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Nonadditive hard discs, a model for partially localized adsorption
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It is shown how one can approximate partially localized adsorbed layers of molecules on surfaces by a
mixture of hard discs with negatively nonadditive diameters. The thermodynamic properties for this

reference state are found with a particular version of scaled particle theory. The contribution of the
attractive forces is obtained from a perturbation expansion where we keep the two leading terms. The radial-

distribution function of the reference state for this contribution is obtained from a virial expansion. The
calculations are carried out for a square-well potential. We calculate numerically the following results:: The
degree of localization, i.e., the concentration of particles in the localized state, the equation of state, i.e.,
spreading pressure as a function of coverage, the isotherms, and the isosteric heat of adsorption. These

quantities are calculated for different values of the adsorbate-adsorbent lattice mismatch, the height of the

barrier to lateral diffusion on the surface, the strength of the attractive forces, and the temperature and

pressure. The attractive forces favor out-of-registry adsorption against localized adsorption. The localization

effects lead to a noticeable decrease in the critical temperature for two-dimensional condensation even in

highly mobile adsorbed layers.

I. INTRODUCTION

When molecules adsorb on the surface of a
solid, there are two, relatively easy to treat,
limiting situations:

(i) If the difference between the free enthalpy of
adsorption on different sites of the solid is much
smaller than the thermal energy kT, and if the
minimum of the gas-solid potential is at the same
distance at every site, the molecules will be free
to arrange themselves into an average configura-
tion which corresponds to a two-dimensional fluid
or solid. One speaks of mobile adsorption.

(ii) If the energy barrier that separates two
identical sites is much larger than the thermal
energy, molecules will be frozen into their sites,
and if the smallest distance between sites is lar-
ger than the molecular diameter we will have
localized adsorption.

While the two limiting cases have always met
considerable attention, there are only very few
attempts to solve the intermediate problem of
partially localized adsorption, when one cannot
neglect the influence of the substrate on the ad-
sorbed mobile layer. The basic equations for
this problem were laid down by Hill and Steele
in the early sixties.

One of the reasons for the timid advance was
certainly the lack of data on the variation of ad-
sorption energies along the surface or even the
exact value. In the meantime much more infor-
mation is available from scattering experiments

followed by exact scattering calculation or de-
tailed calculations of the adsorption energy either
by lattice summation or by direct soluti. on of the
Schrodinger equation.

At the same time, the diffraction data, e. g. ,
from low-energy electron diffraction (I EED) and
from other techniques, on adsorption have re-
vealed a large amount of detail, such as transitions
between diff erent conf igurations. Globally the
situation can be represented by a temperature-
coverage diagram. The first complete diagram
of this kind was established for CO adsorption on
palladium. Of course not all the diagram is al-
ways measurable since it describes- the idealized
case of monolayer adsorption. From a certain
coverage on, adsorption of the next layer will set
in, ending the compression of the first layer.

The interest in the growth mode of a layer on a
solid is not merely academic. Indeed the struc-
ture of the first monolayer of e.g. , a solid grown
onto another will condition the properties of the
whole deposit in physical vapor deposition (PVD).
Out-of-registry epitaxy will lead to perfect growth
conditions for the nascent solid, while with in-
registry adsorption the interface will be a source
of defects, mechanical weakness, etc. The glo-
bal nature of the statistical mechanical approach
has the following advantages over microscopic
theories of a solid-gas couple. ' One can treat a
large class of experiments, since partially local-
ized adsorption will occur.

(a) for noble-gas adsorption onto inert solids
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like graphite and the transition-metal dichalco-
genides at very low temperatures in ultrahigh
vacuum.

(t)} for reactive gases like hydrogen and oxygen
on the transition metals for high temperatures in
ultrahigh vacuum or in the presence of a back-
ground of inert gases.

(c) in so-called contact adsorption of solutes
from solutions, since the results do not change
qualitatively, if one replaces the vacuum by a
solvent.

Therefore we chose for this paper an approach
that is not conditioned by a particluar gas-solid
pair, but describes all results by a few param-
eters which, when identified with particular con-
stants, should allow the understanding of the prop-
erties of a particular adsorbate-adsorbent system.

II. TWO-DIMENSIONAL APPROXIMATION

The general situation of adsorbed molecules on
a solid is complex. In principle neither the free
adsorption enthalpy nor the minimum of the gas-
solid interaction potential will be independent of
the site. As a matter of fact, these two quantities
must not even coincide in chemisorption where,
e.g. , the different site configurations correspond
to different valencies.

A sitewise separation of the motion parallel to
the surface from the motion normal to the surface
represents a good approximation for many sys-
tems. Indeed if one represents the motion for
small amplitudes by a harmonic oscillator, one
has for most cases,

(Oj. && Gall,

j-, II with respect to the geometric surface. The
adsorbate molecules, while partially mobile on
the surface mill be frozen into the lowest vibra-
tional state of adsorption. If the geometric sur-
face does not coincide with the locus of the mini-
mum of energy, the separation of the motion into
normal and parallel components, requires further-
more, that the activation energy for the diffusion
on the surface be smaller than the energy differ-
ence between the ground state and the first excited
state of the vibration normal to the surface.

+6~ (5(GJl —(ch} .
A considerably better way to a two-dimensional

approximation would consist in the use of the sur-
face of the minimum of the adsorption energy as
a plane on which the adsorbate is located. How-
ever, the corresponding coordinate transforma-
tion "forbids" any further treatment by statistical-
mechanical means, since the distances between

molecules relevantfor the interaction will no longer
coincide with the distance on this surface.

To put these arguments in a more formal man-
ner, consider thegartition function of M parti-
cles at positions (Ri. . .R„), in a volume V, and
at a temperature & = 1/Pk, in contact with an ad-
sorbent wall.

Z„= dR) ' ' 'dR»exp[ —P(UN+ UN)].J.

We have separted the interactions into the inter-
particle potential

fey

and the particle-wall interaction

)~i
(4)

Z(2D) dgy Py P
(N }(rN)

4

where + is the number of molecules adsorbed, and

N

exp' —p E &p,(|,)jp{N}( N) \ (=1

( d- -aarr, e())»
(10)

This partition function can be used to calculate
the chemical potential of the adsorbate particles
in the usual way:

P(P — }J)=-((}lnZN /(}N)r, ~ .

but neglected the many molecule interactions.
U&& may be an effective, renormalized pair poten-
tial which includes the effect of the substrate on
the interaction between two adsorbed particles.
We split the coordinate R& into a component nor-
mal to the surface z„and a component parallel
to the surface, r&

R]= rg + zion.

Then our first assumption reads

U()(y()), 0 z( z„

U(&(R(1R&) = and 0 ( z&
(z„,

0 z& &z„or z& )z„.
The second equation is just a convenient way to
introduce the usual assumption, that the bulk gas
is ideal. Our second assumption is the separa-
bilitJJ of the one-particle potential.

U, (R,) = U, (z, ) + &U, (r, ) .
Under these conditions we can use two-dimension-
al (2-D) partition functions '
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p refers to the ideal two-dimensional adsorbate.
2

p )2=lnfNA. — N(lnz) ) =ln(), a (~ N

BN 1
(12)

with

Z~+ dR e gv) (R$) j

f and &, the momentum partition function for the
motion perpendicular viz. parallel to the surface.
Steele has shown that the canonical partition func-
tion of the adsorbed gas ZN is related to the (2-D)
canonical partition function Z„ through' »

Z(N&/(Z(&0)N Z(2D) (i4)

The equation of state is then found in the usual
way as

8 lnZ'" (8 lnZN2"

aA N I, BA

where 4 is the spreading pressure and &, the sur-
face area. We also define the coverage e:

lrl & a
(,( )-

V, (r) = V,,(r) ) r )
)a.

a can in principle be obtained from the repulsive
part of an analytical intermolecular potential. "
For example, in the case of an exponential repul-
sive potential

V„(2)=Ae ""0,

we would have '

a = r0(ln A/kT + C), (2O)

where C = Euler's constant.
We introduce the separation of the potential into

E(l. (9) and make a Taylor expansion of the loga-
rithm of the partition function towards the strength
of the attractive potential which we scale by a
parameter p.

lnd'„d(n& = ln J(
' ' I d'r~ ' ' ' d r pP(r &

e=N/A.

III. SEPARATION OF THE POTENTIAL

Xe f'~N+ 'e»~N" ',

lnz(2 D)(p )
'

lnz(2D) (p O)

(21)

We intend to use a perturbation scheme to cal-
culate the equation of state. To this end we split
the potential into two parts:

v,,(r) = v', ,(r) + v, ,(r),

(22)

The mixture with p= 0 is our reference state.
We shall distinguish variables referring to it by a
right upper 0.

f '' f d 'r( ' ' '8r~p0")(r")QV{r& —r, )e 0 N'

Z(2D)(p) h ZO(2D) pp
&&(

f ' ' ' fd y( ' ' ' d 2 N p(p (rN)e 0 N+

0(2D) PP N(N —i) f 2 2
- . . . 2 (N) N -0U ('PN&=lnZ„—Z0(2D& 2 j~

d r, d r2V(r( —r2) j 8r0' ' 'd rNp0 (r )e (2s)

Neglecting the difference between N and N - 1 and comparing the last expression with the definition of the
radial distribution function for the reference state,

S ~ ~ J d y ~ ~ ~ d22 p(N)(r )e 0 N(&
0

g'(r), ») =A'
. . .f d2y . . .d2~ ptN)( N)e 0UN(r )0 N

(24)

one sees that for an isotropic mixture the first
two terms of the perturbation expansion can be
written as

2

lnZ„' '=lnz„'""-
A )

d'«(r)g'(r). (25)

It can be shown that an expansion in terms of Ur-
sell-Mayer functions leads to the same result.

IV. THE REFERENCE SYSTEM

The reference system is a mixture of particles
interacting with a hard-sphere potential. Each
of the particles interacts with the adsorbent via
its adsorption potential V((r). A very useful
model of this reference system is a binary mix-
ture of nonadditive hard discs, which was first
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proposed by Holland. One arrives at it in the
following way:

The hard-sphere diameter a describes fully
the interaction between two mobile particles. Two
localized particles exclude each other from adsorp-
tion sites, whose distance we call a». To repre-
sent the fluid of localized particles as a hard
sphere fluid may at first appear a very crude ap-
proximation, since the particles constitute a
lattice and are not free to pack around a central
localized particle in an arbitrary form. But since
most fluid theories make significant approxima-
tions for the second shell anyhow, the model is
reasonable in this framework. We do of course
not expect to obtain a reasonable description of
the localized solid. However, this approximation
allows one to avoid Steele's two-parameter ex-
pansion. "'

A localized particle interacts with a mobile
particle with the same diameter as two mobile
particles, a . Therefore, in the notation of
hard-disc mixtures

1 1a~ = am~ = 2(a~~+ a„)—~(a» —a„„). (26)

Once the diameters, the temperature and total
coverage are specified, we must determine X, ,=e, ,„/e and the ~nation of state. For this we
have the additional condition of "chemical equili-
brium" between mobile and localized absorbed
particles.

0 0
&] =~~ ~ (2V)

The chemical potentials are obtained by adding
the work functions, which we will obtain from our
fluid theory to the two different ideal chemical
potentials. This difference arises from the dif-
ference in Zi in E(l. (13).

We shall use scaled particle theory for the de-
scription of the reference state. We have shown
already that this theory gives currently the best
results for. ,mixtures of negatively nonadditive
hard spheres. We will repeat here only the
essential results and those modifications which
are necessary for this particular problem.

The concept of scaled particle theory is simple.
One replaces the intermolecular potentials of one
particle of each species by a scaled interaction,

V„(r)—tr„[r/&, (X)] i, y =l, m. (28)

This particle will then be called a localized (mo-
bile} cavity of size &. Next we consider the work,
which is necessary for the insertion of such cavi-
ties, W, ,„(&). One can show, that this work is
known exactly up to a certain size &&,

W;(1} ST=i-n(1 —w p 6 (a, (; (X)] I,g"-l e m

i=l m ~

(29)

For larger values of &, we approximate it by a
Taylor expansion

2

W)(A.}=Q W", (A. —X(), i = l, m . (so)

The first two coefficients of this expansion are
best obtained from the continuity of W, ,„(&) and
its first derivative at &&, . Since we want to avoid
repeating the derivation of scaled particle theory
for nonadditive hard spheres we will use our pre-
vious notation for binary mixtures

a„„=a, a« —a(l+ p), (6=-~p) . (31)

We show in Appendix A why in the present case the
scale function

~„(~)=~, i,q=t, m, (32)

is the only consistent choice for a binary mixture
with! =-—', v. The spreading pressure P is re-
lated to the different work functions through the
virial relation

Py', g 8W, (X)1~ (33)

We skip over the calculation which leads to the
following results for the coefficients and &&'s:

1=2, X)—
2+p (s4)

W„=-kT ln(1- 8),

W, =-kT ln(l —(1+—,'p) 8[x + (1+p)2x, ]],

W„=kT48/(1 - 8),

48[x +x, (1+()'](1+p/2) '
1- (1+v/2) '8[x„+x, (1+ v)'] '

(35)

(36)

(3V}

(se)

where ~ =ape with ap —4ma .
To determine W, &

we must consider the limit
of very large &, where the cavity can be consider-
ed as macroscopic. Simple hard spheres lead to
spherical cavities in the fluid from which all
particles are excluded. In our case this is only
true for mobile cavities. With nonadditive inter-
actions, the cavity from which all particles are
excluded will be surrounded by a shell whose outer
envelope is a semipermeable membrane. For a
binary mixture the shell contains a pure fluid of
the opposite (same) species for negative (positive)
nonadditivity (see Fig. 1). An osmotic pressure
develops across the membrane. The coverage
of the pure fluid inside differs from both total
and partial coverage in the bulk fluid, since. it is
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Q, x.

p. (Q, x)
Eq. 27

Ir

p,„(Q x„)

Eq.bs) '
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determined by the condition of the constancy of
its chemical potential across the membrane. If
we distinguish the quantities in the shell of the
localized cavity by a prime, this condition reads

FIG. 1. Macroscopic limit of the scaled particle
theory. It shows the difference bebveen the localized
and mobile cavity for this particular nonadditivity. Al-
so included are the numbers of the equations that con-
nect the various quantities.

W, , is proportional to the work necessary to in-
sert these macroscopic cavities into the fluid,
which is simply the product of the corresponding
spreading pressures and enclosed volumes

(40)

(41)

aopp„'o=(1 —8') 28',

8'„8' (3 2 8' )
~I nt I Im +in

(1 g/) +
(1 gi)

~2

(42)

(43)

so that we finally arrive at three coupled tran-
scendental equations for @, ~', and x:

(i) The membrane equation, [Eq. (39)]:

pm 2 0 8 (1 —8) 28 8(3—28)4'~ -'".„8(1 8.) -1 e' (1 8.)

W =ma'P',

W', =ma'O1+ p)'y'+ [1—(1+p}2]y.").
For the relations between @„", p'„', and 8' we
use the results from the scaled particle theory of
pure hard-disc fluids"

p, '„(e,x„)= p„"(e' ) . (39) (ii) The virial relation, Eq. (33):

P~oy' (1+p}'l '
2+v )

=Z= 1 x„e 2(1 x„)e

1+x + 1 —x"1—8 " (2+ )'-48[(1+p)'-x'(2+ )]

—2 ma (1 —x„)v(2+ v)
1+p

2+ p
(45)

(iii) The condition of chemical equilibrium, Eq. (27):

1+ I

P( 0 P;)+—ln " =ln 1-48 ) x ln(1 8)1 —„, 2+p 2+v

+ 48(2+ p}(1+v)[(1+v)' x„v(2+ v)] 28 2 0 p(4+3v)
(2+ v)'-48[(l+ p)'-x p(2+ p)] 1, e

+ 4(2+ p)'

4
v(1+v}2

2+ p (1 —8')' '

These three equations can be used to calculate
numerically the equation of state for the reference
system, The barrier towards lateral translation
is given by the difference of the ideal chemical po-
tentials of the two adsorbates

0 0&m- ~r =&m- &~=&& ~

In Fig. 2 we have made the usual plot of the
compressibility factor z as a function of the re-
duced mixture coverage

8*= m/16a~ [3+ (1 + v) ]N/& .
One sees in this representation, which includes
the nonadditivitJJ in the abscissas, that a "law of

I

corresponding states" prevails between diff erent
mixtures. But for very high nonadditivity one
can observe a phase transition at high coverage
which leads to an ordered state. Therefore the
curve for p=0.9 terminates at 8*=0.55. At this
coverage Z drops in fact sharply in the same way
as observed previously ' for symmetrical mix-
tures (v =0, & & 0). But in this case the represen-
tation of Fig. 3, where we give the excess com-
pressibility as a function of composition for dif-
ferent coverages is more revealing. It shows how
the minimum of the excess moves to higher con-
centrations of the localized discs as the reduced
coverage increases.
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~IG. 4. "Composition, "X, of the adsorbed refer-
ence system as a function of coverage 8 for different
values of nonadditivity and height of the barrier to sur-
face migration: v=0.Q5: --——he/T=5, 6e/
T=2 5v=0..2: .. . . . 6e/T=2. 5.
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FIG. 2. Compressibility factor as a function of re-
duced coverage for nonadditive hard-disc mixtures of
on the equicomposition line, for different nonadditiv-
ities: ——:v=0.9, . . . . . v=0.5, --——: v=0.2,
p =,0.05.
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In general ~„attains its minimum value when
on the average the maximum number of dislike
particles are .in contact with one another. This
means that the concentration &* at the minimum
of Z„-X*= 8+8, is the point at which the coordi-

nation of I particles (the solvent) around m parti-
cles (the solute) is largest for a given 8, or where
the largest amount of clusters of l particles with an

m particle at the core exists. Considering Fig. 4,
then, we see that at relatively low densities (8
=0.3) the proportion of m to l particles is 1 to 2

at the minimum (X*=0.35). Thus for 8=0.3
three particle clusters l-m-l are the most abun-
dant at the minimum of the compressibility. For
8=0.4X*=0.25, and the majority of clusters are
3/ particles enveloping one m particle At 8=0.5
~„falls off rather abruptly at the minimum and

the coordination number of the E particles around
an m core particle is 9. The reverse situation
of large m clusters with l particles in their core
does not lead to as large a drop in Z„.

V. THE PERTURBATION EXPANSION

"2-

4

e

~t
1

~t

~t
~0

~O

O~ ~

We continue the development from Eq. (25). We
still have to take into account that we use a mix-
ture as model for our reference system. In this
case Eq. (25) reads

2

lnZ„=lnZ„—~ p
~

cPr U(r)g„„(r)

(47)

FIG. 3. Nonadditivity, excess of the compressibility
factor of negatively nonadditive hard discs as a function
of composition for different coverages:: 8= 0.3,

8~04 g~ 0 5

where we have of course taken the same attractive
force for mobile and localized particles. The
corresponding perturbation expansions for the
chemical potentials and the spreading pressure
follows from the gradients towards the partial
numbers and the surface area
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=P'+ ~ Jl d'r0(r) [N'„g'„„(r)]

+ &' d r U(r)
N [N„go, (r)].A

25

g, =p, +ex drUy N, g', ~
2

+ ~ J
d rU(r) [NIg~o, (r)].

++Hi f rt'rir(r) q~[x'a'„, (r)]

dxUx —A g&, r

(48)

(49)

(50)

another way to find a decent approximation for the
radial distribution functions. But since we shall
use it only to calculate the linear terms of our
perturbation expansion, the first two terms of
the virial expansion are a consistent choice after
all. Representing them diagrammatically, we
have for our mixture

g],(r)=exp(. -W„(r)](1+ ++ )j

=g,",(r) +. eg,','(r.),
or writing out the different terms explicitly for
first and second order, respectively

0~( )
0, r&a()

~&a.)

A. Radial distribution functions of the reference
state

Having opted for scaled particle theory for the
equation of state of the reference system, we need

I

Oy r 29

g„„(r), O&r&2a

8gPy (r) =g 8]( g«, a ~

In this notation the comma separates the index of
the species over whose position one must inte-
grate. In our special case then

(54)

0 , r&a(2+ v),
&m)=

8 /8g
&

(r)+ 8&/8g ] &(r) = 8 /8g (r)+ 8,/8g„, , (r), va r&a&(2 v+)

0, r&2a(1+ v)

8 /8g„(r) + 8,/8g„, (r), 0 &r & 2a (1+v) .

The explicit expressions for these terms are given
in Appendix C. It is also important that g', , (r)
is the only nonsymmetric integral.

I

and J(q, «(5, (r) which a,re given explicitly in Appen-
dix C.

B. Square-well potential

a& r &paUr=
0, pa& r (57)

Furthermore we will restrict the calculation to
)f &(1+v), in this case

We will calculate the perturbation terms for the
simplest case of a square- well potential. This
we hope will later allow comparison with the ef-
fort of exact computer simulations on square-well
fluids. In this case we have

VI. ADSORBATE EQUATION OF STATE, THE ISOSTERIC
HEAT AND THE ADSORPTION ISOTHERM

Having found the perturbation terms, we can
calculate an equation of state that combines the
results for the reference system E(ls. (44)-(46)
with the results from perturbation theory Eqs.
(C7)-(C11), Numerical solution. of these e(lua-
tions can be obtained in a straighti arward manner.

A more interesting quantity to look for is the
isosteric heat of adsorption, since it has a cusp
at any possible phase transition of the fluid. It is
defined as

dr rU(r) = —,'e[()('.a)' —a«] . (58)
I

Many integrals differ only by their integration
limits, which for the following we shall summarize
as & for the upper and o for the lower limit. This
leaves us with two types of integrals J«,»(t], o)

BT )g

As a function of coverage q displays a decreasing
sigmoid like behavior at low temperatures but a
monotonic decrease at high temperatures (compare
with Ref. 13). We calculate the isotherm from
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W~=&i =~m=&a ~ (60}

where LL(& is the chemical potential of the bulk gas,
which we will consider ideal

p p& ——1 n& e/k T + lnp =p p, oe + lnp . (61)

We sum up the adsorbate chemical potentials as

P p„=pm*„+lne„+Pm'„=P'p +Pm'„,

P1'~ =p&i'+»ei+ p&'r ~

(62)

or,

p" =p exp(P vo Pv*)—= e exp(P p, '„) .
(68)

Similarly, by differentiation

q* = kT2 ( inc„+ P p'„)e = const . (64)

Note that though ~ is kept constant in this deriva-
tion, 8 is temperature dependent through the vari-
ation of the mobile-to-localized ratio with tem-
perature. - The explicit expressions for the ther-
modynamic properties are given in Appendix D.

VII. DISCUSSION

In discussing the phenomena of partially local-
ized adsorption the following parameters should
be considered: a&& —the characteristic dimension
of the adsorption site which may be, e.g. , the
Wigner-Seitz cell diameter of the two-dimensional
lattice of adsorbent atoms. a -the collision
diameter between two adsorbed particles at a
given temperature (note that we have used a tem-
perature-independent collision diameter in this
work, which is not always accurate}. &,-the
adsorption energy of the localized particles.
&~-the height of the barrier to lateral transla-
tion of the adsorbed particles.

The attractive force is first characterized by
the parameter ~-the minimum in the attractive
pair potential. For our calculations we used as
attractive force a square-well potential of a
range Xa [see Eq. (57)].

Since a systematic evaluation of the effect of all
these parameters and their mutual effects is a
paramount task we will limit our discussion to
some qualitative, but rather fundamental pheno-
mena. We hope that our general equations can be
used for specific applications whenever these
parameters are known:. We start with a discus-

0
0

where the p*'s are defined through Eqs. (12) and

(62); where the excess chemical potentials are
defined by a comparison of Eq. (62) with Eqs.
(C&0), (48), and (49). Then we can write the
isotherm as

p = exp(P p *„Pvo-)e„exp(P p'„),

sion of the adsorption of the reference system.
In Fig. 4, where we plot the composition as a
function of coverage, one distinguishes two ex-
treme cases:

~ ~e eSala+

~ ~ yy ~ t ~ ~ ~ ~ ~ ~ 0 OIOA

~ JHOW ~ f10~ ~ ~ ~

~ \ ~~ 0~ ttO 1001~ ~

FIG. 5. Adsorption isotherm for the reference sys-
tem, coverage 8 as a function of reduced pressure,
p* for different combination of nonadditivity and barrier
height: same parameters as Fig. 4.

I I I I I

5 l0 p»

(i) With large barriers to lateral translation or
at low temperatures, the localized particles are
favored over the mobile ones up to high cover-
ages, where a relatively abrupt transition to a
mobile fluid takes place. This is accompanied by
a sharp increase of the necessary pressure of the
bulk gas, as can be seen from the isotherm, Fig.
5. This adsorption isotherm resembles the re-
sult of the calculations for lattice gases, the Lang-
muir isotherm very closely. This is remarkable
insofar, as we have used a pure fluid model for
these localized particles.

(ii) With small barriers, the transition from
localized to mobile is gradual. The same gradual
behavior is observed in the isotherm.

These differences become still clearer in the plot
of the isosteric heat, Fig. 6. Systems with a high
«/T ratio exhibit an almost density-independent
isosteric heat up to high densities, followed by a
steep decrease due to the "melting" of the local-
ized particles into mobile ones. - On the contrary
systems having low &e/T ratios "melt" gradually,
and thus the isosteric heat falls off gradually.

We now turn to the solution of the complete sys-
tem with the attractive forces. We have chosen
results from above and below the critical tem-
perature of two-dimensional condensation. We
start with the dependence of the composition on
the coverage, Fig. V.

Generally, compared with the reference system,
the inclusion of attractive forces leads to a higher
concentration of the mobile particles, having the
same v and the ratio &e/T. This is easily under-
stood since a localized particle can be approached
closer by a mobile particle than by another local-
ized particle. The effect would be even more
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FIG. 6. Isosteric heat of adsorption, q*, for the

reference system as a function of coverage 8. Same
parameters as Fig. 6.

pronounced, had we chosen an inverse power law
for the attractive part of the potential instead of
the square-well form. We see further from Fig.
7 that below the (2-D) critical point the localized
particles abound in the (2-D) gas (low-density
phase), but the mobile particles largely exceed
the localized ones in the liquid phase. On the
other hand above T, (2-D) the composition curve
resembles the one found previously for the ref-
erence system.

Comparing now the spreading pressure and the
adsorption isotherms, Figs. 8 and 9 with their
results of the reference system, Figs. 2 and 5,
we note the following points:

FIG. 8. Adsorbate equation of state: reduced spread-
ing pressure, P ~og as a function of coverage e. Same
parameters as in Fig. 7.

(a) The attractive forces of course reduce signi-
ficantly the necessary bulk gas pressure for high

coverages since they increase the cohesion energy
between the adsorbed molecules. For the same
reason, the spreading pressure of the complete
system is much lower than the one for the refer-
ence system.

(b) Of particular interest, however, is the effect
of the localization on the gas-liquid equilibrium as
may be judged from the effect of the parameter v

(and &&) on the critical parameters. Inspecting
Fig. 8 we see that at given It', &/T and &e/T
ratios the critical temperature decreases with p.
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FIG. 7. Localization, =1—X, in the adsorbate as a
function of coverage for different values of nonadditiv-
ity aud temperature with barrier height Ee /k = 200 K,
square-well depth e/k = 69.4 K square-well width X
=1.85 and T=120 K: —~ — -v=0.13, . ... v=0.1,
v=0.05; T=106 K, v=0.05,
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FIG. 9. Adsorption isotherm coverage 6) as a func-
tion of reduced pressure p*. Same parameters as in
Fig. 7.
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FIG. 10. Isosteric heat of adsorption, q*, as a func-
tion of the coverage. Same parameters as in Fig. 8.

Note that this effect can easily be confused with
the modification of 'the adsorbate-adsorbate inter-
molecular interaction by the substrate, that one
may expect for other reasons, e.g. , many-body
forces in physisorption or renormalization in
chemisorption. These are two effects which
make the adsorbate equation of state dMf er from
the hypothetical two-dimensional bulk gas: local-
ization and modification of the intermolecular po-
tential by the substrate. The theoretical results
on the importance of the later one and our present
result on localization effects, make it appear very
difficult to separate these two from the experi-
mental data.

The inclusion of the attractive forces has a
dramatic effect on the (configurational) isosteric
heat (Figs. 10 and 11). The reason for this is
that the "melting" of the localized molecules was
a purely endothermic process in the reference
system while now, in becoming mobile, the mole-
cules also make better use of their attractive
potential. In some extreme situations it may
cause an increase of the isosteric heat with in-
creasing ~. Such situations may occur either when

the attraction between pairs of adsorbed molecules
is very strong or when the barrier to lateral tran-
slation is relatively small.

The effect of temperature on the isosteric heat
is much more complicated to interpret since tem-
perature affects both the composition of the fluid
and the law of interaction of the particles in the
system. At high enough temperatures the sys-
tem approaches the reference system and the
isosteric heat falls off with the temperature be-
cause the localized particles "melt." At very low
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FIG. 11. Isosteric heat of adsorption, q*, as a func-
tion of the surface temperature T; same parameters
as in Fig. 8.

temperatures we may expect, since the attractive
forces dominate the fluid, that the isosteric heat
will increase with temperature as much as it
does in the case of a density increase. This is
not very evident, however, since it involves very
low temperatures where the fraction of mobile
particles is extremely small and thus not easy to
treat. We would probably have to go to much
lower ratios of &e/e to study these phenomena.

VIII. CONCLUSIONS

The complete adsorption isotherm of simple
gases on inert solids includes two separate re-
gions of transition from an in-registry adsorbed
gas to either a mobile or out-of-registry adsor-
bate. At low coverages (and low temperatures)
the localized lattice-gas predominates and on in-
creasing the bulk gas pressure a gradual transi-
tion to delocalized fluid occurs. This phenomena
interferes with the gas-to-liquid phase transition
at temperatures below the critical two-dimensional
temperature. On the other hand at high coverages
the in-registry solid adsorbate transforms raQer
abruPtly into out-of-registry adsorbate. Both
transitions can be considered as originating from
nonadditivities in the hard-sphere diameters but,
whereas, in the former region attractive forces
play a dominant role (fluid-fluid transition) they
have only a limited effect on the latter transition.
The present model is thus appropriate for the de-
scription of the gradual transition from lattice
gas to delocalized two-dimensional fluid and its
interplay with fluid condensation. The Holland
model~~'~ can handle the high-density "delocaliza-
tion" (out-of-registry adsorbate) where phase
transition takes place.

In addition, we are rather confident that SPT
and other theories can handle the problem of a
mixture of two kinds of polygons with nonadditive
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repulsive cores. In particular it would be inter-
esting to solve the SPT for a mixture of (mobile)
hard spheres and (localized) parallel hard squares
(or other polygons) with nonadditive hard-core
parameters. Steele developed more than a dec-
ade ago a theory for the partial localization of
adsorbates based on the perturbation expansion,
where he considered the pure hard-discs fluid as
the reference state. Using the nonadditive hard-
discs mixture as our reference state we could
eliminate the expansion with respect to one param-
eter, namely, the barrier to lateral movement of
the adsorbate-&&.

An important aspect remained "unsolved, "
namely, the correct relation between adsorbent
lattice parameters and the hard-sphere diameters
of the model. The diameter of the Wigner-Seitz
cell may be a suitable choice for physisorption
systems, but we think for chemisorption only com-
parison with experiments and evidence from after
observations like diff raction experiments can tell.
In this case, like for liquid metals, scaled parti-

cle theory of nonadditive hard spheres may be
used as an empirical concept to incorporate dif-
ferent coordination members.

W =-kT ln 1 —x~&~~1 )
&1 —p/2 l'

—(1-~ )8(1—v/4) ' . (As)

W,'=-» 1» I2+ 3 2p)

(1 )e~&(1+ v)(2+ p)
'

& 2+3/2v

2~T swLe 2(2- v)
4 ~ p

(A4)

(A5)

W, =2»e" &[x„(2—v )4+Sp

+ 2(1 —x„)(1+p)']. (A6)

But the macroscopic limit shows the major short-
coming of this scale function, the presence of a
shell filled with a pure fluid of localized discs.
This contradicts the physical fact that a mobile
particle cannot distinguish between localized and
mobile discs.

It can be shown analogously that the scale func-
tion,

&„.(~) =-.'(1+~), (A V)
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APPENDIX A: SOLUTIONS WITH DIFFERENT
SCALE FUNCTIONS

In the previous work we had always obtained
results with the following scale function. '

a, $„(X)= ,'(a„+a&-,,)&

+ —,'(a. + a&,~), i,j= l, m . (Al)

leads to the same result as the scale function Eq.
(32).

APPENDIX B: REDUCTION OF THE VARIOUS
INTEGRALS

We need the integral

I= I df~ dq~ (e ~" '"»' —l)(e ~" '"&s' 1).

We will need this integral for different values of
disc diameters and distances x. We start with the
case of simple hard discs of diameter 0..

lt can indeed be shown, that Eq. (32) cannot be
correct in the general case of nonadditive hard
discs, since it does not give a correct macro-
scopic limit for additive discs. Equation (Al)
would not suffer from this shortcoming. However,
it is evident, and can be shown, that this problem
of an incorrect additive limit does not exist for
symmetric hard sphere interactions, p=0. Our
mixture with &=-—,p, while nonsymmetric in gen-
eral, becomes symmetric in the additive limit,
&=0. But since otherwise one has to use Eq.
(Al) we give the results for this scale function.
Following otherwise the procedure of Sec. IV, one
fands

and thus

I= — du v dv
s/2 r-a

t'„& ~~&
&& sin ' arc cosl&

:r., "I ="--("::.")'". "
. (Bs)

I ~ (Xg = 0'2 = (X.

Introducing the variables u, v, and x we have,

v . y u +'I —v2, & 2)
dg~dq~= —sin arc cos

2 ~ dudv, (82)281'

p ~ p

4 —p' 4+3p ' (A2) The first integration can be carried out after a
change of variables to
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Q2 + gl 2 A)2

to lead to

(a4)

o . (r t

I(&z, r) = ro-—arc sini —
i(2a]

~ '|2~1/2
+ —1- —

i + —o',
2 20j 2

(as)

I=-2 duu arc sini —
)
——

"r4 (2u) 2

This integral can also be carried analytically
making two successive partial integrations with
changes in variables so that we arrive finally at

2. For different diameters we distinguish four
situations, to the different possibilities of inter-
section:

(i) ai + o2 & r & o2 & ei .
(ii) o2&r&oi.
(iii) og &r& o2-og.
(iv) min(a~, o~ —oi) &r&0.

The last case is trivial and leads to

I
I(r, o) = —voi.

In case (i) we have

1
e& a2

-
u2 + r2 v2)21-1/2

I (o„r-o»o2) = —,
i d dvv 1— (as)

which leads to the result

. V, -(P, +r'& 1, . V, -(P, +r'&I (r, oi, o2) =-,'v(ai+ o2) ——,'oiarc sin( i- —
&z2 arc sini&2ogr j 2 2xg2 j

1 r2+ g 2 i/2
——~02 1-

2 2t'g2

In case (ii) we can write

I (r, oi, o2}=I,(r, pi, o2)+I (a), o r;o2),

with

t e2 r-/r+u ( 2+ 2 2)2 1/2

Ii(r, o&, o2}=— du II dvv 1-i i
=--,'v(o2- r) .

(av)

(a8)

(a 9)

For case (iii) we obtain the same result as in case (ii).

APPENDIX C: DETAILS OF THE PERTURBATION EXPANSION

The g,/, „(r) can be expressed in terms of the following integrals:

2 a~,. -+r+~ 1 2 . ~r -a~~+r2 2 2 2 2 2

Iq/~~(r) = —(a,/+ g, ) ——,a, / arc sini ' ——a/„arc sinl4 2r+l

1
r'+ ~2 —a' i""

l,ra„, 1-—) (cl)

Note that this integral is symmetric towards permutations of (i, j) with (k, I). On the diagonal i,j=k, l,
it degenerates to

I,/„/(r) =-a,
/
arc sin(r/2a, /) —(ra, //2) 1 —

i +—cP/ .2a„] 2 '~

For the constituents of the radial distribution function one has

g„,„(r)=g„„,, (r) =g„, ,„(r)=g», „(r)=I„„,„(r),

g, r /(r) =I„„(r).

(c2}

(cs)

(c4)

(cs)
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A. Thermodynamic properties

(d . d „)-=+d J( rdvU(r)2N + ' J rd~l7(r)
a a

2a )

+A xd&U&
N

Ã + —' I y
a m

a 8 t'
+ ~ rdrU(r) ~ ~II & I(( t ((r)

A.

+ ' r dr U(r) II. ' I„.,» (—r) &I.
a Pl

Qr finally,
de 2 II

((u —p„)=+2))8 rdr U(r)+Sm(8 +28 8, )
J

rdrU(r)I „, „(r)
a a

a(2+v)

+ 2meI t r dr U(r)I„,«(r) .
a

In the same way we find:

(p, , —p, ) =+2me„~t drrU(r)+2me, rdr U(r)+2we t rdr U(r)I„„, „(r)
~a(1+v) a

a (2+v)

+4me, s
Ja

2a (1+v)

+s.e, „t
a ( 1+v)

f2a
dr rU(r)I„,»(r) + 2ze„e, r dr U(r)I„„(r)

~a(1+v)

drrU(r)Ig( (g(r)

And for Eq. (50}
00 2a OO

(p —(t)') =-me
~

drrU(r) —2me „8 r dr U(r)1 „,„(r)-2we„e, drr U(r)
a a a

f2a f a(2+v)

4m' e-,
~

drrU(r)I „,„„(r)-4we„e,
&

drry(r)I „,„(r)
&a a

If we insert finally Eqs. (CS}-(C5) into Eqs. (48} and (49} we find for the perturbation terms

(cs)

(cv)

(C8)

2a
r dr U(r) ~8„82—

a (1+v)
.I, ja (1+v)

2 a(1+v)
2~8', — dr r U(r)I„,„(r).

a(1+v)

r dr U(r)I, „„(r)

(C9)

For the calculation of the properties of the pure fluid in the cavity we will neglect interactions across the
membrane but otherwise we use the same approximations that we have made in the bulk fluid; we thus have

OQ 2a
(p, „' —p") =-28' ] drr U(r) —Sm( )8' rdr U(r)I„,„„(r), (C10)

a a

OO 2a
(p„' —d()) '„)=m(8„') dr r U(r) —22('(8'„)2 dr r U(r)I„,„(r).

a a
(C11)

B. Integrals J,.& "(5,0) and J,, (5,g)
The thermodynamic properties of our system are expressible through the following two integrals in the

case of the square-well potential:

J„„)(5,(r) =.f6 rdrI„„,(r), (c12)

and
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~„,„(6, ) = Jl d I„„,( ). (c13)

For these we find

J«,«(&, o) =-[-,'a'«(r' —a«) arc sin(r j2a«) +~6 r(4a« —r )' '(2a«+ r') —,'rr—arrr']', , (C14)

2 U 2 z 2 2 1 5~rr jj(6r &) —[8rj(arr + rrjj)r 2arr+rr jj 2ajj+jj ~ rr 4~jr jj}]
where

i& «+~jj-
2a«a»

+ —,'(a«+ a/ /
—r 2)[2r2(a«+ a2jj) —(a2« —aj/)2 —r4]r/2

2 r2)"
2a«a&& j I'

(c16)

(c»)

One sees that 4«, &&
becomes ~~q, « for p =0. In the case ' of the noble gases X, =1.85, i.e. , smaller than

2, and we can identify & with the original upper limits from Eqs. (C6) to (C11}.
In terms of reduced coordinates, r=r/ aand denoting the upper limit for the integrals by t, Eqs. (C14)-

(C17) read:

„(t, 1)= a [-,'(r —I)ar c sin( —,'r2) - -,'jrr + (2 + r )]r .
&»,«(t, 1 + rr) = rra (—,'(1+v} [& —(1 + v) ]arc sin —,'r

——,'rr(1+v) r +~ex[4(1+ v) —r ] ' [2(1+v) + r ]]'r~.

Z„„,»(t, 1)=a (Brr[1+ (1+v)r ]-—,'E*„„,„-2(1+ v) I~rr, —~f mmrrN ~

2r j 2 2(1+v)

t'2 y 2v+ 2 r2 %2&1/2

x 1 2(1+v)

I,*„,„= —,'(2+ 2v+ v'- r2}[2t (2+ 2v+ v ) - v (2+ v)'- r']'"
2+ 2p+ p -y' i

—2(1 + v) arc sin
( )

(C18)

(C19)

(c20)

(c21)

(c22}
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