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A shallow donor complex observed by several authors in ultrapure germanium grown in a hydrogen
atmosphere is attributed to an oxygen-hydrogen system. Photoconductivity data under stress are presented.
An abrupt transition in the spectra at a well-defined stress (2.1 X 10® dyncm™?) is found. It is explained by a
theory which involves dynamic tunneling of the hydrogen in the vicinity of an oxygen center. The
comparison with other complex donors and acceptors supports the model.

I. INTRODUCTION

In ultrapure germanium with net acceptor or net
donor concentrations <10 em™ several new shal-
low levels have been recently discovered.!”™ A
donor, which we label D(H,O) and which is the
subject of this paper, is found in rapidly quenched
crystals grown in a hydrogen atmosphere' from a
melt contained in a synthetic quartz crucible. The
growth atmosphere proved to be relevant when it
was shown that the ground state becomes slightly
shallower in crystals grown in a deuterium envi-
ronment. This isotope shift is a direct proof of
the presence of a single hydrogen atom? in D(H, O).
The donor D(H, O) belongs to a new class of impuri-
ty complexes which consist of one substitutional
and one interstitial impurity: The substitutional
impurity is in this case most probably oxygen,
and the interstitial, hydrogen. Recently the ex-
istence of three such impurity complexes has been
demonstrated in germanium, the donor® D(Li, O)
and the acceptors” A (H, Si) and A(H, C).

In these complexes the interstitials are either
lithium or hydrogen. They normally are fast-
diffusing donors in germanium, but in these com-
plexes they tunnel around a heavier element
(oxygen, silicon, or carbon). We call these latter
dynamic tunneling systems.

We present in this paper experimental results
on D(H,O)and a theoretical model which explains
the striking photoelectric spectra obtained with
it. Though similar innaturetothe (Li, O) complex,
D(H,0) has dramatically different properties due
to the much smaller size of the hydrogen atom.
The possibility of donors associated with OH com-
plexes has been suggested before by Schoenmakers
et al.®

II. EXPERIMENTS
A. General background
Hall' discovered a shallow acceptor -donor pair

in rapidly quenched samples of ultrapure germa-
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nium. He showed that the two defects were not of
simple elemental character and studied their ther-
mal annealing kinetics. Over the past several
years various investigators discovered special
properties of this novel acceptor -donor pair. Only
recently it has become possible to create a com-
prehensive model of the acceptor. The acceptor
A(H, Si) is a substitutional silicon impurity in the
germanium lattice which binds a hydrogen atom.
Hydrogen tunnels between four equivalent real-
space positions.” The other member of the pair
D(H,0), is the subject of this study.

The following experimental facts have been ac-
cumulated over the past several years. The donor
contains hydrogen, and most probably only one
hydrogen atom, as has been shown by an isotope
shift in the donor ground state.? The shift is pro-
duced when hydrogen is substituted by deuterium.
The donor can be created in ultrapure germanium
crystals grown in a hydrogen atmosphere from
a melt contained in quartz. It cannot be generated
in crystals which either do not contain oxygen
(crystals grown from a melt contained in graphite)
or which contain silicon at a concentration much
higher than oxygen’ (crystals grown from a melt
contained in quartz and doped with silicon). The
last two findings make it clear that free oxygen
is required for the formation of D(H,O).

B. Piezospectroscopy studies

Already the very early photothermal ionization
spectra of ultrapure germanium samples showed
a special feature of D(H,O). The lines due to
transitions of an electron from the ground state
to one of the bound excited states were much
sharper for D(H,O) than for elemental donors such
as phosphorus or arsenic.>® It was not clear to
the various experimenters that they all had ob-
served Hall’s rapid-quench donor. (This explains
the multiplicity of inconsistent notations found in
the literature.) The extraordinary sharpness of
the D(H,O)lines can readily be understood from
our piezospectroscopy studies.

832



22 . DONOR COMPLEX WITH TUNNELING HYDROGEN IN PURE... 833

Samples measuring 1 X1 x 6 mm?® were cut, lap-
ped, and etched'® with their long axis parallel to
the [111], [110], or [100] direction. All the ultra-
pure germanium crystals used were n-type. They
were grown in a hydrogen atmosphere from a melt
contained in a quartz crucible. Two small tin
contacts were formed on one long side under argon
with the brief injection of dry HC1 gas to insure
good wetting of the germanium by the tin. After
the samples were held for a few minutes at ~620
K, they were dropped in pure water at room tem-
perature. Such a quenching procedure was ade-
quate for the production of a sufficient concentra-
tion of D(H,0) {[D(H,0)]= (N,-N,)}.

Uniaxial stress was applied parallel to the long
axis of a sample using a spring and lever stress
rig inside a helium dewar.!®! A Fourier-transform
spectrometer with a resolution <8 peV served as
the ir source.?

Three photothermal ionization spectra of a sam-
ple containing D(H, O) and shallow phosphorus
donors are shown in Fig. 1. The “hydrogenic”!?
set of lines of the phosphorus spectrum move
with increasing stress (compression) along the
[111] direction towards lower energies, as ex-
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FIG. 1. Photothermal ionization spectra of an ultra-
pure germanium sample at three different values of
compressional stress along [111]. The sample contains
phosphorus donors [P] in addition to D(H, O).

pected.™ The hydrogenic set of lines of the
D(H,0) spectra react totally differently to stress.
The lines do not change their positions but at a
certain value of stress (~2 X 10°% dyncm™) their
intensity starts to decrease rapidly while a new
series appears at lower energies. The lines of
this new series do not change their positions up

to the experimentally limited maximum stress
(~1.5x10° dyncm™). This lack of dependence of
the line position on stress readily explains their
sharpness. Random stress in the crystal produced
by dislocations or by the particular mounting of

a sample does not affect the linewidth of the D(H, O)
spectra. The effect of uniaxial stress can be re-
versed by increasing the sample temperature.
Around Tz9 K the zero-stress D(H, O) spectrum
reappears. All the observed effects are fully
reversible in temperature and in uniaxial stress,
independent of the orientation. (The choice of the
[111] direction for Fig. 1 is arbitrary.)

This unconventional behavior of a shallow donor
spectrum is related to the stress dependence of
the lithium-oxygen complex.? The tunneling of
the lithium atom between equivalent real-space
positions modifies the ground-state manifold and
leads to a stress-independent set of lines in the
photothermal ionization spectrum. In the present
system we also assume that tunneling is involved:
An interstitial hydrogen is trapped by an oxygen
atom.

III. THEORY
A. General considerations

In Fig. 1, many important features of D(H, O)
are revealed. First we see that at zero stress
the donor electron has an ionization energy E;
very similar to that of substitutional phosphorus:
E,[D(H,0)]=12.34 meV as compared to E,[P]
=12.76 meV. Therefore D(H,O) as phosphorus is a
shallowdonor with anionization energy substantially
larger than the pure hydrogenic'® value of 9.89
meV. In P this deviation is caused mainly by the
valley -orbit interaction, and results in large shifts
under uniaxial compression.’* In D(H,0Q), on the
other hand, no shift is observed, which points to
a different cause of the ionization energy deviation.

Second, the behavior of the lines under small
stress show that D(H,O) must have at least tetra-
hedral symmetry, T,. An impurity state with a
symmetry lower than tetrahedral cannot explain
the observed spectrum because the lower sym-
metry would produce in the crystal a set of equiv-
alent but not identical sites which would yield dif-
ferent behaviors under uniaxial stress and, there-
fore, split the spectral lines. For instance, an
impurity localized in a Ge—-Ge bond gives four
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equivalent positions and thus, four different sig-
nals for an arbitrary uniaxial stress.

Third, at a stress of about 2.1 X10® dyncm™2 a
dramatic transition occurs. Over a small stress
interval two series coexist, one D, at the same
energies as the zero stress spectrum, and one
D, at significantly lower energies. At higher
stress the upper series D, disappears and the
lower one D, remains unshifted and as sharp as
at the transition stress. Right at the transition
the lines in both series are slightly split. The
D, series, which prevails at higher stress, cor-
responds to a donor state with an ionization ener-
gy of 9.69 meV. If we compare this value with the
theoretical value of 9.89 meV, we see that the
new series has a negative deviation from the hy-
drogenic value. We should also note that at larger
stress the D, series can be repopulated if the
temperature is raised sufficiently.

From the above data, it is clear that uniaxial
stress alters considerably the structure of the
impurity complex. It appears to have two states,
two configurations we could say, with different
energies and to each corresponds one ionization
energy for the donor electron. Uniaxial stress
changes the energies of the two configurations
producing an inversion of the two at 2.1 x10°
dyncm™. The sudden character of the transition
and the coexistence of the two series require that
the two configurations do not have the same sym-
metry. Previous considerations’” have led us to
propose that D(H, O) consists of two elements:
oxygen and hydrogen. Our preference would be
for a system where the diatomic molecule OH lies
in a vacancy site and flips (tunnels) between vari-
ous orientations (see Fig. 2). The specific way
in which the bonds between oxygen, hydrogen, and
germanium are formed is not clear, but for our
study that information is not required. With this
physical picture, a more specific explanation can
be given for the dramatic transition observed. Let

FIG. 2. Schematic representation of the OH complex
for a vacancy site (tetrahedral symmetry).

us first note that to have an overall symmetry T,
the minimum number of equivalent configurations
that the impurity complex can have is four: the
four states with symmetry axes along the (111)
directions. For simplicity we suppose that this
is the case. The fourfold degeneracy, which is
then present, is not allowed by the symmetry of
the lattice and these states must split into states
which belong to the irreducible representations of
the symmetry group. As is well known, four tet-
rahedrally equivalent states can be combined to
form a singlet T', (s type) and a triplet ', (p type),
or in other words, the tunneling of the impurity
complex between its four equivalent configurations
splits its ground -state manifold into a singlet I,
and a triplet I';. Furthermore, the fact that these
donors are shallow makes it unlikely that the en-
velope of the electronic wave function, which ex-
tends over many lattice unit cells, would differ
appreciably from the simple hydrogenic model.
We therefore expect an electronic contribution of
symmetry I';. Hence, the overall symmetry of
the states from which the electronic series arise
remain I') and I';. We expect also the central-cell
shift in the ionization energy of the I'; state (s-
like) to be much larger than that of the I', states
(p-like). The D, series appear to arise from the
T'; configuration and the D, series from the I';
configuration.

Under a uniaxial stress along a (111) direction,
the symmetry group reduces to C,, and

T =A,
L,~A®A,.

As stress is applied, the energies of the different
configurations change and a crossover occurs if

A, goes below the A, state arising from I';,. We
note that the experimental results for D(H,O) are
qualitatively different from those for D(Li, O), which
seems to be a similar system. The tunneling ma-
trixelement for D(Li, O)is small®:® and consequently
the splitting between the I', and I'; configurations
is also small. The electronic states associated
with the two types of configurations are inter-
mingled. This gives rise to the complex spectrum
which was observed for that system instead of the
hydrogenic series of Fig. 1. For D(H,0), we ex-
pect the tunneling matrix element to be substan-
tially larger so that the electronic states associ-
ated with each configuration remain distinct.

B. The Hamiltonian without uniaxial stress

We now develop a formalism to study the ground-
state manifold of the dynamic donor system. The
theory is written for an OH system in a vacancy,
but its qualitative features can be applied to other



situations as well. The Hamiltonian is the sum
of three terms,

Je=3C, +3, +3C,_,,. (8.1)

Here JC, describes the kinetics of an unbound con-
duction electron in the germanium lattice, JC, the
dynamics of the internal degree of freedom of the
impurity complex (e.g., the dynamics of the OH*
system), and JC,_, the interaction between the two.
If we denote by ¥ the coordinate of the electron
with respect to the center of mass and by R the
internal degree of freedom coordinate,

3'Ce-n == (62/67) + V(F, ﬁ) . (3.2)

In (3.2) the first term describes the electrostatic
potential felt by the electron at large distances
(i.e., the hydrogenic term), and V(F,R) is the
central cell potential which depends sensitively
on the R degree of freedom.

The terms

3¢, =3¢, — (€%/e7) (3.3)

correspond to an ordinary isochoric hydrogenic
donor. As is well known, the conduction band of
germanium has four equivalent minima located
at the L points, i.e., along the (111) directions at
the Brillouin zone. If one supposes that there is
no valley-orbit interaction, the ground-state mani-
fold of 3¢, yields four L, states, each with a sym-
metry axis along one of the (111) directions (L,
is the invariant representation of the group of the
L point*® %), The four eigenfunctions can be la-
beled X,, X3, Xc, and X; with symmetry axes along
[111], [111], [{1T], and [I11], respectively. With
the introduction of valley-orbit interaction, 3G,
can be written

E -4, =4, —A

e vo

-A, E, -8, -4,

vo e vo

3, = A A £ _a |’ (3.4)

Vo Vo e Vo

-A —A  =A E

vo vo vo e

where E, is the energy of the L, state without
valley-orbit interaction, and (-4,,) is the val-
ley-orbit interaction. The eigenvalues of 3C; are
a singlet T', with energy (E, - 34,,) and a triplet
T'; with energy (£, + 4,,).

The eigenstates of 5, require some discussion.
If the “mass” attached to the R degrees of freedom
were infinite, i.e., all kinetic or tunneling effects
were to be disregarded, there would be a number
of equilibrium positions ﬁ, of R corresponding
]
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to the minima of the potential energy. The number
of minima must be compatible with the symmetry
gf the acceptor and crystal; for T, symmetry and
R;#0 the smallest number is four and so, we
assume, is our case. For nonvanishing but finite
“mass, ” i.e., when dynamic effects must be taken
into account, these four positions give rise to four
independent ground-state wave functions which we
label

®,=[111] 236 +X+Y +2),

d,=[111] =236+X-Y-2),
3.=[11T] =23(S-X+Y-2), (3.5)
®,=[T11] =23(S-X-Y +2).

In (3.5) we have oriented the four positions R,
along the (111) axes and the functions S and

{X, Y, Z} are functions of R which transform ac-
cording to the I'; and I'; representations of 7,.
In this representation, and neglecting all other
states, JC, can be written as a 4 X4 matrix given
by

E, -t -t -t
-t E -t -t
3¢, = n , (3.6)
-t -t E, -t
-t -t -t E,

whose eigenvalues are (E, - 3t), aT'; singlet, and
(E,+t), a T triplet. The matrix element ¢ can
be thought of as a tunneling contribution.

The total wave function of the complex donor can
now be written as a linear combination of functions
which are direct-product functions:

{& to{x.}; 1=A,B,C,D; m=a,b,c,d. (3.7)

There are sixteen such functions in our manifold
D, Xar ®4Xps - -+ 5 PpXg, Which for simplicity are
denoted Aa, Ab,..., Dd. We study our problem in
this restricted basis set and diagonalize the 16x 16
matrix obtained from (3.1).

With V(¥, R)=0, the matrix elements have the
form

Imi| e, +3€, - e?/€r) |[I'm*)
= (Ee+En)5”'6mm'_Avo611'(1 - 5mm')
—t5, (1= 5p). (3.8)

The numbeg. of distinet matrix elements contribu-
ted by V(¥, R) can be determined by symmetry
considerations. We can write

MV E R |17 = =0, {01n[ 410, + Bg(1 = 87,)] + A1 = 8,.)}
= (1= 8, HO [ A58+ 01 )+ 85(1 = 8, = B,)] + (L= 8,1) A} 3.9)
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In (3.9), the six parameters which appear can be
separated into two classes: intravalley (i.e., in-
teractions of the state of a given valley with the
impurity complex) and intervalley (i.e., interac-
tions between states of different valleys with the
impurity complex). The intravalley parameters
are A,, A, and Al; the intervalley ones are A,,
A,, and Af.

The unprimed terms 4,, A, A, and A; are
central-cell potential contributions corresponding
respectively to the four cases: (1) an intravalley
term where the valleys and the molecular complex
have the same orientation (4,), (2) an intravalley
term where the valleys and the molecular complex
do not have the same orientation (4,), (3) an in-
tervalley term where one of the valleys is along
the axis of the molecular complex but the other is
not (4,), and (4) an intervalley term where none
of the two valleys is along the axis of the molecu-
lar complex (4,). The two last terms A, and A,
can be redefined by absorbing into them A :

The primed terms A] and A} are combined elec-
tronic internal-structure potential terms, the first
being an intravalley and the second an intervalley
contribution. .

The rather complicated (16x 16) matrix can be
diagonalized by standard group-theoretical tech-
niques. It corresponds to the reduction of

(r,er)® [, er,)=2r, eI, eI, ®3T,,

(3.11)

which yields eigenvalues
E,(T)=E,+E, - A=A, =0 -5A5 1/
£[(A, = 04+245+17)2 4+ 3(t + A, +244)7]/ 2
(3.125

E(T)=E(T,)=E,+E,- Mg+ A4t/ = &) (3.13)

A2-.A2+Avo,
(3.10) .
A=A+ A, . and a 3 X3 matrix for the I'; levels
1
E +E, - A +Ap  =0,—17+24y V2 (-A,—t1) ,
—8,—t'+28y E,+E, - Aj+ A V2 (-Ag+t7) , (3.14)

V2 (-A,—t1) V2 (=A, +1)

where 6=3(4;, — A;) and ¢’ =¢ + AJ.
C. Hamiltonian with uniaxial stress

The effect of uniaxial stress on the states of the
donor system can be studied by adding the term
(3.15) to the Hamiltonian (3.1):

K=K,+K,, (3.15)

where K, is an electronic part and K, a term char-
acterizing the changes in the impurity complex.
We suppose that the uniaxial stress is applied
along the [111] direction, which corresponds to
the situation of Fig. 1. With a stress along [111]

it is well-known that!* the energy of the valley
along that direction decreases in energy by (-3€)
while the other three valleys increase by (+€).
Hence, we have simply,

{Im|K,|I'm"y =6,15,,,.] -3€5,,+€(1-0,,)], (3.16)

where ¥, is the state corresponding to the valley
along the direction of the stress and € is a positive
quantity proportional to the stress. Figure 3(a)
gives the variation of the eigenvalues of (5, +K,)

E,+E - A)— Ay =1 +34)

with €. The second term K, is determined by the
symmetry of the basis states of 3¢, [see Eq. (3.5)].
Since the states &, consist of a linear combina-
tion of I'; and I'; states we can write

(Im |K, |I'm?y =06,,,,Sp, 3.17)
where the matrix S is given by

€

o=
o~

_§<£ € -
+3€) €

+32€

o~

I3
S

- Nl

€L +2¢€

€ -3¢ €rs€ €4z -3

and where € characterizes the shift of the T,
(s-like) state and €} that of the T'; (p-like) states.
€ is positive if the energy of the T, state in-
creases with stress; similarly €} is positive if
the state in I'; with the symmetry axis along the
stress rises in energy. A comparison between
(3.17) and (3.8) shows that € simply renormalizes
¢t and so does not change the qualitative structure
of the Hamiltonian.
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FIG. 3. Stress dependence of the various eigenvalues.
(a) The energy of the four valleys in the conduction band
of Ge, given by (3¢, +K,). (b) The states of the internal
degrees of freedom (3C,+ K,), which are also the states
of the ionized donor D (H, O). (¢) The energy of the fully in-
teracting systems JC in the ground state manifold. The
stress is applied along [111]. Values of the parameters
are given in the text and all energies are in units of ¢.
The ionization energy of the complex donor is obtained
by subtracting the ground-state energy A, or Az at a
given stress (c) from the sum of the [111] valley energy
(a) and the ionic energy (b) of the same A symmetry.
The energy difference between the two series D; and D,
is given by AE;.

The first point to clarify is under what condi-
tions a sharp transition occurs. For this purpose
we note again that since for both small and large
stresses simple hydrogenic series have been ob-
served, the OH complex has a tunneling matrix
element (~¢) which is sufficiently large so as to
prevent any significant mixing by the V(¥, R) inter-
action of the I'; and I'; states of 3¢,. We can there-
fore consider only the variation with stress of the
eigenstates of (¢, +K,):

1 1
E, ~T=3€), —T—3€) —T= 3¢}
1y 1. 1
-T = 216, E,,l -T+3z€, —T+ i,e,’,
~T=—3€) =T+3€] E - T+3€, |»
1
- T—%€), =T+3€) —T+3€, E

JC,,""K,,:

n

n

(3.18)

where 7=f-¢/.

The symmetry of this Hamiltonian is C,, and
its eigenstates can be trivially obtained. The di-
agonalization of (3.18) corresponds to the reduction
of

[, 6T, ~2A,®A,. (3.19)
~ We find that

E (M), =E, +€,=T+|2T+¢€}], (3.20)

E,(A)=E,—€)+T. (3.21)

Four cases have to be considered: (t>0,¢;>0),
(t>0,¢5<0), (t<0,¢,>0), and (£<0,¢;<0). For
this analysis we neglect the effect of €. A quick
examination shows that only one case leads to a
sharp crossover (f >0,¢]>0). This corresponds
to a situation where at zero stress the impurity
complex ground state is I';, and at some critical
stress the A, state (originating from I';) crosses
below I';. That ¢; >0 means that the uniaxial
stress tries to orient the OH complex in the plane
perpendicular to the direction of the applied
stress. A positive value of €, moves the transi-
tion to lower stresses. The variation of the
eigenvalues of (3¢,+K,) as a function of € is given
in Fig. 3(b) for €;=3.5¢, €.=0. '
The above results are confirmed when a full
solution of the (16 X 16) complete Hamiltonian
is obtained. The diagonalization follows the same
procedure as in the absence of uniaxial stress.
With stress the symmetry group is reduced to C,,
and the representations present in the Hamiltonian
follow from (3.11):

2T, @ T, ®T,®30,=5A, & A, ®5A,. (3.22)

Analytical solutions cannot be obtained for the

A, and A, representations. But a computer anal-
ysis shows that to have the proper behavior I'
should be the zero-stress ground state and A,

is then the ground state at large stress. A cross-
over is obtained because I'; reduces to A, in C,,
which is always orthogonal to A, and therefore
does not interact with it. To compare our theory
with the experimental results, we need the energy
of the I'; state in the absence of stress which is
given by (3.11) and the large stress limit of A (T,)
state and of the new ground state A,. These lat-
ter energies can be obtained analytically by no-
ting that in the large stress limit only the valley
along the stress is occupied. We find that

E(NA,)=E +E,= 3¢~ 8= 3t' = 30, (3.23)
E(Ag) =E,+E =3¢ = Dp+t' — €. (3.24)
From (3.12), (3.23), and (3.24) it follows that

(a) the ionization energy of the I'; level at
large stress is
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EA1=—-E3+AO+§5+3A1’; (3.25)
(b) the ionization energy of the A, level is
E,,==E +A,- Al (3.26)

(c) the bending with stress of the I', level is
Ey =B =85+ 364540 =2t/
+[(a;= 8+200+t')?
+3(a,+17+24)2]2, (3.27)
Also, '

E, -Ep ~3(8,+49)+94g, (3.28)

A
when ¢’ =¢+ A]> Ay, A and Ag.

We can also add that from the crossover region
to any larger value of stress, the shift in the A,
level is essentially zero.

The experimental evidence shown in Fig. 1
shows that the bending of both the A; and the A,
states is very small. That A; does not shift with
stress follows directly from our model. That A,
does not shift appreciably indicates on the other
hand that the valley-orbit interactions are small.
To have E,, —Erlﬂ 0, the intervalley constants
A,, A, and A should be small [see Eqs. (3.27),
(3.28), and (3.9)]. From Egs. (3.25) and (3.26),
and the fact that the separation between the two
series D, and D, is AE,;=2.65 meV, it follows
that

A!=0.66 meV -30. (3.29)

Equation (3.29) sets an upper bound to Aj; &
=3(A, - A, is a positive number of the order of
1 meV at most. Hence, 4] is approximately

0.5 to 0.6 meV. I we also suppose that (-E,) is
equal to 9.89 meV (the value given by Faulkner'®)
we find that

B, +50+3A]~2.45 meV, ~ (3.30)

Ay—A7=~0.2 meV. (3.31)

Though we have two equations for three unknowns,
some conclusions can be drawn. First, 4 is
smaller than 4] by 0.2 meV (i.e., we expect 4,
=~0.3 to 0.4 meV.) On the other hand, 4, is very
sensitive to the value given to A, or A]. Typically,
if we suppose 4,~0.4meV, then 4] ~0.6 meVand 4,
=>1.4 meV, which gives an idea of the order of
magnitude of the constants. We note that the sep-
aration between the two series D, and D, is es-
sentially due to A;, the element that describes

the combined intravalley electronic internal struc-
ture. The separation between the two series has
the same origin as the splitting in the ground
state” of the acceptors A(H, Si) and A(H, C). There
is no way to estimate with our present data the
tunneling matrix element ¢, which is not an elec-

tronic term. We expect it, however, to be of the
same order of magnitude as A].

An example of the complete eigenvalues of 3 as
a function of € is shown in Fig. 3(c) for €/=0,
€,=3.5¢ and A,=A;=A(=0, A;,=0.40¢, A,=1.40¢,
and A;=0.6f.

The ionization energy of the ground state can
be obtained by subtracting the value of the ground-
state energy at a given stress [Fig. 3(c)] from
the sum of the lowest electronic energy (Fig. 3(a),
the [111] valley) and the internal degree-of-free-
dom energy of the same symmetry, i.e., A, if
the ground state is A,, and A, if the ground state
is A, [Fig. 3(b)]. This can be easily understood
if we remember that, upon ionization, the elec-
tron performs a transition to the conduction-band
state (valley) which makes its wave function in
the impurity, and the internal degree of freedom,
as given by 3¢, , is frozen in the transition. The
difference between the A; and A, levels of (¢, +K,)
in Fig. 3(b) at the stress corresponding to the
ground-state crossover of the total energy [Fig.
3(c)] gives the difference in energy AE; between
the ionization energies and between two corres-
ponding lines of the D, and D, series.

It is, at this point, appropriate to comment on
the splitting observed in the series right at the
transition stress. Our model has assumed that the
stress was perfectly aligned along the [111] di-
rection and that the C;, symmetry is exactly ful-
filled. If that is not the case, there is no longer
uniaxial symmetry, a coupling (albeit small) be-
tween the A, and A, states is introduced, and the
crossover is no longer sharp. At the crossover
point a small splitting appears, with each state
being a linear combination of the A, and A, sym-
metries. Transitions to the higher states of
either series are possible from each of the split-
off states and therefore the lines should all be
doubled.

We conclude this section with a brief discussion
of the effects of temperature on the two series.
We have observed that above the transition stress,
the D, series can be repopulated by raising the
temperature, whereas at zero stress the D, series
cannot be populated easily. Within our model,
which assumes a linear variation with stress, the
effect of temperature should be symmetrical
with respect to the transition stress. Since we
estimate the tunneling matrix element to be
of the order of 1 meV, or the separation between
the I';, T’y configurations to be of the order of
several meV, we do not expect that at zero stress
D, can be populated by temperatures of 10 K or
so. Nor do we expect D, to be populated at the
same temperature at a stress of 4 X10°dyn/cm?.
That the latter occurs should not be considered
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as a serious drawback of the theory. It simply
indicates that nonlinearities are present even

for the relatively small stresses that are involved
here.

IV. CONCLUSIONS

We have shown that the complex donor D(H, O)
produces photoconductivity spectra which, at a
well-defined stress, exhibit an abrupt change in
the electronic ionization ene‘rgy of the ground-
state configuration. This behavior can only be
explained if the complex has an internal degree
of freedom. The uniaxial stress affects differ-
ently the different states of the complex and pro-
duces the crossover of two orthogonal noninteract-
ing states. In spite of the fact that more than se-
ven parameters are involved in the theory, the
qualitative features are reproduced with a mini-
mum number of conditions on their sign and order
of magnitude. The required choices show great
similarities™ between the donors D(H,O) and
D(Li, O) and the acceptors A(H, Si) and A (H, C).
First, the tunneling matrix element it| and the
combined electronic internal-structure term
appear to be of the same order of magnitude for
D(H,0), A(H, Si), and A(H, C), but significantly
smaller for D(Li, O). These terms depend essen-
tially on the interstitial atom. The first three
complexes involve hydrogen and therefore the con-
stants related to the tunneling of the system be-
tween its equivalent configurations should have the
same order of magnitude. On the other hand,
lithium is a heavier and larger element which
tunnels with more difficulty between its equivalent
positions and hence the tunneling matrix elements
should be much smaller. Second, for both D(H,O)
and D(Li, O) the valley-orbit interactions and, in
fact, all intervalley terms are negligibly small
whereas the intravalley central-cell potential
terms appear to be similar for both donors. This
is an interesting result which must be related to
the presence of O in both donors, more specifi-
cally to the polarizations induced by the bonds

between oxygen, the interstitial and the germanium
atoms. Third, the two acceptors A(H, Si) and
A(H, C) have qualitatively the same properties.
Finally, the fact that the crossover is between

A, (s-like) and A, (p-like) states explains quali-
tatively why the gross features of the spectra are,
as experimentally found, roughly independent of
the direction of the applied stress; to the first
approximation the destruction of cubic symmetry
can be thought of as a reduction from a spherical
to an axial environment for the internal degree

of freedom. ‘

It is worthwhile to remark that a similar cross-
over does not occur for the two acceptors A (H, Si)
and A (H, C), because in those complexes the p-like
configuration is already the ground state at zero
stress.

We have now identified at least four systems
[A(H,C), A(H,si), D(H,O0), and D(Li, O)] in which
the dynamics of internal degrees of freedom (dy-
namic tunneling) play an important role in the
electronic properties. The phenomenon seems
to be of general validity for complex impurity sys-
tems which involve the very light elements.
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