(Rp„—R„....)[V 4(Rp„—R„., g) ]p
— —" -""

qpJp

having defined qo as

1 aa(r)&~

J 3[ Jj

(3.5)

(3.8)

where m = (-rn„; m„) is a vector perpendicular to
m.

We have now to specify a coordinate system for
our graphite plane. We choose as primitive lat-
tice vectors (nk and np are defined as the corre-
sponding unimolular vectors)

For our graphite layer we can write the phonon
frequencies as

a~ = v s n, -=a(o; ~3 ,

ap = &Sn, =—a(-,'; v 3/2) .
(s.i5)

id' = id' = C
~

k —k' (3.7)

where c is an average speed of sound for in plane
modes. By making use of Eqs. (3.4) and (3.5)
into Eq. (2.14) and considering only one band (p
=p') we obtain

qpijp ~ (k —k') ' (Rp„—R„,g)

x e" "Li*,(k) Lr~(k'), (3.8)

and

OpS n'p&
(s.io)

Since in two-dimensional graphite the distance
between two nearest carbon atoms is a= 1.42 A,

where p, =2Nrn, /V is the carbon mass density.
In order to evaluate Eq. (3.8) explicitly for the

case of a graphite layer it is necessary to under-
take a mathematical, or better trigonometrical
"tour de force." The reader who does not want to
refresh his ability in such a game can go directly
to the final result given by Eqs. (3.47) and (3.48).

It is convenient to introduce the unimodular vec-
tors

(3.9)

The two atoms (s =1, 2) in the unit cell are, re-
spectively, at positions &(ai+ap)=—a(-,'; v 3/2) and
—,'(ay+ ap) =- a(1;vQ.

The primitive vectors of the reciprocal lattice
are

k, = (2m/sa) (-1;~3,
k, = (2ii/sa) a(2; 0) .

(s.18)

k, = (2'/Sa)(I; I/W&. (s.i7)

The unimodular vectors connecting the nearest-
neighboring atoms to the atom s = 1 (bond vectors)
are

e, =- (--,'; —,'~s .
(s.i8)

The atomic orbitals of interest are the m orbi-
tals of carbon atoms, one orbital per atom. The
matrix elements of the tight-binding Hamiltonian

The Fermi surface of two-dimensional charged
graphite consists of small circles around the P
points in the Brillouin zone. Because of symmetry
it is only necessary to consider one of these points
that we choose to be the one corresponding to the
vector
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(2.1}between the Hloch states corresponding to
these orbitals are given by

n=- (n„, n„),

(n n,)=n„

where

0 o.(k)

.~*(k) o . (3.19) (n n, ) = (Wa/2)n„+,'-n„,

and introducing

Q=cos n„, p'=cos n„' (s.so)

with

I ~' 1 u(k)'

,-u (k) I

~(k) = I+e*"'1+e*"~ .
The matrix that diagonalizes A is

(s.2o)

(3.21)

we obtain after some algebra

f 4 (nl) Qkel»

f22(n) =f12(n) =&e ",
(s.sl)

(3.32)

u(k) = ~{k)/I ~(k) I . (3.22)

k=k»+Q (k'=k +Q') . (3.23)

We then have, expanding around k» (small Q),

Sine e the electronic states of inter est are those in
the vicinity of k it is convenient to introduce
Q{Q') (Q= IQI) such that

a =(Ws/4)[I+ i(I/v s)],
a* =(v 3/4)[I - i(I/.J s)].

(3.3s)

Turning now to the terms given by Eq. (3.12) we
notice that the expansion of the terms (3.13) does
not produce zero-order terms but only linear
terms in Q. This implies that to have linea, r
terms in the product [Eq. (3.11)], we have to take
only the zero-order terms in Eq. (3.12). These
are

Q A=3+2 cosk'a~+2 cosk'a2

+2 cosk (a, —a2) =(-,'qa)'. (s.24)

Expanding also o.'as given by Eq. (3.20) and in-
serting it into Eq. (3.22) we obtain

z'12(m) =-(m e,)'+(m e,)'e '"»'&

+(m e)'e'"»'"

&22(m) =82)*. (s.s4)

= (2/~3[el"» "i(n ' n1) + e'"»'2i(n n2)], (3.25)

where we have introduced

-n=Q/IQI (-'=Q /IQ I) (s.26)

f 21(» n ) = fJ2 (n)+1(n ) = u(n) =f12(n n) ~ (3.28)

We can now explicitly evaluate Eqs. (3.27) and
(3.28). In fact

and the vectors n, are defined by Eq. (3.15).
%e notice now that in the summation over s and

s' in Eq. (3.11) only the off-diagonal terms are
nonzero. This is due to the fact that the nearest-
neighboring atoms of an atom of type s =1 are
only of type s'=2 and vice versa. The diagonal
terms of Eq. (3.12) are therefore zero and so we
are only interested in the off-diagonal terms also
for Eq. {3.13).

These terms are

f12(n, n') = U2 (n) U2(n') =-—,'u*(n')

=—(I/v 3)[e '"»'1i(n' n, ) + e '"»'"i(n' n2)]

(3.27)

Diagonal terms are zero as discussed before.
Having now

m e1=--,'m„—(v 3/2)m„
m' e2=sl~ ~

m eo =--,'m„+ (WS/2)m„,

we obtain, after some algebra,

Z'„=~(m. +2m, )'

with

~= -', (I+ivs).

(s.s5)

(s.s6)

(3.37)

Inserting Eqs. (3.23) and (3.26) into Eq. (3.9) we
have

m=(n-n')/ln-n'I (s.s8)

With Eqs. (3.27), (3.28), and (3.39) we can now
explicitly evaluate Eq. (3.11). In particular we
are interested in the square modulus of the elec-
tron-phonon coupling. This is

Ig2.2'
I ={uqo&o/&~n, )

I
G I' (s.4o)

where

and therefore we can rewrite Eq. (3.36) as
F' =A(e"-e" )'/le" —e" I'. (3.39)
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IG I' =1[~12(m)f12(n ) + +&2 {m)fl2{n)]I'

. . .Jl"e'
)e' —e'

From Eqs. (3.33) and (3.37) we have

(3.41)

(s.42)

AAB B* =A A*&&=-~ ~

Also, we have

I

e' —e'~ I' =2 —2 cos(P —g'),

and Eq. (3.11) gives

(3.4s)

(s.44)

64 [2 —2 cos(p —P')]' (2[2 —2cos(y —y')]' —(e" —e")'e"""—(8 "—e ")'e * ' )). (3.45)

We leave it as an exercise to show that Eq. (3.45)
reduces to the simple result

I
G I'=4[1 —coss(e+ e')] (3.46)

and therefore

lg,'-,; I
= ,'(-,'aqoz, -/cv p, )'[I —coss(y+y')].

has the linear dispersion [see Eqs. (3.19) and
(s.24)]:

&@)=-'~oa@.

This gives

&g„'& =-,'&v'& =-,'(-,'Joa)'h '

(4.2)

(4.3)

IV. CONDUCTIVITY

In the relaxation time (r) approximation the con-
ductivity is given by

12,1&

go
—e'Ã(p)&v, (p)'&r, (4.1)

where p is the shift of chemical potential with
respect to the neutral layer. lV{p.) is the density
of states at the Fermi surface (two full circles
per unit cell). The Fermi velocity in x di rection
is v„(p, ) and the average & & is over the Bril-
louin zone. In order to obtain Eq. (4.1) we have
also replaced the derivative of the Fermi func-
tion with a delta function. At (and below) room
temperature this approximation is valid.

In the neighborhood of the point I' in the Bril-
louin zone of two-dimensional graphite the band

(s.47)

Repeating the calculation for the transverse
modes, one obtains

Igg', ; I' =-,'(-,'aq, J,/cv p, )'[1+coss(y + y')] .

(s.48)

Equations (3.47) and (3.48) represent the central
result of this paper. In the following we will ex-
ploit the consequences of this result. Before con-
cluding this section we would like to point out the
important fact that while in simple metals (quasi-
free electrons) the electron-phonon coupling due
to transverse modes is negligible, here (tight
binding) it gives a contribution as large a', s that of
the longitudinal phonons.

independent of j[L.

The relaxation time & is computed from the
electron-phonon scattering. . The electron- elec-
tron scattering can be neglected because, as in
TiS2, the carrier pockets are too small (for
reasonable values of p. ) to allow for the umklapp
electron-electron process. %e obtain then in the
high-temperature limit, and including only scat-
tering within the same circular Fermi surface,

2 h 1
~ N(p, )k~T &Ig I'&„„' (4.4)

&A& „=&A[1 —cos(y —y')]& .

From Eqs. (3.47) and {3.48) we have

& lrl'&„=&lab. ; I'&„+&Ill.; I'&„

= (-,
'
aq, Z,/c ~p, )'

and therefore

(4.5)

(4.7)

As is evident from Eq. (4.7), the conductivity
does not depend on thy Fermi level and therefore
on the carrier concentration. This is due to the
fact that, contrary to the case of free electron,
the band energy given by Eq. (4.2) is linear in

For the carbon mass density p we take the

where lgl is the sum of all the terms that contri-
bute to electron-phonon scattering. The average

&„ is the transport average over the Fermi
surface. '
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three-dimensional value of graphite p, =, 1.14
x l0 cm so that our conductivity refers to a
three-dimensional cyrstal made out of independent
layers. The average speed of sound for in-plane
modes canbe estimated tobe c = 2.1 x 10 cm sec
In order to determine explicitly oo we only have
to determine qp as defined from Epl. (3.6). We need
therefore an analytical expression for &(r) T. he
carbon & orbitals and the atomic potential are con-
structed from Slater orbitals whose exponent is
fixed to give 40 —2.2 eV as obtained from optical
experiments. ' The value of the exponent that
produces the correct &p is )= 1.5 (in a. u. ). The

0

corresponding value for qo is qo= 2.5 A . One
should notice that this estimate does not include
the fact that the & orbitals in the solid have a
partial hybridization (deviation from circular sym-
metry}. The inclusion of this effect would reduce
qo. A completely independent estimate for qo can
be obtained by interpreting the optical spectrum of
polyacetylene in terms of a Peierls transition.
In this case we obtain qo'=2. 0 A, which is rea-1'f, -1

sonably consistent with the previous estimate.
With qp =2.5 A we obtain at T= 300 K, in (Q
cm} ',

00 —13X]0 (4.8)

which is more than twice the conductivity of cop-
per at the same temperature. This result cor-
responds to the asymptotic (&-~) expression for
conductivity. The inclusion of the effects due to
the finiteness of temperature (phonon freezing)
would increase 00.

V. SUMMARY AND DISCUSSION

In this paper we have computed by first princi-
ples the electron-phonon coupling for a graphite
layer. The calculation is performed within the
tight-binding framework. This implies that when
an ion is displaced by a phonon the orbitals rigidly
follow the ion. This is different than the standard
approach for normal metals where the displaced
ion is assumed to produce a Coulomb potential that
is then screened by the electrons.

In the tight-binding case the coupling comes
from the modulation of the tight-binding matrix
elements arising from the change in the overlap
between orbitals placed on different atoms and
not from a Coulomb potential. In this respect
the tight binding corresponds to the limit of total
screening. In graphite the electrons are quite
localized on the carbon orbitals and the tight-
binding picture is quite appropriate. Of course,
the assumption that the orbitals rigidly follow the
disylac'ed ions might be too drastic and the effect
of partial "orbital relaxation" should be consider-

ed. This is not included in the present calcula-
tion that in this respect provides an upper limit
for the electron-phonon coupling. Orbital relaxa-
tion would in fact decrease the change in elec-
tronic energy due to the distortion and therefore
it would reduce g.

Our calculation refers in particular to the neigh-
borhood of the point P of the Brillouin zone where
a circular Fermi surface appears when charge is
added or taken from the graphite layer. The ana-
lytical result we derive is based on a linear ex-
pansion for small deviation from the P point. For
this ease we find that the longitudinal and trans-
verse (in-plane} modes give exactly the same total
contribution to the scattering. This is quite dif-

ferentt

from the scattering by charge fluctuations
where the transverse modes give zero or negli-
gible contributions.

In the case of a large shift of the Fermi level
(~ p,

~

~ 1 eV) the linear expansion used here be-
comes inappropriate and higher-order terms pro-
vide an increase of ~g ~

with a term proportional
to Q . It is interesting to note that for this addi-
tional term the longitudal modes give a much lar-
ger contribution than the transverse ones.

Also, for
~

p.
~

~ 1 eV the high-temperature limit
that we use for the conductivity [Eq. (4.4) and
following] might be inappropriate even at room
temperature. This is because the population of
the phonons responsible for scattering is reduced
by the Bose function. This effect enhances oo and
produces deviations from the T behavior that are
larger at lower temperatures. This behavior is
in agreement with recent experiments on inter-
calation eomyounds.

Before discussing the relevance of the results
of this calculation with respect to intercalation
compounds we should explicitly point out that the
present model does not apply to pure three-di-
mensional graphite. The reason is that in pure
graphite the Fermi surface is drastically modified
by the coupling between layers and so is the elec-
tron-phonon coupling. An additional consequence
of this is that phonons with displacements per-
pendicular to the planes are also important for
scattering. By sufficiently shifting the chemical
potential (~ p,

~

~ 0.1 eV), as is the'case when
charge transfer occurs (due to intercalation), one
actually reaches a region in which the band struc-
ture has essentially a two-dimensional charac-
ter. In this region the coupling between graphite
layers becomes negligible with respect to the
electrical properties. For the application of the
present calculation to intercalation compounds
there is also an upper limit to the shift of the
chemical potential in the graphite layers,

~

p,
~

~1.5 eV. Above this value there are deviations
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from the simple band structure given by Eq.
(4.2). In some materials, mainly donor intercaia-
tion compounds, there is also an appreciable
coupling between the intercalated and the graphite
layers. This effect, not included in our model,
can give rise to a new three-dimensional conduc-
tion band that decreases the conductivity aniso-
tropy with respect to pure graphite. On the oppo-
site, the best conductors are of acceptor type
and show an increase of the conductivity aniso-
tropy with respect to pure graphite. This indi-
cates a small coupling between intercalated and
graphite layers and supports the hypothesis of in-
dependently conducting graphite layers. The con-
dition on the shift of the chemical potential (0.1
~

~ p ~

~ 1.5 eV) for the validity of our model seems
to be satisfied in the best-known materials. '

On the basis of our results we therefore conclude

that the theoretical conductivity for intercalation
compounds, including the geometrical factors due
to the presence of the intercalate, is not expected
to reach values much larger than that of copper.

Finally, we would like to point out that an addi-
tional scattering mechanism exists in these sys-
tems and it is related to the potential exerted on
the carriers (in the graphite layers) by the ionized
intercalated molecules. This mechanism is re-
sponsible for the different conductivities observed
for various compounds ' and depends on the state
of order of the intercalate molecules.
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