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A nonlocal type of interaction with a separable form has been proposed to obtain the dielectric function
for the degenerate electron gas. The corresponding vertex function is then solved exactly and the expressions
for compressibility ratio kp/k and the dispersion parameter B/8gzps have been obtained. The calculated
results of B/Bgrpa are in reasonable agreement with the available experimental data. Further, the model-

. dependent calculations not only satisfy the Ward identity for the wave-function renormalization Z >,but also

show no compressibility divergence.

I. INTRODUCTION

A number of attempts have been made over the
last two decades to arrive at a suitable form for
the dielectric function of a degenerate electron
gas prevalent at metallic densities. Several dif-
ferent approaches have been tried for the dielec-
tric function €(T<, w). One of the approaches is the
many-body theory approach in which, in the static
approximation, the resulting equation for €(k, w)
is given as

el, ) =1+2V, 3" gp., B35, 0, (1)

where V, is the Coulomb interaction 4me®/k?, and
the proper vertex function A, () satisfies the fol-
lowing integral equation':

K ®=1- Y 76,5)0,6)02, 6", @)

Lt =(f-f7)/ (w+in+e;-€;5), (3)

where €;=p*/2m +Z)5,f({),§’)fp,, 71 is a positive
infinitesimal quantity, f; is the Fermi function,
and Y; is shorthand for (27)® [d%. I(®,D’) is the
static interaction term, characterizing an effective
interparticle interaction. .

Most of the theoretical attempts to find €(k, w)
have been to use different approximate forms for
I®,D’). One common approximation originally
due to Hubbard? and used widely is the screened
Coulomb interaction of the Yukawa form, namely

I, 9') = —{4me®/[G - D) * + K51}, (4)

where K is the screening parameter usually taken
to be the inverse Thomas-Fermi length. Hubbard,
however, solved the integral equation (2) making

a further approximation for I, that the (5 —9’)?
term in I could be replaced by k?+k2 (k, being

the Fermi wave number). Kleinman® and Over-
hauser® have independently pointed out that this
further approximation of Hubbard? is incorrect

for large %k dependence and could lead to large
effects, in particular on the correlation energy
at metallic densities which is sensitive to large
values of &.

Langreth' employed a variational technique to
solve the integral equation (2) with I(%,D’) given
by Eq. (4), and he has shown with the simplest
choice of the trial function that the dielectric
function is exact in both low and high values of the
momentum transfer. Since then, more powerful
variational calculations have been done by Shastry
et al.,* who have proposed a self-consistent quasi-
static-screening approach in which they replaced
the interaction term I by 4me?/[k? + k2 E2W ()],
where W(k) is a slowly decreasing function of %
and £2(rg) is determined self-consistently. Also
there exists a numerical solution of Eq. (2) by
Woo and Jha.® In all these calculations, however,
one goes beyond the random-phase approximation
(RPA) calculations. In the present paper we have

- assumed, unlike previous studies, a nonlocal form

for the interaction which can be expressed as
16, 5) = —4ne*/[(0* +6) 67+ %), 6)

where X and B8 are two parameters which are to
be suitably chosen. From the point of view of the
integral equation this amounts to making a deg-
enerate kernel approximation of the equation. In
principle we may take the sum of a large number
of such terms as given by Eq. (5), but it then in-
volves a large number of unknown parameters.
The present choice immediately leads to an exact
solution of Eq. (2), and we can then derive exact
expressions for the dielectric function within our
nonlocal separable approximation form for the
interaction. While obtaining the solution of the
integral equation (2), we keep in mind that the
proper vertex function A, (p) must obey the Ward
identity, namely

_lim A,,()=1/Z;,

k-0, w=0
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where Z; is the wave-function renormalization
and must be such that 0<Z; <1 for all p.

In the following section we give the solution of
Eq. (2) and obtain an exact expression of the di-
electric function. InSec. IIIwe obtain other related
functions, namely the compressibility ratio and the
plasma dispersion parameter and show explicitly
how our results lead to terms beyond that which
one obtains in the usual RPA case. In Sec. IV we
give our numerical results and discuss how they
compare with available experimental and other
theoretical results.

II. SOLUTION OF THE VERTEX INTEGRAL EQUATION
AND THE EXPRESSION FOR DIELECTRIC FUNCTION

The integral equation (2) for the proper vertex
function Ag,,(p) with the approximation (5) for the
static interaction term I(,p’) can be written as

A ®)=1+ ’(%272) ] (‘;’—i;;giw(f’l)ﬂiwq”) p_;z’l;'ﬁ_z-
(6)

Introducing a quantity C,, by

Cro= [’ 81,60 K2 ®) ﬁ;, (M
we can rewrite (6) as

4me)\*® c
@)@ +p%) TFe”
Substituting the expression for A;, (p') from Eq.

(8) into the right-hand side of Eq. (7) we easily
find

A, (B)=1+ ®)

S 42,6/ 724.89)

= 3.7 (9)
1 dren [ Th g1, 6/ 4 8.

Ckw

Hence the solution of Eq. (6) for A, () becomes
dre®® rd%’ ., 1
@2+ 69 @7 gkw(ﬁ ) PR
asp’ 1 :
1 —41162X2f(2—11:)—3 L ®’) o

A.,B)=1+

(10)
Thus the expression for the dielectric function
€(k, w) is easily derived from Egs. (1) and (10) and
is given by
- a"3 ’
ek, w)=1+2V, f -@#gm(ﬁ’)

da ’ 1 2
2vre ([l 58 prgr)

a3p’ 1
1- 41re27\2f—(?f)7gk,,,(§') [P

+

(1)

We may note that the first two terms in the above
expression for €(k, w) in Eq. (11) are the usual
RPA results while the last term in Eq. (11) gives
us the correction term to the RPA in our present
model. In order to obtain the compressibility
ratio and plasma dispersion relation, we evaluate
the various integrals occuring in the expression
for €(k, w) given in Eq. (11). As is common we
replace as usual €; by p%/2m and consider the
system at temperature T'=0. In this case the
Fermi distribution function f; becomes unity for
|p| <pr and it vanishes otherwise. The value of
the integral I,, where I, stands for

» d3 ’
I, = j. (2:)3 gﬁw(ﬁ’)’ (12)
with

&1, = f3.3 —f;)/(i%— (f)—;-y%)—wwnrz), (13)

is the usual RPA result, and the results for the
real and imaginary parts are well known and are
given in the Appendix for ready reference. To

‘have the complete result for €(k, w), we need to

evaluate two more integrals which occur inexpre-
ssion (11), namely,

Iz(ﬁ)= J’ éf)’s giw(ﬁ') plzl:'_BZ (14)
and
L(B) = f'(%—f:T,ang ®") (571”37)2, (15)

where g3, (D) is given by Eq. (13). We may note
that I, is simply obtained as

I,(B) = —(8/9B3)I,(8) . (16)

The values of real and imaginary parts of I,(8)
and I,(B) are displayed in the Appendix. Using
Egs. (14) and (16), we have from Eq. (10) the fol-
lowing expression for A, (B):

[47e®%/(p* + BO)IL,(8)
1+4me®\3(8/8B%),(B)

A, @) =1+ (17)

Since the proper vertex function A;, () must sat-
isfy the Ward identity, we need to find out

lim,., ,.oAz,(). The relevant expression for
Z3' becomes

z:'=1+2,/2,, - (18)

where
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7 - B2 22 2m(k2 - B7) In B? dr_ o 2Bk 27 (k2 + 38%)
LT Br(p+ D) KA(BE4RD) T BR+RI T BRp 0 BEokL T PABE+ED)
and
. R (kR 4287 (B +%2) g2 B2 1 . 2Bk )
2= -~ (G5 ) AT+ 4 2 RDT PR T W, A Bogz )

kZp=6mne?/e,, €, = k%/2m, and k% =3nm?,
where 7 is the electron density.
We study the behavior-of this function Z; in Sec. IV, in order to test the Ward identity. In the following
section we write down the expressions for the compressibility ratio for the free and interacting electron
gas and plasma dispersion relation.

III. COMPRESSIBILITY RATIO AND PLASMA DISPERSION RELATION

The compressibility ratio k/«k of the free and interacting electron gas is given by®

2
E-L:lim——?gﬂ——. 19
k2., Klek,0-1] (19)

In the limit of the long wavelength (i.e., k—0) and w=0, our expression for €(§, w) yields the following:

. - kZ.)°22/81k%] g, (B)
1 k2 k.0) =1 =k2 [( ET Fl51
S ¥ v X 20
where
ok 4mRE(26°+k3)  Amkp(3BP+R2), ., 2Bkp 47 ( L 2Bk )2 4n (82 - k%) g?
§B)= G gl gy T E@ER) N o T \ B E k) T B ekl AR
., 2Bk 21(B+kp)?  4nRE(3B%+E2 )) B2 T 4np? B\
X tan! F. ( Fl__ _ F F <_. - )( .
gl B ) T e e ) e T\ T T )\ R
and
(k2 +28°) 2(8%+ k%) 1 o 2Bk 2 g2
£:08)= GiE iy ~ B - e ] T ey N Bk T BT N FeR
‘ r
The collective plasma mode in the electron gas dropping the A*-dependent term.
can be found from the vanishing of the real part To write down the relevant expression for the
of the dielectric function. In the present case plasma dispersion curve, we have from Eq. (22)
therefore, the collective plasma mode will be ' R A2p2
given by w,,(k)=w,,(0)[1+ —2—(%_%)+~--]. - (25)
2, 272 kFT 40
2V, 4me*\°I
Re(1+2V,I + —-“—Kz-—-zJ@):O. (21) Numerical results both for compressibility ratio
1 - 4ne®?,(B) . . . .
and dispersion parameter are discussed in the

When we expand the real part occurring in Eq. next section.

(21) in powers of 2V,/w, the required plasma

dispersion relation in the long-wavelength limit IV. NUMERICAL RESULTS AND DISCUSSION

becomes .
w? B2 9 B2 In order to calculate the various physical quan-
1- -(:)%—(1 t R 5T gt ) =0 22) tities we must know the values of the screening
FT parameters 8% and A%, However, it may be men-
If the plasma frequency is written as tioned that it is not very difficult to guess the
~ approximate values of these parameters, con-
w0, () = ,(0) + BR?, @3) sidering the values of similar parameters avail-
then the ratio 8/Bzp, becomes able from earlier theories. Nevertheless, we
B 5x2 B2 have studied the variation of 8/ Bup 4 for different
— =1 — £, (24) values of A% and 2. The results of our calculations
Brpa 9% 2 are plotted in Fig. 1 along with the experimental’

where Brp, is obtained from Egs. (22) and (23) by results for various values of 7g [7s= (£ mnad)™/?

b
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FIG. 1. Variation of dispersion parameter 5 /Brpa
with metallic electrondensities represented by ¢, as given
by experimental results of Raether and various theories.
-+~ Vashishta and Singwi theory; -..- Rajagopal, Rath,
and Kimball theory; -...- Shastry, Jha, and Rajagopal
theory. Curves I, II, III: present theory calculations
when A2= B} + kg, B2= 2k% + khp; A2=B%=2k% + by, and
A2=k% + Bp, [32—2k§,-+ 2k”, respectwely, Curves IV, V,
and VI: present theory calculations when A2=1.8818 .2\ 2
B2=2k% + khp; A\2=1.8818 A2, 2= 2k% + 2k%y, and A?
=3.3038 A~?%; p2=2k% + 2k%y, respectively.

where n is the electron density and a, the Bohr
radius].

For comparison of our calculations with experi-
mental results of B/ﬁ.am we have chosen various
sets of values of A% and B%. For example, we have
taken B2 to be of similar form as used in other
theories, namely B8? given in terms of k% and %%,
For the choice of A% we have considered two pos-
sibilities: in one case A? is taken to be a constant
independent of 7 and in another case its form is
taken to be similar to that of B? which is rg de-
pendent through k2.

For curves IV, V, and VI we have kept A% a
constant independent of 75 and 82 =2k2 + k%, for
curve IV, and B%=2k2 +2kZ . for curves V and VI
In curves IV and V 2 equals 1.8818 A2, while
B? is taken as 2kZ + k%, and 2kZ +2k2 . respec-
tively. Curve VI is plotted with 82 =2k +2k% 7,
but 22 is varied to 3.3038 A2, While curve V
shows agreement with experlmental data for v

=1.88, 2.65, and 3.93, respectively, curves IV
and VI are in agreement with the experimental
results for Be and Na.

Curves I, II, and III in Fig. 1 correspond to the
second possibility of A* and show the plots of
B/Brpa Vs v for values of B%=2k% +k%,, A2= k2
+R20; BP=2A%=2k% + k2, and BZ=2RZ +2k2,, X
=k2 +k%,, respectively. It is evident from Fig. 1
that for small values of ¢, that is, for g lying
approximately between 1 to 3.5, the calculated
results for B/ﬁm,A decrease more rapidly for »g-
dependent A? in comparison with 7 independent.
For larger values of 7g, that is g greater than
approximately 3.5, the trend is reversed; that is,
the calculated values of f/Byp, decrease much
faster with increasing 7g for \* which is 7 in-
dependent in comparison with the »¢-dependent
A%, It may be noted that, when both A* and B® are
vs dependent, our calculated results show good
agreement with most of the experimental results.
In particular, curves I and II are in reasonable
agreement with the experimental data. For com-
pleteness we have also compared our results with
those of Shastry, Jha, and Rajagopal (SJR),*
Vasishta and Singwi (VS),® and Rajagopal, Rath,
and Kimball (RRK).® Our results are larger than
the predictions of VS and RRK theories but closer
to the findings of SJR theory.

We now use the values of the parameters
employed in curves I and II as well as those in
curves IV and V to investigate the behavior of the
wave function renormalization Z;. As mentioned
before, we require that Z; given by Eq. (18) must
satisfy 0<Z; <1 for all p. We have evaluated this
from p =0 to p, and we find that Z; indeed sat-
isfies the required Ward identity for various
choices of the parameters A% and B2. The values
of Z; have been evaluated both at high and low
metallic densities such as at 7 =2 and 8 and those
given in the accompanying Table I.

From our calculations we can conclude that for
any given set of A\* and 8° the values of Z; is less
than 1. Furthermore, as 7 increases, that is,
metallic electron density decreases, the value

TABLE I. Values of the wave-function renormalization Zz for various choices of the pa-

rameters A% and g2.

=2k% + By A= kY + by A?=1,8818 A= A2=1,8818 A2
B2=2k% + Ky B%=2k% + Ky B2=2k% + Ry Bl= 2% + 2k%y
Y= 2 75=8 7g=2 rg=2 rs=8 rs=2 7g=8
z; 0.9048 0.8327  0.9146 0.8527 0.9787 0.7819  0.9882  0.8752
?=0
z; 0.9260 0.8532  0.9485 0.8711 0.9820  0.8072 0.9906  0.8853

p=pF
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FIG. 2. Variation of compressibility ratio kz/k with
metallic densities as given by various theories. ---
VS theory; -..- Hubbard theory; -...- SJR theory;
—«ees=SJR theory (£2=0 limit) ; curves I and II present
theory calculation with A%=k% + By, B2=2k% + b}y, and
A%=p%=2k% + k%p; curve IV: present theory calculation
for A%=1.8818 A~? and 8%= 2k% + k.

of Z; decreases but is not less than 0.7819. We
can also see that the value at p =p is higher than
that at p=0. It is interesting to note that at

P—, Z;~1 as can be easily seen from Eq. (18).
Thus the fact that the Ward identity is satisfied
along with the good experimental fit of B'/ﬁm, A
gives confidence in our choice of the nonlocal type
of interaction given in Eq. (5).

We now present the calculated values of the com-
pressibility ratio of the free and interacting elec-
tron gas, namely k,/k obtained in Eq. (19). In
Fig. 2 are shown the results of our calculations
for k/k for various values of 5. The curves I
and II correspond to values of the parameters
N=RZ k2, B2=2R% +kZ,, and NP =pE=2k% 4R .
Both the curves show remarkable similarity to
the theoretical values of Shastry et al.* The pre-
sent calculation is also compared with the results
of Hubbard? as well as of Vasishta and Singwi.®
We find that the divergence in k/ky obtained in
these theories is absent in the present model as
is also the case in the calculations of Shastry
et al. Curve IV has been plotted for a fixed value
of A% set equal to 1.8818 A2 with 82=2k2 + k2.
While for small g (<2), xz/k stays nearly con-
stant equal to 1; for larger values of 7g, i.e.,
rs>2, the value of k;/k starts decreasing some-
what sharply, reaching a value of 0.56 for »5 =8.
However, curve IV still does not present a com-
pressibility divergence at metallic densities as
is present in other theories.

We have already pointed out the behavior of the
collective plasma mode in calculating B/Bgpa-
For completeness, we give in Fig. 3 the plasma
dispersion curves obtained in our model and com-
pare it with that obtained by Singwi ef al. (STLS).¢

1.36)

1.30

T 1.24
)

?1 18]
b
£ 3
3

1.12

1.06

1.00

0.94 1 1 1
0.2 0.4 0.6 0.8 1.0 1.2
k/ kg

FIG. 3. Comparison of plasma dispersion curves as
given by STLS theory with present theory calculations
for different values of metallic densities. -.«- STLS
theory; --- present theory calculations when A2=1.8818
A-z’ B%= 2k§,—+ kﬁ,-.,; —— present theory calculations for
A2=B2= 2% + k.

Their expression corresponding to ours for wp(k)/
w,(0) is given by

w, (k) =w,(o){1 + [3—0 _gy(-’Z’TT)zk k—ér_>2+' . } ,

(26)

where v is related to static structure factor.

We have plotted the values of w,(k)/w,(0)
vs k/ky for various values of 7 for A%=g%=2k2
+k% - denoted by curve II in Fig. 3 [the other
choice of parameters \*=Fk% +%% . and B%=2k%
+k%, gives nearly the same values of w,(k)/
w,(0) as given by the values of A* and 8* used in
the evaluation of curve II]. For values of 7
ranging from 2 to 4 our results are somewhat
similar to the results of Singwi et dl.,° represented
by the dash-dot curve in Fig. 3. For higher values
of rg4 (rg>6), however, their calculated values of
w,(k)/w,(0) are less than 1 for small values of
k/kp reaching a minimum for a particular value
of k/kp, and beyond that follows the trend similar
to r4<6. For example, for »5 =10, their cal-
culations for w,(k)/w,(0) show a minimum 0.96 at
k=0.Tkg and it increases for £>0.Tk;. Sucha
trend does not occur in our calculations as is evi-
dent from Fig. 3. The curve marked IV in Fig.
3 corresponds to the choice A>=1.8818 A2 (r
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independent) and B%=2k% + k% ..

We thus find from our study that a choice of a
nonlocal type of interaction which provides a
special type of screening in the potential and yields

an exact expression for the dielectric function
affords another approach to studying the prop-
erties of the degenerate electron gas at metallic
densities.

APPENDIX

The values of real and imaginary parts of the integrals I,, I, are given by

k2, k3 w+k2/2m \? w+E%/2m + RV,
Rely= ooV * By, [1 ( %V, )]1“w+k2/2m_kVF
_ fsﬁ [1 _ (w -k%/2m )2]111 w —k:/zm +kVp
87kVy RVp w-R*/2m - RV’
1 w k2
—_— = ZE < - b2
TR Ok k2/2m
Iml, = LE‘L[ w = k2/2m )2] . .
81k Vo —( A y =k2/2m<w-RV,<E/2m
0, w=kVp+E/2m
Rel.- —FE [lln w+k2/2m - kVp (ln B% ~2wkp/Vy N (w +E%/2m k% )
2T 4r%kVy L2 w+k2m+kV, 32+k;_2ka/VF BE*VE - 2wk, V k2
1 ~k%/2m - kV(l B2 (w—kz/zm)2k2>
k’/2m TRV \ | BEikE T pRIVE
(0 —k/2m)ky  (w+k?/2m)k} 2kk,
- BV B? EVpB® - 2wkky ~ B?=2wk;/Vy
28k a 2Bk
Y20k, P PR
+11 B+ (o +kp)? In B% - 2wk, /V, B2 - p? )
B+ (k=kp) \"" B2 4RE — 2wk, /V, * BT =20k, ]V,
4 kg ki‘*’Bz 2
Brkv, N B 2wky v, SEVe-R/2m
Ry k§~+32 2 2
~ke/2m < w ~RV, <k%/2
ImI;:{ grev, I o R am /2m < w r <k/2m
Py
\o,- w=kVp+k2/2m

where Vi =k,/m. The values of I, can then be.obtained following Eq. (16).
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