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Dielectric function at metallic densities with nonlocal interactions
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A nonlocal type of interaction with a separable form has been proposed to obtain the dielectric function
for the degenerate electron gas. The corresponding vertex function is then solved exactly and the expressions
for compressibility ratio K„/x and the dispersion parameter P/PRpA have been obtained. The calculated
results of P/PRpA are in reasonable agreement with the available experimental data. Further, the model-

dependent calculations not only satisfy the Ward identity for the wave-function renormalization Z p, but also
show no compressibility divergence.

I. INTRODUCTION

A number of attempts have been made over the
last two decades to arrive at a suitable form for
the dielectric function of a degenerate electron
gas prevalent at metallic densities. Sev.eral dif-
ferent approaches have been tried for the dielec-
tric function e(k, to). One of the approaches is the
many-body theory approach in which, in the static
approximation, the resulting equation for c(k, to)

is given as

~(k, to) = l+2V, Qg„„(p')A;„(p'}, (l)
~or

where V„ is the Coulomb interaction 4tte2/k', and
the proper vertex function A„„(p) satisfies the fol-
lowing integral equation':

A„(p) = l —g I(p, p} „-g„('p)A-„(p'), (2)

g- (p) = (f- -„-f-)/(to+it)+(- —e-,-„),

where e;=p'/2m p+;, I(p, p')f, , , rl is a positive
infinitesimal quantity, f; is the Fermi function,
and p; is shorthand for (2tt) ' fd'p I(p, p') .is the
static interaction term, characterizing an effective
interparticle interaction.

Most of the theoretical attempts to find e(k, to)

have been to use different approximate forms for
I(p, p ). One common approximation originally
due to Hubbard' and used widely is the screened
Coulomb interaction of the Yukawa form, namely

I(p, p') = —It4ne2/[(p —p') '+Its]),
where K~ is the screening parameter usually taken
to be the inverse Thomas-Fermi length. Hubbard,
however, solved the integral equation (2) making
a further approximation for I, that the (p —p')'
term in I could be replaced by k'+ kr2 (kr being
the Fermi wave number). Kleinman' and Over-
hauser' have independently pointed out that this
further approximation of Hubbard' is incorrect

pi ) 4nash2/[$2+ P2}@&2 P2)] (5)

where X and P are two parameters which are to
be suitably chosen. From the point of view of the
integral equation this amounts to making a deg-
enerate kernel approximation of the equation. In

principle we may take the sum of a large number
of such terms as given by Eq. (5), but it then in-
volves a large number of unknown parameters.
The present choice immediately leads to an exact
solution of Eq. (2), and we can then derive exact
expressions for the dielectric function within our
nonlocal separable approximation form for the
interaction. While obtaining the solution of the
integral equation (2), we keep in mind that the
proper vertex function As„(p) must obey the Ward
identity, namely

lim A, „(p)= 1/Z, ,
k Oco 0

for large k dependence and could lead to large
effects, in particular on the correlation energy
at metallic densities which is sensitive to large
values of k.

Langreth' employed a variational technique to
solve the integral equation (2) with I(p, p') given
by Eq. (4), and he has shown with the simplest
choice of the trial function that the dielectric
function is exact in both low and high values of the
momentum transfer. Since then, more powerful
variational calculations have been done by Shastry
et al. ,

' who have proposed a self-consistent quasi-
statie-screening approach in which they replaced
the interaction term I by 4tte'/[k'+kr2$'W(k)],
where iv(k) is a slowly decreasing function of k
and $'(2's) is determined self-consistently. Also
there exists a numerical solution of Eq. (2) by
Woo and Jha. ' In all these calculations, however,
one goes beyond the random-phase approximation
(RPA) calculations. In the present paper we have
assumed, unlike previous studies, a nonloeal form
for the interaction which can be expressed as
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where Z; is the wave-function renormalization
and must be such that 0&Z; ~ 1 for all p.

In the following section we give the solution of
Eq. (2) and obtain an exact expression of the di-
electric function. In Sec. IIIwe obtain other related
functions, namely the compressibility ratio and the
plasma dispersion parameter and show explicitly
how our results lead to terms beyond that which
one obtains in the usual RPA case. In Sec. IV we
give our numerical results and discuss how they
compare with available experimental and other
theoretical results.

We may note that the first two terms in the above
expression for ark, (d) in Eq. (11) are the usual
RPA results while the last term in Eq. (11) gives
us the correction term to the RPA in our present
model. In order to obtain the compressibility
ratio and plasma dispersion relation, we evaluate
the various integrals occuring in the expression
for E(k, &u) given in Eq. (11). As is common we
replace as usual && by p'/2m and consider the
system at temperature T=0. In this case the
Fermi distribution function f; becomes unity for
~p ~

&p~ and it vanishes otherwise. The value of
the integral I„where I, stands for

II. SOLUTION OF THE VERTEX INTEGRAL EQUATION
AND THE EXPRESSION FOR DIELECTRIC FUNCTION

The integral equation (2) for the proper vertex
function A-„„(p) with the approximation (5) for the
static interaction term I(p, p') can be written as with

d'p'

(2 )s gr~rp ))'

A.-rp)=1 e. p", (2,.g.--rp')A.--rp') " p' g;.$) (f; ; f) =(, 2 . — -2 +~+in), ())))f P' rp+k)'

Introducing a quantity C,„by

C~„= d'p'g„„' A"„„p' p"+ ''
we can rewrite (6) as

(6)

(7)

is the usual RPA result, and the results for the
real and imaginary parts are well known and are
given in the Appendix for ready reference. To
.have the complete result for e{k, a&), we need to
evaluate two more integrals which occur inexpre-
ssion (11), namely,

4me2X'
ka)rP) (2v)3/2 P2) k(a ' (6) d'p', 1

2(P) (2&)s glt(drP ) t2 P2 (i4)

Substituting the expression for A„-„(p') from Eq.
(8) into the right-hand side of Eq. (7) we easily
find

d'P' g;.rp')/(I "+P')
d pi —4~e'x', g„-.rp')/(p" +p')'.

and

dp, 1
3(@ „(2v)3gkz rp ) (pt2+ p2)2 ) (i6)

Hence the solution of Eq. (6) for A,„(p) becomes
where g„-„(p) is given by Eq. (13). We may note
that I, xs simply obtained as

I,(P) = -(e/sP')I, (P) . (16)

(10)

Thus the expression for the dielectric function
e(k, tu) is easily derived from Eqs. (1) and (10) and

is given by

d p
6(k& (d) 1 +2' ( pg)(&rp )

de i

2V„4 X
i ( ), g„(p')

(2v)3 gk (P )
(P 2+ P2)2

[4ve'~2/(p2+ P2) tl, (P)
(p) ="

1+478 X (8/Bp )I,'(p) (17)

Since the proper vertex function A.„„(p)must sat-
isfy the Ward identity, we need to find out
lim„, „OA-„„(p). The relevant expression for
2 becomes

z. =1+z,/z„
where

(is)

The values of real and imaginary parts of I,(P)
and I,(P) are displayed in the Appendix. Using
Eqs. (14) and (16), we have from Eq. (10) the fol-
lowing expression for A-„„(p):
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and

k'.,X' 2v(k' P'), P' 4v „,2Pk„2v(k' i 3P')
8v(p +p') k'(p k ) p k' pk p' —k' p (p2+k )

kTX' (kF+2p') (p'+kF) p2 p' 1, 2pkF
P' 4P'(P'+k') 2[(P' —k )'+4k'P ] 2(P'+k')' P'+k' 4Pk P' —k'

kF T
——6mne'/EF, eF —kF/2m, and kF =3nv2,

where n is the electron density.
We study the behavior. of this function Z& in Sec. IV, in order to test the Ward identity. In the following

section we write down the expressions for the compressibility ratio for the free and interacting electron
gas and plasma dispersion relation.

III. COMPRESSIBILITY RATIO AND PLASMA DISPERSION RELATION

The compressibility ratio zF/v of the free and interacting electron gas is given by'

2k'~ ~= lim
2[ @ 0) 1]

(1S)

In the limit of the long wavelength (i.e. , k-0) and ur =0, our expression for e(k, ur) yields the following:

lim k'[e(k 0) —1]=k' +t FT 1 & k2 )2 (p)&~0

where

(2o)

vkF 4vkF (2p'+ kF) 4wkF (3p'+ kF), 2pkF 4v, 2pkF ' 42 (p' —k~) p'
g 1(p p4 +

p2(p2 k2 )2 p3(p2 k2 ) p2 k2 +
p2 p2 k2 pk (p2 k2 ) p2 k2

2pk 2&(p+k )' 42k (3p'+k') p' v 4vp' p'
3' —&' 3')3'+ &') 3'(3'+)" )' 3'+ &' )" ( + 3' )* )3'+&' )

and

(kF +2P') 2(P'+kF) 1, 2PkF 2 P
82(p) p4(p2 k2 ) p2[(p2 k2 )2 4k2 p2] p3k p2 k2 (p2 k2 )2 p2 + k2

The collective plasma mode in the electron gas
can be found from the vanishing of the real part,
of the dielectric function. In the present case
therefore, the collective plasma mode will be
given by

2V,4ve'~'I,'(P)
Re 1+2V~I +

1 4 2,I -0. (21)

When we expand the real part occurring in Eq.
(21) in powers of kVF/~, the required plasma
dispersion relation in the long-wavelength limit
becomes

or~2 'k' 9 k 2X2
1 — '2 1+, —— 4 +. . .

k~~ 5 2P
(22)

(23)

(24)

If the plasma frequency is written as

~,(k) = ~,(0)+Pk',

then the ratio P/g„r„becomes

P 5X' kFT

where P„p„ is obtained from Eqs. (22) and (23) by

I

dropping the X'-dependent term.
To write down the relevant expression for the

plasma dispersion curve, we have from Eq. (22)

k' " 4' (26)

Numerical results both for compressibility ratio
and dispersion parameter are discussed in the
next section.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to calculate the various physical quan-
tities we must know the values of the screening
parameters P' and A'. However, it may be men-
tioned that it is not very difficult to guess the
approximate values of these parameters, con-
sidering the values of similar parameters avail-
able from earlier theories. Nevertheless, we
have studied the variation of P/P„p„ for different
values of X' and P . The results of our calculations
are plotted in Fig. 1 along with the experimental'
results for various values of r2 [r3= (—', )Tna', ) '~',
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independent) and P'=2kz~+kz'z.
We thus find from our study that a choice of a

nonlocal type of interaction which provides a
special type of screening in the potential and yields

an exact expression for the dielectric function
affords another approach to studying the prop-
erties of the degenerate electron gas at metallic
densities.

APPENDIX

The values of real and imaginary parts of the integrals I„ I, are given by

k~2 k~3 &u+k'/2m 'l' (u+k'/2m+kV~
4n V~ Sn kV~ kV~ ] ~+k'/2m -kV~

4 '1 (~ —k'/2m
&~

&o —k'/2m+kV~
Sn'kVz

~ kV~ j &o -k'/2m —kV~ '

co k~~ ~ (kV —k'/2m
4m k V~

. F
I' '=' ' @ i-( -'" )* -'/2-=- av =a/2-

8m'k V~ I, k V~

i0, ar ~ k V~+ k'/2m

4r lV1, 2 v+0'/2m+kF~ P jl +k' -2+k„/Vz P k Vz —2+& V k )
I

2 (o —k'/2m+k V~ ( P'+k~ P'O'V~ )

(to —km/2m)k~ (u)+k'/2m)k~ 2kk~
k V~P k V~P' —2(ukk~ P' —2&uk~/V~

2Pk , 2Pk|,
P -2(ok~/V~ /3 +k —k~

Swk V~
ln

k
lnImI)"-( SvkV~

g+p'
k2+ p2 —2~k /V

' v-k Vz-k /2m

k2 +P2

(
—k'/2

( kV~/k~

-k'/2m «o —kV~ (k'/2m

2 P'+ (k —kz)' P'yk~~ -2&A+/V~ tl' —2&ok~/Vz j

0, a& & kV~+k'/2m

where Vz =kz/m. The values of I, can then be.obtained following Eg. (16).
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