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A low-energy electron diffraction (LEED) structure analysis of a Te-stabilized unreconstructed Si{ 111}1 X 1
surface is described. The intensity calculations were carried out with a computer program that treats
multiple scattering in a unit made up of closely spaced surface or bulk layers in a spherical-wave expansion
mode and then combines these units using a beam basis. Some details of an improved method of structure-
constant evaluation employed in this program are described. The observed LEED intensities were compared
with intensities calculated for several values of both the interlayer spacing and the inner potential.
Quantitative comparison was made by the systematic use of the reliability factor of Zanazzi and Jona to
yield both expectation values and confidence intervals. We find the separation of the first and second atomic
layers to be d;, =0.62+0.03 A (bulk value 0.78 A) and the inner potential, assumed to be energy
independent, to be ¥ = 11.74-0.9 eV. The separation of the second and third layers is unchanged from the

bulk value within about 1.5%.

I. INTRODUCTION

In a previous publication® we reported the pre-
liminary results of a LEED (low-energy electron
diffraction) structure analysis of an impurity-
stabilized unreconstructed Si {111} surface. The
stabilizing impurity was tellurium, and the result-
ing structure was believed to be similar to both the
chlorine-stabilized 1 X 1 structure and the high-
temperature 1x 1 phase of the clean Si {111} sur-
face reported earlier by Florio and Robertson.?
An accurate solution of this structural problem is
interesting on two accounts. Firstly, it provides
direct information about the relaxation of a silicon
surface, and thus makes reliable calculation of
surface states possible,® while perhaps providing
some guidance to the solution of the more com-
plicated problem of surface reconstruction. Sec-
ondly, it increases confidence in the reliability of
the layer-KKR (Korringa-Kohn-Rostoker) pro-
cedure and in the validity of the use of a muffin-
tin potential model for the description of the scat-
tering of an electron by covalent diamond lattice in
LEED.

The preliminary results referred to above indi-
cated that the unreconstructed Si {111} has a bulk-
like structure, but some relaxation occurs. The
first interlayer spacing (0.66 A) was found to be
about 15% contracted with respect to the inter-
layer spacing between equivalent {111} planes in
the bulk (0.78 A). Those results were obtained with
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a LEED intensity analysis employing a computer
program, named HEX, which treats a Bravais sur-
face layer in registry with, but at a variable dis-
tance from, the substrate, while the substrate is
built up of double layers using beam methods. The
comparison between calculated and observed in-
tensities and the selection of the best fit were
made visually, the usual procedure in LEED crys-
tallography, and no systematic evaluation of the
confidence limits was carried out.

The purpose of the present paper is to report the
final results of a refinement of the same structure
and to describe how such refinement was carried
out. The LEED intensity calculations used a new
computer program, named CHANGE, which is dis-
cussed in Sec. II. A brief description of the ex-
perimental procedures is given in Sec. III. The
analysis of the data makes use of the reliability
factor (the » factor) proposed by Zanazzi and
Jona* for this purpose, and carries out a statistical
evaluation of the confidence intervals for the final
parameter values obtained. This analysis is de-
scribed in Sec. IV. A brief discussion of the re-
sults is presented in Sec. V.

II. DISCUSSION OF THE COMPUTER PROGRAM

A. General procedures for combining layers

Most existing methods for calculating LEED
intensities from multiple-scattering (or dynamical)
diffraction theory make use of an expansion of the
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electron wave function between layers in terms of
plane waves and exponentially increasing and de-
creasing waves at the given energy (usually called
beams, in analogy with x-ray diffraction theory).
These form a complete set of wave functions on
any plane between the layers of the crystal parallel
to the surface.’® Some older work described the |
multiple scattering in terms of spherical waves
which move from each of the atoms to each of the
other atoms of the sample as well as to the de-
tector.®'® More recently, a variation of this pro-
cedure using spherical waves has been developed
by Zimmer and Holland'* in which the scatters

are separated into layers and the multiple scatter-
ing between layers is summed by an iterative pro-
cedure. The beam methods must also use spheri-
cal waves in a similar way to treat the multiple
scattering inside each plane of atoms. In an obvi-
ous combination of these ideas one can treat a
more complicated unit consisting of two or more
closely spaced planes of atoms as a generalized
layer and then combine these layer units using

beam methods. This procedure was first suggested

by Kambe,® who considered transfer-matrix
methods for treating the beams between layers, and
has been considered more recently by Tong and
Van Hove'® under the name of combined-space
method using the matrix-doubling or renormalized-
forward-scattering methods for performing the
interlayer multiple scattering in the beam repre-
sentation. We have obtained some previously pub-
lished results using a procedure of this type,'”
which calculates the multiple scattering of a multi-
layer surface using spherical waves and then com-
bines the scattering of this slab with the scattering
of the bulk underneath by a transfer-matrix meth-
od in the beam representation. As has been ex-
plained by Kambe!® and by Tong and Van Hove,!®
such a procedure combines the advantages of the
spherical-wave representation and of the beam
representation, while at the same time reducing
some of the disadvantages of each of these pro-
cedures. The advantages of the spherical-wave
basis are that it may be used when atoms lie in
planes parallel to the surface which are very close
together without affecting the convergence of the
method. The disadvantage is that the calculation
of structure factors and the inversion of the ma-
trices, necessary to obtain the multiple scattering
between layers, are both slow processes compared
to the corresponding processes in beam methods.
Using any of the beam methods one may calculate
the dynamical theory for a slab crystal of 8 to 16
layers, or even for a semi-infinite crystal, in a
much shorter time than one can do even a 5- to
T-layer crystal by the spherical-wave treatment.
From five to eight phase shifts must be retained

in describing the scattering of an atom in the
LEED energy range. This leads to matrices of
order 25 to 64 per layer which must be inverted
in a spherical-wave method. The corresponding
matrices in beam methods are usually somewhat
smaller than this, but very large matrices must be
employed when neighboring layers are close in
comparison with the dimensions of the mesh in a
layer.'® At the higher energies of reflection-high-
energy-electron diffraction (RHEED), where even
more phase shifts are necessary to describe the
scattering of an atom, the chain method of Pendry
and Gard!® for solving the multiple scattering be-
tween atoms in a layer is more efficient than the
straightforward spherical-wave procedure. At
present this procedure offers no advantage over
other methods in the LEED range. (But see se-
cond paper of Ref. 19—note added in proof.)

In this work and in some other recent calcula-
tions, we have modified our previous program
HEX so that it is also possible to treat closely
spaced bulk layers in a spherical basis and then
combine them using a beam basis. This new pro-
gramCHANGE, is obviously useful for a structure
such as that of the {111} face of silicon where the
bulk planes are arranged as closely spaced pairs
separated by a much larger distance. The pro-
gram CHANGE treats up to six atoms in the surface
mesh, arranged in one or more layers, in terms of
spherical waves, and performs a similar calcula-
tion for the bulk with up to four atoms in each bulk
unit cell. The program is restricted to bulk crys-
tals which can be built up from groups of closely
spaced adjacent layers where there is enough
space between groups for the usual beam methods
to be used. The scattering matrix of the bulk is
obtained by performing the multiple scattering
between groups of bulk layers by a transfer-matrix
method. This scattering matrix of the bulk is then
combined with that of the surface by the usual
equations of the matrix-doubling method. The ad-
vantages of this program are its ability to handle
closely spaced layers and its versatility, because
in a single run many different surface structures
can be tested, with different arrangements of
atoms in planes and different orderings of planes
in different structures. Its disadvantages is its
low speed when complex layers are handled using
spherical waves.

In general the ideas used in CHANGE, except for
certain improvements in the use of the transfer
matrix, have already been published by Kambe and
by Tong and Van Hove.® %1216 However, in com-
bining nearby layers using spherical waves, we
use a new Ewald method for obtaining the structure
factors for the scattering between layers which is
a simplification of Kambe’s treatment. This pro-
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cedure will be described below. The improved
method in using the transfer matrix used here will
be presented in a future publication by one of the
authors (DWJ).

B. Ewald method for scattering between layers

Kambe, in a series of three papers,® %12 has
given a treatment of the multiple scattering in a
two-dimensional lattice of atoms, which adapts
the KKR method for performing band-structure
calculations® to the two-dimensional case. For
evaluating the structure factors required in the
KKR method, he developed an Ewald procedure
which has quite different formulas from the usual
three-dimensional Ewald procedure because of the
intrinsic differences between two and three dimen-
sions. The method is particularly valuable, since
Shen and Krieger?' have shown that Kambe’s equa-
tions can be obtained from a variational procedure,
so that the transmission and reflection coefficients
obtained for a layer in this way are accurate to
second order in the calculated coefficients of the
wave function. The work of Kambe and of Shen and
Krieger described above was carried through
assuming that both the potential inside the atoms
and the constant potential between the atoms are
real, but the equations developed by Kambe are
trivially generalizable to the situation in LEED
where both of these potentials may have a negative
imaginary part describing the incoherent scatter-
ing of electrons from the diffraction beams of the
experiment. Kambe'? has extended his treatment
to handle a generalized layer of atoms in which a
unit mesh of the layer may contain more than one
atom, including the case in which different atoms
in the unit mesh lie in different planes parallel to
the surface. He also developed a generalized
Ewald procedure for the structure factors re-
quired. A different, simpler, non-Ewald method
was also proposed by Kambe for finding structure
factors when the atoms are not in the same plane.
This second method is actually a variation of the
usual calculation of multiple scattering between
layers by means of beams, which becomes ineffi-
cient and ultimately fails as the layers come close
to each other. In most LEED calculations using a

spherical basis the structure factors have been ob-

tained by a direct summation in configuration
space using the exponential decrease of the waves
due to inelastic scattering to assure convergence,
a procedure pioneered by Duke and Tucker.!®
However, in our tests the Ewald method was faster,
particularly when a precision of more than two or
three figures is desired or the amount of inelastic
scattering is small. Pendry has reached a similar
conclusion, although pointing out the greater pro-
gramming effort required.??

Because of the greater speed of the Ewald method
in the plane, we have improved the Ewald method
given by Kambe for the structure factors for scat-
tering between planes to give a similar fast pro-
cedure. We have used this new procedure for
many -layer units both in the surface and the bulk
of the crystal. The modification of Kambe’s work
necessary to achieve our improvement is small,
but is not obvious from the previous work. We be-
lieve that it is a useful addition to the techniques
of multiple-~scattering theory in surfaces, particu-
larly since Ewald techniques must be used when the
amount of absorption is not large.

The calculation of the structure constants given
by Kambe proceeds by a modification of the method
of Ham and Segall® for the two-dimensional case.
The structure constants Df? are given by the
relation®
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Here L=(l,m) is an index labeling the allowed
combinations of the indices ! and m of the usual
spherical harmonic Y as defined by Condon and
Shortly,” R; and R; are vectors giving the posi-
tions of the 7th and jth atoms of the basis in the
unit mesh (two-dimensional cell), and {R,} is the
set of lattice vectors of the surface mesh (two-
dimensional lattice). The quantity &, is the re-
duced wave vector of the electronic wave function
in the plane of the surface. It is'determined by the
parallel component of K for the incoming wave,
which in turn is fixed by the energy and direction
of motion of the incident electron. The kinetic
energy E in this formula is measured from the
constant level of potential between the atoms, the
so-called muffin-tin zero of potential, and includes
a positive imaginary part arising from the nega-
tive imaginary term in the potential which de~
scribes the inelastic scattering of the electron in
the crystal. In taking square roots in this paper
we assume that the cut in the complex plane for the
square-root function lies along the negative real
axis, so that quantities like p that are square roots
of complex numbers have positive real parts.

We shall evaluate Eq. (1) following the original
method of Kambe quite closely. Using the pro-
cedure of Ham and Segall, Kambe writes the func-
tion G as an integral using the relation
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range of integration into the range from 0 to the
Ewald parameter 2u?, and the range from 2u2 to «,
one may divide the expression for the structure
constants into two ¢ integrals:

where (C) is a suitable contour.?® Splitting the
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‘The Ewald parameter is chosen in this form to simplify later equations.

The sum over « in the second integral over ¢ converges rapidly because ¢ is greater than 2u2. Hence
this term can be used for the configuration-space part of an Ewald procedure. To obtain the K-space part,
the sum over a in the first integral, which represents a Bloch periodic function of #, is transformed by
the Poisson summation formula (i.e., expressed as the sum of its Fourier series). This contribution then
becomes a sum over all reciprocal lattice vectors K in the plane. After further manipulations one obtains

for the first of these two integrals
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where ¢(k,+K) is the angle of E0+ K from the x
axis in the plane parallel to the surface, the quan-
tity @ is given by

Q=[(k,+K)?-E]/4,
v, is the z component of the vector ﬁj--ﬁi and is
equal in magnitude to the distance between planes,
A is the area of the unit mesh of atoms, and H (x)
is the usual Hermite polynomial.?® The reduction
to obtain Eq. (4) can be achieved by Kambe’s pro-
cedures for obtaining the structure factors used in
the scattering in a single plane,?” and the use of the
generating function of Hermite polynomials. The
I(K) defined here satisfies the recursion relation

1
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Initial values I, and I, for the recursion can be ob-
tained from Eq. (4) in terms of error functions
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These last formulas can be verified by suitable
variable substitutions in the error function inte-
grals on the right-hand side.

In the second integral of Eq. (3), it is useful to
split the sum over lattice vectors {R_} into sub-
sums over the groups of interatom vectors of
equal length S, = | W, | called shells, followed by
a sum over shells A, Thus the second integral is
given by
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for m > 0. The quantity Z, satisfies the recursion
relation
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The integrals in the starting values for recursion
can be obtained directly numerically or from
standard procedures for obtaining the complex
error function. For arguments away from the
imaginary axis, the error function can be ob-
tained from the continued fraction®

u,=22+2m+1), m=20
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For arguments near the imaginary axis we have

found the procedures given by Salzer® to be useful.

These results should be equivalent to those ob-
tained by Kambe, although he did not give recur-
sion relations in this form, and a detailed com-
parison has not been made. The principal new
contribution made in this section is the recursion
relation for I,(K) quoted above, which can be veri-
fied from the expression for I,(K) in Eq. (4). It

can be combined with the recursion relation
3Cp(K) = (2 122/0) 75 oy (K) = 3y (K)] (13)

for the quantity 3C,(K) to evaluate structure con-
stants in a manner very similar to the procedure
used to obtain the structure constants for scatter-
ing within a single layer. Procedures for calcu-
lating the structure factors for the scattering
within a single layer by Kambe’s methods are
given by Pendry.® An alternate procedure for
handling this case can be obtained by setting 7,
equal to zero in the above formulas.

It might appear from these formulas that once
the auxiliary quantities I, Z, and = are obtained for
the smaller angular momenta, structure factors
for high 7 can be calculated by recursion with little
extra effort. Unfortunately, we find that the lattice
sums and reciprocal lattice sums converge more
slowly for the higher I structure factors, so that
the amount of work does increase substantially
when the calculation is extended to obtain struc-
ture factors for large /. These procedures should
be programmed with at least ten figures of pre-
cision because cancellation can occur between the
configuration and -Iz-space parts of the Ewald
procedure, particularly at the higher energies of
LEED. Calculation for the bulk mesh and the sur-
face mesh can be carried out together as suggested
by Van Hove and Pendry.®® In the K-space part of
the Ewald procedure, the surface mesh is built up
from the bulk meshes.

III. EXPERIMENT

Since all of the important experimental details
were given in the previous publication,' we only
summarize here, for the convenience of the read-
er,the highlights of the experiment and add some
clarifying remarks. The Si {111} substrate, from
20  cm p-type material, was cleaned in the work-
ing chamber with a series of argon-ion bombard-
ments and anneals until a well-developed LEED
pattern of the 7x T structure was obtained. In the
final stage, the only impurity detectable on the
surface by means of Auger-electron spectroscopy
(AES) was carbon. In the customary doubly dif-
ferentiated AES spectra the ratio between C line
at 274 eV and the Si line at 92 eV was typically
2.5x1078,

The 7x'T structure was converted to 1 x1 by the
deposition of small amounts of tellurium and the
subsequent resublimation of all but about 5% of
one monolayer of the deposited amount. Three
different procedures were eventually developed
for the preparation of the impurity-stabilized 1x 1
phase; they are described in the previous publica-
tion.! The final LEED pattern from which the in-
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tensity data were collected was of satisfactory
visual quality with relatively low background and
sharp spots on the fluorescent screen of a display-
type equipment. The angular widths were esti-
mated to vary between 1°and 1.5°. The intensity
data (consisting of intensity versus energy of in-
cident electrons) were collected sequentially by
means of a brightness meter (spot photometer)
aimed at the pertinent LEED spot on the fluor-
escent screen. Two sets of data were recorded:
one at normal incidence, including the beams 10,
10, 11, 20 and 20, the other at 6=8°and ¢ =0°,
including the beams 00, 10, 11, 11, 21, and 20,
for a total of eleven spectra. For a precise defin-
ition of the diffraction angles 9 and ¢, and the con-
sequent indexing of the LEED pattern, the reader
is referred, e.g., to a recent review.3 The unit
mesh on the Si{lll} surface was taken as having

x and y axis along rows of atoms at 120° to one
another. The experimental spectra were corrected
for background and contact-potential difference
between sample and electron-gun cathode and
normalized to constant incident current of elec-
trons.

The orientation of the second atomic layer with
respect to the first was determined empirically,
as described in Ref. 30, by comparing the experi-
mental spectra with those calculated for a specific
orientation of the second layer.

IV. STRUCTURE ANALYSIS

The intensity calculations were carried out with
the CHANGE program described in Sec. II, using
8 phase shifts and 31 beams to describe the elec-
tron wave function. The surface layer and all
bulk layers parallel to it were chosen to contain
bases of two atoms (the two closely spaced atomic
planes that are periodically encountered along a
(111) direction of the diamond lattice). The real
part of the Si potential was a muffin-tin potential
produced from superposition of atomic charge
densities in a fictitious Si crystal with fcc struc-
ture and muffin-tin radius 1.176 & (i.e., one half
the Si—Si distance in crystalline Si), because no
program for carrying out the analogous procedure
for the diamond lattice was available. The muffin-
tin zero (the constant potential between spheres)
or “inner potential” V, was varied in the course of
the analysis in the process of matching theoretical
to experimental curves. The imaginary part of
the potential was assumed to be 3.0 eV, and the
root-mean-square amplitude of the atomic vibra-
tions ((»2))*/2=0.10 A.

The parameters to be determined were the inter-
planar distance d,, between the first and second
atomic planes in the surface layer (the corres-

pondmg distance in the interior of the crystal is
0.78 A) and the inner potential V,. At a later
stage, some attention was also devoted to the sen-
sitivity of the fit between theory and experiment
to the interplanar distance d,, between second and
third atomic planes (bulk value 3.14 A) The re-
finement made use of the » factor proposed by
Zanazzi and Jona.*

The analysis was carried out as follows. For
each of the two angles of incidence at which data
were collected (9=0° and 6=8°, ¢ =0° intensity
calculations were carried out in which the value
of d,, was varied around the value determined in
the preliminary study® over a range of approxi-
mately 0.2 A in steps of 0.05 1§ the inner potential
V, being kept constant at 10.0 eV, expected to be
near the correct value. Then, each theoretical
spectrum was quantitatively compared to its ex-
perimental counterpart by calculating the value
of the » factor for each curve. This was done for
various displacements of the set of curves along
the energy axis, corresponding to changes in V.
For the nonnormal-incidence data the above pro-
cedure is, in a strict sense, incorrect because
the refraction of the electron wave upon entering
the solid requires a new intensity calculation for
each different value of V,, which is not equivalent
to shifting the calculated spectrum along the ener-
gy axis. We performed several intensity calcula-
tions with different Vv, and d,, values, then de-
termined the » factor for each of the calculated
curves compared to the experimental ones.

For each spectrum ¢, either at normal incidence
or off normal, we were therefore in a position to
determine one value d{¥) of the parameter d,, and
one value V) of the inner potential Vo for which
the value »{" of the reduced » factor was a mini-
mum. For this determination we need not actually
draw the »-factor contours in the (d,,, V) plane,3?
but simply locate the minimum as described else-
where.?® Thus, each experimental spectrum can
be regarded as one measurement of the param-
eters to be determined (viz., d,, and V,), and
each set of spectra (one for 9=0° the other for -
6=8° ¢=0° can be regarded as a sample drawn
from the universe whose mean is being sought.3*

Table I lists, for each spectrum tested, the
values of d,, and V, that minimize the correspond-
ing » factor. Three spectra that were collected
experimentally do not appear in the table (10 at ¢
=0° 00 and 11 at 6=8°, ¢=0° because the calcu-
lated counterparts were found to be rather insen-
sitive to variations of d,,, although the agreement
with experiment was very good. The numbers in
parentheses, in Table I, are the parameter values
that minimize the » factor when we shift the curves
calculated for fixed V, along the energy axis to
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TABLE I. For each spectrum, the range AE over
which experimental data are available, and the values of
the inner potential V and first interlayer spacing dyj,
which minimize the corresponding  factor, are given.
The numbers in parentheses are the values that mini-
mize the » factor when the theoretical curves are shifted
along the energy axis after calculation (see text).

Spectrum AE (eV) Vy (eV) dy (A)
6=0°

10 123 12.6 0.59

C11 88 10.8 0.63
20 69 10.1 0.66
20 71 10.4 0.63

6=8° ¢=0°

10 117 11.8 (11.8) 0.60 (0.60)
11 82 12.7 (12.8) 0.58 (0.59)
21 90 11.2 (11.1) 0.65 (0.65)
20 87 13.0 (13.3) 0.61 (0.56)

locate the minimum value of . This procedure is
not strictly correct (see above) but the numbers
show that the results are very close to those ob-
tained with the correct procedure followed above
except for the case of the 20 spectrum. With this
exception, at least for §=8° it thus appears that
the incorrect (but economical) procedure yields
results similar to the correct (but expensive) pro-
cedure.

We can apply standard statistical formulas to the
results listed in Table I to obtain mean values and
standard deviations. We choose to weight the re-
sult provided by each spectrum according to the
range AE; of incident electron energy over which
the spectrum was recorded. Thus,

n
Y= Zwiyi ’
i=1

(X, -7 tn-0),

i=1

14)

where Y is either d,, or V,,

wi=AE,-/( EIAE,.>,
=

the sums extend over all » spectra in a given set,
and s, is the estimated standard deviation of each
Y;.
The mean values obtained at 0° and 8° and their
standard deviations s; and s, are
(d12)0=0.62 &, (s,),=0.03 4,
(d,,),=0.61 &, (s,),=0.03 &,

(V9o=11.2 eV, (s;),=0.8 eV,
(Vo)s=12.1 €V, (sy)g=1.1 eV.

A student’s ¢ test confirms that the two samples
were indeed drawn from a single universe,* so
that we can calculate the final mean value of each
parameter Y and the related confidence interval
with standard formulas®®:

1/2

V=4Vt Vo) tt, o %(Z:wf,i +}:w§,) , (15)
where 170 and Y, are the mean values of ¥ found in
the 0° and 8° sets, respectively, w,; andw,,; are
the corresponding sets of weights, t,,o is the ¢
value for v degrees of freedom and a confidence
level, » is the number of measurements in each
set, and s? is the average of the two values of
sZ at 0°and 8°. We find at the 95% confidence level

4,,=0.62+0.03 A, V,=11.7+0.9 eV.

The spectra calculated with these parameters
can be visually compared with their experimental
counterparts in Figs. 1-3. The figures display
the values of the individual », factors as well. The
mean 7 factor [7,= (3),/"AE;)/(¥;AE;)] for the
whole structure is 0.25 for a total AE of 1099 eV.
This value may be compared with the value 0.27
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FIG. 1. Theoretical and experimental spectra (solid
curves) for the impurity-stabilized Si{111} structure at
normal incidence. The values of the #, factor are listed
in each panel. The dashed curves are the experimental
spectra measured at normal incidence from an Si {111}
7x1T structure.
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FIG. 2. Theoretical and experimental spectra (solid
curves) for the impurity-stabilized Si {111} structure
at 9 =8, ¢ =0°. The values of the 7, factor are listed
in each panel. The dashed curve in the upper panel is
the 00 spectrum measured at the same incidence direc-
tion from an Si{111} 7x 7 structure.

for the structure of Ni{001}c(2x2)-S, or the
value 0.28 for the structure of Ag {001} ¢ (2x2)-
CL* The structure R factor that takes into account
the number of spectra used in the analysis* is
0.21.

In the later stages of refinement, we examined
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FIG. 3. Theoretical and experimental spectra for the
impurity-stabilized Si{ 111} structure at 6=8°, ¢=0°.
The values of the # factor are listed in each panel.
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whether the theory-experiment correspondence
and the 7, factor could be improved further by
varying the second interplanar spacing d,,. We
detected a tendency toward a slight expansion (by
about 1.5%) of d,, with respect to its bulk value
(3.14 K), but the improvement was too small and
not sufficiently uniform over all beams to warrant
further analysis. :

The quantitative analysis described above did
not take into account the effect of errors (or
changes) in the experimental scattering geometry,
in particular, the diffraction angle §. However,
the effect was investigated semiquantitatively by
visual comparison among pertinent LEED spectra
as follows. First, it was established that cor-
responding spectra calculated for 6=6°, 7°, 8°
9°, and 10° did not differ much from one anocther,
i.e., small changes in the incidence angle did not
substantially affect the curves. (This relative
insensitivity of spectra to small changes in § is
more the rule than the exception, although of
course it cannot be taken for granted in all cases.)
Second, it was established visually that the set
calculated for 6=8° did in fact agree best with
experiment, thus giving us confidence that the
diffraction angle had been measured correctly.

The error bars given here are somewhat nar-
rower than those quoted in typical LEED studies,
and this may lead some readers to ask whether
they are indeed a measure of the accuracy of the
work, or, at best, a measure of the precision
with which the measurements were carried out.
The methodology of LEED is still too new and untested
to be sure that these numbers indeed measure the
error, but we believe that they have some signi-
ficance in this regard for the following reason: In
an earlier stage of this work, the data for 6=0°
gave slightly different results for Vv, and d,, than
the 6=8° data. In fact, the results were different
enough to lie outside each other’s error bars,
indicating some type of systematic error. This
discrepancy was later eliminated by increasing the
number of phase shifts used in the calculation from
five to eight, although, to the eyé, this refinement
produced only very small changes in the curves.
Thus, to achieve the consistent error estimates
given here, quite accurate calculations had to be
compared with the experiment. We believe that
a systematic error in the measurements would
also have shown up in the statistics as a similar
discrepancy.

V. DISCUSSION

Three comments seem appropriate after the
conclusion of the structural refinement reported
above. The first relates to the nature of an im-
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purity stabilized Si{111} 1x1 surface. One strik-
ing fact about this surface is that, although the
LEED pattern exhibits a clear 1x1 character,

the energy spectra for the integral order beams
are similar to those from the Si 7 X7 structure,
as has been remarked before.? In this situation
one may ask whether one is really seeing anti-
phase domains of the Si 7x7 structure which are
sufficiently small that many domains lie within
the area of coherence of the experiment. Each
impurity atom might anchor a small region of
Tx 7 structure placed so that the impurity atom
lies in a particular position in the structure, with
the result that a random arrangement of impurities
gives a random collection of incoherently placed
domains. It is easy to see in kinematic theory
that the Huygens’ wavelets from different anti-
phase domains will add constructively to give the
integral order beams, whereas they will add
destructively for the fractional order beams and
cancel exactly if all of the possible domains oc-
cur with equal area. A higher background would
be expected from the domain effects in the frac-
tional spots, i.e., very broadened fractional
spots. The same results will be true in a dyn-
amical theory which is simplified by requiring
that multiple scattering only occur within the
separate domains.

At present, there is no evidence that this phen-
omenon occurs in actual systems. It would be
useful to perform experiments in which the co-
herence length is increased significantly above
present sizes to see whether the fractional order
spots can be broadened and reduced in intensity
relative to the integral order beams in some sys-
tem where experiments with shorter coherence
length have shown typical bright fractional order
spots.

We have concluded that small antiphase domains
of Si TxX7 are not likely in the present system for
the following reasons: (i) The effect is not so likely
here because the 7Xx7 mesh is so large. There
would have to be seven different displacements
of the antiphase domains along both the x and y
axis of the pattern in order to cancel the seventh-
order spots which occur in the pattern in these
directions. This is a large number of 7x7 do-
mains to fit into the coherence area, and the de-
viations from the equal area of different domains
would give fractional order spots. (ii) The back-
ground in the observed 1x1 LEED pattern is low,
whereas the small domains and the distortions
that undoubtedly would occur at the boundaries
between antiphase domains would be expected to
produce a noticeable background. (iii) There are
significant, albeit sometimes small, differences
between the integral-order LEED spectra meas-

ured on the 1x1 and the 7x 7 structure. We have
drawn the 7X 7 spectra in Figs. 1 and 2 (dashed
curves) so that they can be compared with the
corresponding ‘1 X1 spectra. It is striking that the
00 spectra (at 6=8°) are almost identical to one
another, and it may be significant that the 00 spec-
trum of the cleaved 2x1 structure is also some-
what similar.®® The nonspecular LEED spectra,
however, are notably different. To avoid subjec-
tivity, we have determined the »-factors for the
comparison between corresponding 1x1 and 7x17
spectra. The results are, for the §=0° data, the
following: 10 spectrum, »,=0.63; 10 spectrum,
v,=0.64; 11 spectrum, »,=1.25; 20 spectrum, 7,
=0.42; and 20 spectrum, 7,=0.72. For the 6 =8°
data we have 00 spectrum, »,=0.08. Hence, we
conclude that the structure investigated here is
not a broken up 7x 7 structure.

It has also been suggested®” that the structure
might be a random arrangement of subunits which
normally fit together in a definite pattern to give
the 7x7 structure. This is harder to exclude than
domains of the full 7x7 structure since the integral
beams would not be the same as those of the 7x1,
there would be fewer fractional order spots to
blur away, and smaller-sized elements to fit into
the coherence area of the measurement. Further-
more, such a structure could well have lower en-
ergy than a true 1x1 structure because it could
be put together with fewer dangling bonds. If this
is assumed to be the structure, then we believe
that this study has determined the correct inter-
layer spacings of that structure, with the random
elements of the structure being displacements of
atoms within these planes. The incident beam and
the measured beams in this work were all at an-
gles less than 30° from the normal and, therefore,
the data are probably much more sensitive to
displacements perpendicular to the surface than
to parallel displacements.

The second comment relates to the methodology
of LEED crystallography and the associated error
analysis. The Si{111} 1x1 structure discussed
here is the first published surface structure for
which the refinement was carried out exactly in
the manner described above. The »-factor has
been used for structural refinement by other
workers®%38:3% a5 well, but in a somewhat different
way. We believe that the procedures outlined here
are better suited for a statistical analysis of the
confidence levels.

The third comment concerns the structure of
the unreconstructed, impurity-stabilized Si {111}
1x1 surface as determined in this work. This
structure is essentially bulklike, but with a con-
traction of the first interplanar spacing d,, by
about 21%. This contraction is much smaller than
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the 42% that was suggested earler on the basis of
Pauling’s bond-order versus bond-length formula.3
It agrees well with the calculation of this spacing
by Ihm and Cohen.?® It is somewhat smaller than
the 24% that was “ruled out” by Appelbaum and
Hamann (AH) on the basis of comparison between
theoretical predictions and experiment. The the-
oretical predictions concerned surface-state
critical points and surface resonances on the 1x1
surface, while the experiments consisted of photo-
emission and energy-loss spectra from the Si {111}
TxT structure.® AH carried out self-consistent
electronic structure calculations of a number of
surface properties for two other geometries of the
unreconstructed surface, viz., a contraction of

d,, by about 44.5% and the same contraction of

d,, added to a small contraction of d,, of about
4.5%. These drastic distortions were found to have
little effect on either ionization potential or Fermi
energy but large influences on surface state bands.
It is not clear why such large distortions were
required. Perhaps the goal was to match theoreti-
cal results for Si{111} 1x1 with experimental re-
sults for Si {111} 7x7. I is questionable, how-
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ever, whether such a goal is justified, because
the difference between the 1x1 and 7X 7 structures
is perhaps larger than heretofore believed (see
Figs. 1-3 and above discussion). Unfortunately,
Thm and Cohen?® did not discuss the surface states.
One might assume that the impurity-stabilized
1Xx1 structure determined here is indeed the same
as the clean 1x1 structure produced at high tem-
peratures, but this assumption has never been
tested. It would appear instructive to calculate
surface states for a 1x1 structure with a 21% con-
traction as determined here and to compare the

results with photoemission spectra measured on

an impurity-stabilized unreconstructed surface.
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