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Theory of light interstitials in bcc metals. I. Self-trapped state of hydrogen and mnons in Nb
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A quantum-mechanical calculation has been performed on the self-trapped state of hydrogen isotopes and
positive muons in Nb. By solving a Schrodinger equation for these light interstitials in the field of
interaction with surrounding metal atoms, the energy and the wave function of the interstitials and the
displacements of metal atoms have been derived. It is concluded, in particular, that hydrogen isotopes

occupy tetrahedral (T) sites, and positive muons occupy octahedral (0) sites in Nb. The origin of the

systematic variation of the relative stability of 0 sites vs T sites is clarified. Some calculations performed on

the excited state are also described.

I. INTRODUCTION

A theoretical possibility that hydrogen atoms in
metals are in band states in which wave functions
are extended over periodic arrays of interstitial
sites appears to be largely disproved by observa-
tions. Even in bcc metals, where extended states
are more likely to form than in fcc metals due to
smaller separation between interstitial sites,
experimental results show clearly that H atoms
are localized in space.

As evidence for the localization, three kinds of
observations on hydrogen in group-V metals (V,
Nb, and Ta) may be cited.

(I) Channeling experiments': The occupancy of
tetrahedral (T) sites has been established for H

and D in the n phase.
(2) The inelastic scattering of neutrons': For H

in the n phase, peaks have been found at 0.1'l and
0.12 eV with the intensi. ty ratio of 2:1. For D in
the n phase, the energy values are reduced ap-
proximately by a factor of 1.4. These results have
been interpreted by regarding a H(D) atom as
three harmonic oscillators localized around a T
site.

(3) The force-dipole tensor P (Ref. 3): Two
different types have been found as regards the
anisotropy of the force-dipole tensor that re-
presents the average stress field around a H(D)
atom. One is the type characterized by a small
anisotropy, observed in many cases including
n-VH„n- and &-VD„, and all phases of hydrides
and deuterides of Nb and Ta. The other is the type
characterized by a large anisotropy, observed in
P- and ~-VH, and P-VD„. The former is identified
as the T-site occupancy, and the latter as the 0-
site occupancy. In the latter, the magnitude of the
anisotropy is found to be nearly the same as
heavier interstitials (C, N, 0) known to occupy 0
sites in bcc metals. '

A possibility for simultaneous occupation of a

group of interstitial sites have also been con-
sidered. Birnbaum and Flynn' once proposed that
a H(D) atom in Nb is in a "pocket state, " which
is a tunneling state extending over a group of four
T sites (4T in Sec. II). The proposal was made to
account for reported anomalies in the Debye-
Waller factor and the specific heat at low tempera-
tures. However, it proved later that the former
was due to inappropriate analysis of data' and the
latter was due to the presence of other interstitial
impuri. ties (0 and/or N) in addition to H. ' Thus we
no longer have any experimental observation that
requires the existence of tunneling states.

On theoretical grounds, the localization must be
a consequence of strong interactions between H(D)
and metal (M) atoms. The strong interaction can
lead to a formation of the "self-trapped state, " in
which the total energy is lowered by confining a
H(D) atom in the potential well produced by a local
relaxation of the metal. lattice. A calculation of
the self-trapping effect has been performed by
Kehr, "who adopted a harmonic approximation
for the interaction potential, and estimated the
strength of the H-M interaction from the observed
P-tensor values, and the M-M interaction with
recourse to isotropic elasticity theory. Hence,
the self-trapping energy of about 0.20 eV has been
obtained for H in Nb." Although his calculation
is inadequate in that he regarded H atoms as
classical particles, the energy value obtained
suggests strongly that the self-trapping distortion
should take place and make H(D) atoms more or
less localized in space.

In the present paper, we intend to make a step
towards better understanding the nature of the
self-trapped state by performing quantum-me-
chanical calculations on the light interstitials in
Nb. We solve a Schrodinger equation for a H atom
in the field of interaction with surrounding metal
atoms, and try to find a configuration of M atoms
that minimizes the total energy, including the
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energy of a H atom and the energy of distortion of
the surrounding metal lattice. Our calcu/ation
differs from Kehr's treatment" in the following
two respects: First, the light interstitial is re-
garded as a quantum-mechanical entity, the state
of which is described by a Schrodinger equation.
The energy of a H atom thus includes both kinetic
and potential energies. Second, the interaction
between the light interstitial and M atoms is
written as a sum of double Born-Mayer potentials.
For the interaction between M atoms, the lattice
Green's function, "based on the harmonic approxi-
mation, is adopted. In the frame of the adiabatic
approximation, the interaction potential'between
H and M atoms should, in principle, be obtained
from the calculation of the electronic energy as a
function of configuration of M atoms. In practice,
however, no such potentials being available, we
are forced to construct a potential on empirical
grounds, and furthermore, reduce it into a sum of
two-body, central potentials in order to make the
computation tractable. Therefore, we choose po-
tential parameters that reproduce experimental
values of the excitation energy and the force-dipole
tensor simultaneously, and examine if. a consistent
understanding of many other properties can be at-
tained on this basis. It must be admitted here that
the reliability of the calculation is limited by the
use of this approximate potential, but it may still
be expected that the calculation will help to re-
veal some general aspects of the quantum-rne-
chanieal nature of the problem.

The quantum-mechanical description of the state,
in terms of energy eigenvalues and wave functions,
is also expected to be necessary in investigating
the migration process of light interstitials in bcc
metals. In fact, Kehr" has obtained crude esti-
mates of the tunneling matrix element based on
model wave functions, and found that their magni-
tude is large enough to play an important role in
the migration of H(D) atoms in group-V metals.
Since the tunneling process depends critically on
the wave function, more realistic quantum-me-
chanical calculations are obviously needed.

Some calculations are also performed on positive
muons in Nb. A positive muon can be treated in
the same formalism by substituting —,

' of the proton
mass into the Schrodinger equation. Although many
people simply assume that positive' muons occupy
the same type of sites as hydrogen isotopes, this
appears to be rather questionable in bcc metals.
Since potential minima for interstitials are ex-
pected to be rather shallow in bec as compared to
fcc metals, the behavior of muons in these two
structures can be very different. Therefore, no
analogy should be made with the ease of Cu, where
experiments" as well as quantum-mechanical eal-

culations" have established that muons, like hy-
drogen isotopes, occupy 0 sites. Since experi-
ments do not allow unambiguous determination of
the site of muons in bcc metals, the application
of the present calculation to this problem is be-
lieved to be of value.

In Sec. II, a general formulation for the calcula-
tion of self-trapped states is described. A method
for constructing an empirical interaction potential
is described in Sec. III, followed by presentation
of numerical results in Sec. IV. Results are dis-
cussed in Sec, V, regarding the relative stability
of T and 0 sites, the state of positive muons, and
the. nature of the excited state.

where R is the position of the mth atom in the
unloaded lattice. Note that the energy eigenvalue
and the wave function depend on displacements of
M atoms.

The equilibrium configuration is such that the
adiabatic potential, Eq. (1), takes the lowest value
as a function of displacements of M atoms. This
defines the self-trapped state. The displacement
can be obtained from the condition

sE/~u, = 0

or equivalently

+fn Gmn~n
ff (6)

II. FORMULATION

Let us consider a system which consists of a
light interstitial atom and N host metal (M) atoms.
If the interstitial atom follows the motion of M
atoms adiabatically, the energy of the whole sys-
tem can be written as

E(fu, $, a)=Ei([u, ))+E ((u", $),
where (u, j is a set of displacementi of M atoms,
E~ is the energy of interaction between M atoms
in the presence of the interstitial atom, and E is
one of the energy eigenvalues of a Schrodinger
equation

[-(8'/25g)&'+ &]g = E,g.
for the interstitial atom of mass 9R. In the har-
monic approximation, E~ is given in terms of the
dynami. c matrix element as

m nmn n
z 4kf uJ ~

A convention of repeated indices is used. As re-
gards the potential U in the Schrodinger equation,
we assume that it may be written as a sum of two-
body interaction potentials with surrounding M
atoms;

(4)
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by using the lattice Green's function G,.y
lattice Green's function is defined by G,,"p&„'

&", is a force exerted by the interstitial
atom on the rith M atom in the direction j, and is
given by

dr ' BV R" + ~u —r &gg&. (7)

A procedure adopted for numerical solution is
as follows:

(I) We start by assuming appropriate values for
the displacements of M atoms, and calculate the
potential energy U for this configuration.

(2) Using this potential, we solve the Schrodinger
equation [Eq. (2}]numerically and obtain the energy
eigenvalue E and the wave function g of the inter-
stitial by using the method of Kimball and Short-
ley. "

(3) We calculate the forces F& acting on M atoms
from Eq. (7) and concomittant displacements of
M atoms from Eq. (6).

(4) The whole procedure is to be repeated until
self-consistency is attained as regards displace-
ments of M atoms.

It must be recognized that-Eq. (6) is satisfied by
all possible configurations in which E takes ex-
tremal values (both minimum and maximum) as a
function of displacements; it does not necessarily
lead to the lowest value of the energy. Therefore,
we have examined three possible configurations
in order to find the configuration of the lowest
energy. The three configurations, labeled as 1T,
4T, and 6T are shown in Fig. 1. Other possible
configurations, such as 2T, will be examined in
a forthcoming paper in connection with migration
processes. For each configuration, displacements
of the first- and second-nearest-neighbor M atoms
are calculated by the approximation that the direct
force from the interstitial atom, given by Eq. (7),
acts one. y on these M atoms. The Schrodinger
equation is solved under the condition that the
wave function be zero on the boundary of some
specified region around the interstitial atom. The

interval between mesh points on which the equa-
tion is evaluated is 0.025a- 0.035n. Amore detailed
explanation for each configuration is given below.

I. ITstate

When one of the tetrahedral sites is taken as the
origin and the Cartesian axes parallel to the
crystallographic axes, coordinates of four nearest-
neighbor M atoms of the T site are of the type
(a/2, 0, —a/4) and four second nearest neighbors
are of the type (a/2, 0, 3a/4). The displacement
and the force for the atom at (a/2, 0, -a/4) are
written as (u„0, -u, ) and (F„O, -F,), respectively;
corresponding quantities for the atom at (a/2, 0,
3a/4) are written as (u„O, u, ) and (F„O,F,), re-
spe ctivel. y.

The region in which the wave function is non-
zero is taken to be a cube of length a having the
T site at the center. In actual calculations, the
volume can be reduced to one-fourth of this re-
gion by symmetry considerations.

2. 4Tstate

In this configuration, a group of four T sites
having an 0 site at the center (Fig. l) is treated
as a unit, assuming that the symmetry around the
0 site is conserved. Coordinates of the two near-
est neighbors and four second-nearest neighbors
of the 0 site are given by (+a/2, 0, 0) and

(0, +a/2, +a/2), respectively. The displacement
and the force for the atom at (a/2, 0, 0) are written
as (u„0, 0) and (F„0,0), respectively; corres-
ponding quantities for the atom at (0, a/2, a/2) are
written as (O, u„u, ) and (O, F„F,), respectively.

The region in which the wave function is non-

zero is taken to be an octahedron formed by the
first- and second-nearest-neighbor M atoms of
the 0 site. The volume can be reduced to one-
eighth by symmetry.

Note that the symmetry of this configuration al-
lows for the 0-site occupation as a particular
case. - In fact, there is a continuous change from
4T to 0 state depending on the strength of the in-
teraction (Sec. IV).

4T

FIG. 1. Three possible configurations (1 T, 4T, and
6T) for light interstitials in bcc metals.

3. 6Tstate

In this configuration, a group of six T sites
forming a regular hexagon (Fig. 1}is treated as
a unit, assuming that the symmetry around the
center of these T sites is conserved. Coordinates
of two nearest neighbors of the center point are
given by (+a/4, +a/4, +a/4) and those of six second-
nearest neighbors are of the type (-a/4, -a/4,
+3a/4). The displacement and the force for the
atom at (a/4, a/4, g/4) are written as (u„u„u, )

and (F„F„F,), respectively, and corresponding
quantities for the atom at (-a/4, -a/4, 3a/4) are
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written as (-u„-u„u,) and (-E„-E»&,), re-
spectively.

The region in which the wave function is non-
zero is taken to be a polyhedron formed by the
first- and second-nearest-neighbor M atoms of
the center point. The volume can. be reduced to
one-sixth by symmetry.

In the calculation of the energy separation to be
determined from the inelastic scattering of neu-
tron, we start by calculating the ground-state con-
figuration as described above, and then solve the
Schrodinger equation for the excited state by keep-
ing the position of surrounding M atoms in their
ground- state configuration. The procedure is
based on the assumption that the transition occurs
adiabatically. For the calculation of the excited
state, we solve the Schrodinger equation by im-
posing a boundary condition which automatically
makes the wave function orthogonal to the ground-
state function. In the case of 1T configuration,
for example, the doubly degenerate excited state
can be derived by imposing a boundary condition
that the wave function be zero on a plane passing
through the T site at (0, 0, 0) and a pair of nearest-
neighbor M atoms at (0, +a/2, a/4).

III. INTERACTION POTENTIAL

In contrast to the case of impurity atoms in
nearly free electron metals where the total energy
can be written as a sum of pseudopotentials and
a volume-dependent energy of free electrons, there
is no theoretically justifiable and yet computation-
ally feasible description of the energy for hydro-
gen ln transltlon metals. Sonle simplification ls
therefore unavoidable. As for the volume-depen-
dent but structure-independent energy of electrons
contributed by H atoms to the conduction band of
a host metal, there is an empirical justification
for neglecting it: Experiments have shown that
both the local lattice distortion and the average
lattice dilatation produced by H atoms can be
consistently described in terms of a P tensor, '
and accordingly that H atoms ean be simply re-
garded as force centers in the elastic medium.
The decomposition of the structure-dependent
energy into a sum of two-body, central potentials
[Eq. (4)] is admittedly more questionable, but is
supported to some extent by the formation of bond-
ing states observed by the x-ray and electron
spectroscopy, '4 and the expectation that these
states may be regarded to form primarily be-
tween a pair of H and M atoms. "

In the following, we construct a potential be-
tween a proton and a Nb atom. The first source
of information we use for determining the inter-
action potential is the force-dipole tensor P. For

an interstitial atom on a site of axial symmetry,
the tensor P takes the form

A 0 0)
0 so
0 0 af

In microscopic terms, the components of P are
given by

(6)

/Ntg 52ij i j
Experimental values of the diagonal sum and the

anisotropy of the P tensor for H atoms in group-V
metals are compiled in Table I. The fact that TrP
is positive means that the interaction is repulsive
at ordinary distances between H and M atoms. As
for the anisotropy, very small values of ~A-B~
signifies that a long-range stress field around a
H atom on a T site is very nearly isotrppic.

Bauer et al.24'" have interpreted this isotropic
stress field as a result of appropriate balance of
forces acting on the first- and second-nearest-
neighbor M atoms. For a perfect isotropy, it is
required from Eq. (9) that the magnitude of these
forces, f, and f„respectively, should be in the
ratio f,/f, =4.34. If we regard a H(D) atom as a
classical particle, and adopt a Born-Mayer form
Voe ""for the potential from which the force is to
be derived by differentiation, the parameter p
should be equal to a/4. 3 in order to reproduce the
ratio f,/f, . We have reached nearly the same re-
sult (p = a/4. 6) from the quantum-mechanical cal-
culation described in this paper, assuming a Born-
Mayer form for the interaction potential. In this
case, the force is to be calculated from Eq. (7).

The second source of information that we make
use of is the excitation energy of protons deter-
mined from the inelastic scattering of neutrons.
In the case of protons in the n hydrides of group-
V metals, the excitation energies, sg, =0.17 eV
and ~E, =0.12 eV, have been found to be largely
independent of host metals. The intensity ratio
of these transitions (2:1) is consistent with the
local symmetry of a T site. When a proton is re-
garded as harmonic oscillators, the curvature of
the harmonic potential deduced from these energy
values turns out to be such that it requires a
steeply varying, short-range interaction potential
between a pair of H and M atoms. We have found
from quantum-mechanical calculations assuming
a Born-Mayer form for the interaction potential
that p should be a/18 in order to reproduce LE,
and TrP . The fact that a Born-Mayer potential
cannot reproduce simultaneously the isotropic
stress field and the excitation energy does not
seem to be well recognized.

We note here that this apparent contradiction
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TABLE I. Reported values of the force-dipole tensor for H(D) atoms in group-V metals.

TrP (eV) 3~A-B(
Metal Isotope Phase (=& + 28 ) Tr P Method Reference

H (n)
D (n)

H, D (n)'
H g)

7.55
6.68
7.71
8.371
8.563

Ta

D
H, D
H, D

H
H

H, D
H

D
H

(n) 8.5+1.0
(n ) 9.63
(n) 9.99
(n) 10.1+ 0.3
(n)
(n) 9.95
(n ) 10.32
(n) 9.51
(n) 10.1+0.5

V H, D (P) 685 0.978

0.046
0.011
0.08

~0.06
~0.08

Aa Ac
a, c
aa/a
Da/a
al. /1.

Crystal structure

Neutron scatt.
ax,/r.
4a/a

x-ray scatt.
Snoek effect

al./L,

4a/a

x-ray scatt.

Westlake (Ref. 17)'
Asano et al. (Ref. 18)
Maeland (Ref. 20)
Hardcastle et al. (Ref. 21)'
Magerl et al. (Ref. 22)

Pick et al. (Ref. 23)

Bauer et al. (Ref. 24)
Magerl et al. (Ref. 22)
Pfeiffer gt al. (Ref. 25)
Metzger et al. (Ref. 26)
Buchholz et al. (Ref. 27)
Magerl et al. (Ref. 22)

Pfeiffer et al. (Ref. 25)

Metzger et al. (Ref. 28)

' Evaluated from extrapolation of the literature values of 4a/a and Ac/c to 0 K, and the
elastic constants at 4.2 K reported by Bolef et al. (Ref. 19).

b Evaluated from the literature value of ha/a at 200 'C, and the elastic constants extrapo-
lated from the data of Ref. 19.

Evaluated from the literature value of Aa/a and the elastic constants reported in Ref. 22,
both at room temperature.

Evaluated at 160 'C.

regarding the range of the interaction potential
can be reconciled by recognizing that the excita-
tion energy is essentially determined by the po-
tential at short distances from the H atom, where-
as the force-dipole tensor is more sensitive to the
potential at larger distances. What the apparent
contradiction really means is that the interaction
potential must be steeply varying at short dis-
tances, with a long-range tail superposed on it.
As a potential of this form, we adopt a sum of two
exponential functions, which we call a double
Born-Mayer potential; i.e. ,

V(&) V & (r-~a/4)/y~+ V e-(r Wa/ )/pa-
1 2 (10)

V, =0.1 eV, V, =0.6 eV, p, =a/40, and p, =a/3,

with a =3.3 A. Calculated values of the excitation
energy and the force-dipole tensor for the 1T con-
figuration by use of these potential parameters are
aE, =0.165 eV and TrP =10.35 eV, A —B =0.42 eV,

with p, & p, . The four parameters in the potential
are determined by fitting to experimental values
in the following way: We first determine the first
term (a short-range part) by fitting to n. E, and
TrP, the second term (a long-range part) by fitting
to Trp and the isotropy condition A =B, and finally
making a small adjustment. Values adopted for H

in Nb are

respectively. The agreement with experimental
values listed in Table I is believed to be good
enough for our purpose, and no further effort for
a better fitting has been made.

Numerical results may depend to some extent
on the choice of the Green's function. In the pres-
ent calculation, the Green's function given by
Tewary" has been adopted.

IV. NUMERICAL RESULTS

A. Hydrogen isotopes (H, D,T) in Nb

Results of the calculation on the self-trapped
state of hydrogen isotopes (H, D, T) are given in
Table II for three different configurations
(1T,4T, 6T). It concludes a change of the ground-
state energy caused by the self-trapping distortion
of the lattice (n F,), the energy of distortion of the
surrounding lattice (E~), the self-trapping energy
(nE = n Eo+E~), components of the displacement
of first- and second-neighbor M atoms (u, -u, ),
the magnitude and the anisotropy of the stress
field [TrP and 3(A —B)/TrP, respectively].

One of the most important results is that the
1T configuration has lower seU-trapping energies
than 4T and 6T configurations, and is therefore
the most stable one for all isotopes H, D, and T.
We shall hereafter disregard 6T configuration be-
cause it has much higher self-trapping energies
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TABLE II. Properties of the self-trapped state of hydrogen isotopes in Nb.

Energies (eV)
Configuration Isotope AE0 Ez AE

Displacements (in &/200)
first neighbor second neighbor

Qg Q2 Q3 Q4

Trp
(eV)

P tensor

3+ -&)/TrP.

H

D
T

-0.724
-0.641
-0.603

0.248
0.224
0.213

-0.476
-0.417
-0.390

6.3 2.7
6.0 2.6
5.8 2.5

0.0 0.3
0.0 0.4
0.0 0.4

10.35
9.93
9.74

-0.12
-0.10
-0.08

-0.727 0.304
-0.597 0.240
-0.551 0.221

-0.423
-0.357
-0.336

11.6
9.6
8.9

0.9
1.4
1.6

9.42
9.29
9.14

0.85
0.57
0.49

H
D

. T

-0.545
-0.476
-0.445

0.219
0.194
0.183 ~

-0.326
-0.282
-0.262

4.3
4.0
3.8

0.4 2.9
0.4 2.8
0.4 2.8

11.64
11.11
10.87

-0.04
-0.07
-0.08

for all isotopes. It is also noted that the 4T con-
figuration is accompanied by a stress field much
larger in anisotropy and slightly smaller in mag-
nitude than that of the 1T configuration.

The wave functions of hydrogen isotopes and a
positive muon in the 1T configuration are shown
in Fig. 2. In order to illustrate a degree of aniso-
tropy, curves are drawn for three different direc-
tions, (100),. (110), and (010), Results for a pro-
ton in the (010) direction and those of deuterons
are omitted for the sake of clarity. The wave
functions of hydrogen isotopes in (100) and (110)
directions are very close of the ground-state wave
functions of harmonic oscillators corresponding
to ~E, =0.1V eV for a proton and &E,'s scaled by
the mass ratios for other isotopes.

The wave functions obtained for the 47.' configu-
ration are shown in Fig. 3. The figure includes
the wave function and the energy of the ground
state, and profiles of the interaction potential
along the line AA' shown in the inset. A potential
profile in the undistorted lattice is shown in (a},

1.5

1.0 1.0

0.5

and results for H and p,
' are shown in (b} and (c},

respectively. A drastic change of the potential
field caused by the self-trapping distortion of the
lattice can be readily noted. A local maximum
of the potential originally located at the center
(0 site) is lowered drastically, leaving only a
small hump at the bottom of a broad potential
well. The wave function is now extended over the
broad potential well, and the maxima of its am-
plitude, reminiscent of the T sites in the undis-
torted lattice, are found to be displaced inward
by an appreciable amount.

It may be appropriate here to give a limit of
errors in the numerical-results. According to
some test calculations, the effect of choosing

1.0
&O'10&

00)
JC

0)I~ -05
C

LLI

0.5

-0.5 -05

0
0.4 0.6

r in a/2
0.&

A'

FIG. 2. Ground-state wave functions of a proton, a
triton, and a positive muon in the 1 T configuration in
Nb. Variation of the amplitude in some principal dir-
ections on the (001) plane is shown. The wave function
of a deuteron is omitted for the sake of clarity.

FIG. 3. Potential profiles and ground-state wave
functions of a proton and a positive muon in the 4g con-
figuration is Nb. Variation along the line AA' in the
inset is shown. (a) Potential profile in the undistorted
lattice, (b) proton, and (c) muon.



HIDEHIKO SUUGIMOTO AND Y UH F UKAI

finite mesh points and finite regions in which the
Schrodinger equation is solved leads to an error
of less than 1 meV:Errors arising from cutting
off the range of the:direct force are roughly es-
timated at -3-5 meV. The iteration is terminated
when the convergedce is attained to within 0.1
meV. Errors due to the use of the approximate
potentials have not been assessed.

0.050. -)
0.025-

—0.025-

3,0

8. Positive muons in Nb

Results of the calculation for positive muons in

1T, 4T, and 6T configurations in Nb are given
in Table III. In contrast to the case of hydrogen
isotopes, the occupancy of 4T sites is energetically
most favorable. A potential profile and the wave
function for the 4T configuration are shown in
Fig. 3(c). In this case, a hump of the potential
at the center (0 site) becomes even smaller due
to larger displacements of the nearest-neighbor

M atomy, and the wave function has a single maxi-
mum centered on the 0 site. This situation can
legitimately be called the 0-site occupancy. The
wave function of a positive muon in the 1T con-
figuration is shown in Fig. 2. A small hump in
the tail of the (110) direction means that a small
part of a muon is extended to the neighboring T
sites.

V. DISCUSSION

A. Relative stability of 1Tand 4T(0) configurations

One of the most important achievements of the
present calculation is that the observed T-site
occupancy of hydrogen isotopes in Nb is explained
quantitatively. In fact, the present treatment can
go even further and provide a consistent account
of some general trends in the relative stability
of the 1T and 4T(O) configurations.

The variation of the difference in energy of 1T
and 4T(O) configurations with mass of an inter-
stitial is shown in Fig. 4. The result obtained
for a hypothetical particle with mass &m~ is also
included. A tendency that the 4T(O) configuration
becomes relatively more stable than the 1T con-
figuration with decreasing mass can be readily

-0.050-

FIG. 4. Variation of the difference of self-trapping
energies of 4& and 1T configurations in Nb with iso-
tope mass.

noted. The variation of TrP with mass is also
worthy of notice. As shown in Tables II and III,
for a given configuration, TrP increases with

decreasing mass, indicating that lighter isotopes
appear to be larger in size. This trend comes
from the contribution of the kinetic energy, and is
also reflected in the wave functions: The wave
function of a positive muon is more extended than
that of a proton as shown in Fig. 2. In this con-
text, it is interesting to recall that larger inter-
stitial atoms (C, N, 0, . . . ) occupy 0 sites without

exception. The stabilization of 0 sites for larger
atoms is a result of the drastic lowering of the
potential energy with outward displacements of
the two nearest-neighbor M atoms. The situation
is essentially the same in the present calculation
as in the calculation of Johnson et al."on N and

C in Fe and V.
Parenthetically, it may be pointed out that the

self-trapping energy for the T-site occupancy
(Table II) is much larger in magnitude than Kehr's
estimate (0.20 eV)."' It arises from the method
of calculating the energy of the interstitial atom:
In the harmonic approximation adopted by Kehr,
4E, is always equal to —2F~. In our more
rigorous calculations, a lowering of the energy
eigenvalue ~E, is found to be much larger in mag-
nitude, and leads to the formation of a more stable
self-trapped state.

Regarding the anisotropy of the stress field
caused by the 4T(O)-site occupancy, it may be

TABLE III. Properties of the self-trapped state of positive muons in Nb.

Energies (eV)
Configuration GEO El DE

Displacements (&/200) P tensor
first neighbor second neighbor TrP 3(A. -B)/TrP

Qf Q2 Q3 Q4 (eV)

-1.367 0.429 -0.938 8-6 3.1
-1.435 0.454 -0.981 14.4
-1.151 0.454 -0.697 7.1 0.0

-0.3 -0.2
0.8
3.0

12.90
11.18
15.16 ~

-0.25
0.93
0.19
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noted that the calculated values of 3(A —B)/Trp
are close to experimental values obtained in those
cases where 0-site occupancy is established;
H(D) in P —VH„(VD,) (Table I), and C, N, O in a
number of bcc metals. ' As the tetragonal dis-
tortion of the lattice around a 4T(O) site is large,
it is expected that the presence of uniaxial stress
should stabilize 4T(O) sites. The expectation is
borne out by observations: Near the reaction front
of the precipitation of P —V,H from o.'—VH„matrix,
a tetragonal structure with continuously variable
axial ratio has been found, "indicating that H
atoms move from 1T to 4T(O) sites according to
the magnitude of the uniaxial internal stress.
Another evidence is the data of channeling experi-
ments on D atoms in V that they move out of 7.

'

sites when oxygen atoms are added. " The data
seem to indicate that D atoms enter 0 sites in the
presence of a large uniaxial stress field around
oxygen atoms on 0 sites.

Effects of varying the lattice parameter and the
lattice Green's function on the relative stability
of the 1T and 4T(O) occupancy are examined by
using values appropriate for other group-V metals,
V and Ta. Results are given in Table IV. Quanti-
ties listed are the self-trapping energy of the 1T
and 4T(O) configurations, 4E» and ~,r, respec-
tively; their difference, ~» —~4~', Trp and
3(A —B)/Trp of these two configurations. Case
1, which corresponds to H in Nb, is reproduced
from Table II to facilitate comparison. In case
2, the lattice Green's function of Nb is replaced
by that of Ta, leaving other parameters the same
as in case 1. This corresponds to H in Ta. In
cases 3-5, the lattice parameter is reduced from
3.3 to 3.0 A, the value appropriate to V. In cases
3 and 4, the lattice Green's function of Nb is used,
whereas in case 5, that of V is used. In cases
1—3, the potential parameters adopted are those
given by Eq. (11), whereas in cases 4 and 5, p,
and p, are scaled by multiplying by 3.0/3. 3. Thus,
case 5 corresponds to H in V. As lattice Green's
functions of Ta and V, values reported by Tewary"

have been adopted.
We note that the reduction of. the lattice pa-

rameter always tends to stabilize the 4T(O)
occupancy. Thps, the decrease of the size of
M atoms acts j.n the same way. 'as the increase of
the size of interstitial atoms. The effect of varying
the lattice Green's function can-be seen by com-
parison of cases 1 and 2, and al,so 4 and 5. The
effect is by no means small. Significant to note
is the fact that the energy separation between 17.'

and 4T(O) configurations becomes much smaller
in V as compared to Nb and Ta, as a combined
effect of the lattice parameter and the lattice
Green's function. This result is consistent with
two kinds of experimental observations: First,
nearly 10% of D atoms are found to occupy 0 sites
in n —VD„."'" Indeed, an appreciable fraction
of D atoms is expected to enter 4T(O) sites in
thermal equilibrium if the energy separation be-
comes small. Second, in the phase transition
o. -P in VH„and VD„, H(D) atoms are known to
move from T sites to 0, sites, in contrast to the
case of Nb and Ta, in which H(D) atoms remain
in T sites in transition to the ordered phases.
Its implication should be that, in V in contrast
to Nb and Ta, the cooperative occupancy of 0,
sites and concomitant lowering of the energy of
0, configuration more than offset the small-en-
ergy separation between T and 0 configurations
in the n phase. In our previous paper, "we have
shown by more approximate quantum-mechanical
calculations that the elongation of one of the cube
axes lowers the total energy of VH„and VD„. A
more detailed analysis of the problem based on
the present formulation will be made in a forth-
coming paper.

The variation of the relative stability of the 7."-
and 0-site occupancy with lattice parameter is
manifested by the results of channeling experi-
ments. The 0-site occupancy is found in Cr,"
and the mixed occupancy in V as described above.
These two metals possess much smaller lattice
parameters. as compared to other bcc metals in

TABLE IV. Self-trapping energy and force-dipole tensor of H atoms in the 1T and 4T configurations in group-V
metals.

Green's
Case a(A) function

Potential
parameters

P tensor
Self-trapping energies (eV) Trp (eV) 3g -&)/Trp
&E&& Note

3.3
3.3
3.0
3.0
3.0

Nb
Ta
Nb
Nb
V

Pg P2

pg p2

(p|,p~) x Q.Q/Q, 3
(p&, P2) x 3.0/3.3

-0.476
-0.429
-0.429
-0.494
-0.523

-0.423
-0.372
-0.385
-0.447
-0.493

-0.053
-0.057
-0.044
-0.047
-0.030

10.35
10.96
10.13
10.48
10.13

9.42
10.18
9.11
9.47
8.85

-0.12
-0.15
-0.11
-0.13
-0.11

0.85 H in'Nb
0.76 H in Ta
0.87
0.89
0.89 H in V
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which the 7-site occupancy is found [Nb, '"Ta,,'"W
(Ref. 37)]. From these systematics, it seems very
probable that H atoms occupy 0 sites in Fe which
has a lattice parameter close to Cr. No experi-
mental data are yet available to verify this con-
jecture.

B. State of positive muons

Judging from the systematic variation of en-
ergy with mass (Fig. 4), the occupancy of 0 sites
by positive muons in Nb appears rather con-
vincing. In principle, there remains a possibility
that the wave function of a muon is so much ex-
tended in space that solving a Schrodinger equa-
tion within a limited volume may not lead to the
most stable configuration. However, this seems
rather unlikely. In our calculation on the 1T
configuration, five T sites are contained within
the volume in which the Schrodinger equation is
solved, but the wave function is found to have an

appreciable amplitude on only one of them at the
center (Fig. 2).

An experimental determination of sites occupied
by muons could be made from measurements of the
depolarization rate of pSR (muon-spinrotation) at low

temperatures where muons are at rest in the lattice.
The Van Vleck second moment tobe derived from the
depolarization rate, as a function of orientation
and strength of the external magnetic field, re-
flects the local environment of muons. Lankford
et al."have attempted to make an identification
of sites by comparing their data of the depolari-
zation rate with the result of their calculation per-
formed on several possible configurations. The
configurations they examined include 0, 1T, 2T,
4T, 5T, and 6T, of which a reasonable agreement
was obtained for two configurations 2T and 4T.
However, it must be pointed out that their esti-
mates of the second moment are not very reliable
quantitatively. It is because displacements of
surrounding Nb atoms are neglected, and the
simultaneous occupation of N tetrahedral sites
is approximated by placing I/N of a muon spin
on these N sites.

We have calculated the fractional variation of
1/r' for the first- and second-neighbor Nb atoms

when the atomic displacement and the finite exten-
sion of the wave function of a muon are taken into
account. For the 4T(O)-site occupancy, a frac-
tional change in the Van Vleck second moment in
the zero field is then obtained by summing the
contributions of the first and second neighbors
with weights 0.8 and 0.2, respectively. Results
are given in Table V. The effect of the atomic
displacement is seen to be very large; it reduces
the second moment to 55% of the undistorted
lattice. The effect of the finite extension of the
wave function is less important in comparison.
Since the depolarizaton rate for the 0-site occu-
pancy has been estimated at 0.70 p.s ' without
including atomic displacements, "the value is
modified by the present calculation as 0.7040.55
=0.51 Ij.s '. This agrees reasonably well with
their experimental value, 0.45 p,s '. It must be
emphasized that the inclusion of atomic dis-
placements is of crucial importance in calculating
the second moment. Lankford et al."have noted
that their results can be interpreted in terms of the
T-site occupancy provided the displacement of
nearest-neighbor Nb atoms is as large as 13%.
However, the value is much larger than the present
estimate (&.2%, calculated from Table III), and
is therefore highly improbable. Mort: detailed
comparison with experiments has not been at-
temped here, because it proved later that the
"rigid-lattice" depolarization rate cited above
could only be observed in the presence of some
intersitial impurities like N and/or 0, and

accordingly, the observed depolarization rate is
the one of muons in some trapped state.

C. Excited state

The energy separation between the ground state
and the excited state of H(D) atoms has been deter-
mined by two different methods of the neutron
spectroscopy, the energy-gain spectroscopy and
the energy-loss spectroscopy. The calculation
described in Sec. III deals with the process to be
encountered in the energy-loss spectroscopy. In
this case, the initial state is the ground state in
which the surrounding lattice has been relaxed to
the most stable configuration, and this configura-

TABLE V. Van Vleck second moment for positive muons in Nb.

Atomic
displacement

Distribution
of p dipole

Calculated
quantity

Second moment
Contribution of 0.8 (first neighbor)

first neighbors second neighbors +0.2 (second neighbor)

neglected
included
included

point
point

p+ wave function

1.00
0.45
0.40

1.00
0.96
1.12

1.00
0,55
0.55
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FIG. 5. Wave function of the excited state of a proton
which, in its ground state, occupies a T site labeled G
in the figure.

tion is assumed to be fixed during the transition.
In the case of the energy-gain spectroscopy, on
the other hand, the initial state is the excited state
with the most stable configuration of the lattice,
and the transition takes place to the unrelaxed
ground state. The energy separation to be deter-
mined from these two experiments are, in gen-
eral, different. This difference is called the
Stokes shift in the opticalspectroscopyofpolarons.
Experimentally, however, no Stokes shift has been
found for H(D) atoms in metals within the limit
of error of approximately +10 meV. ' ' More
detailed studies of the Stokes shift by using high-
resolution neutron spectrometers are expected
to yield useful information on the interaction of
H(D) atoms with the surrounding lattice.

Finally, a brief account is given of a spacial
aspectof the excited state. In Fig. 5 is shown acon-
tour map of the wave function of the excited state
obtained by the calculation described in Sec. III.
Rather unexpectedly, the wave function of the

excited state has a large amplitude near the
neighboring pair of T sites. From this result,
it may be inferred that this excited state may
serve as one of the possible saddle-point con-
figurations for an elementary jump of a H(D)
atom into the next-nearest T site, although this
particular path may not be the most efficient one.

In any case, it must be obvious that a quantum-
mechanical approach as described here is in-
dispensable in elucidating the nature of excited
states as well as migration processes. These
problems are now being studied, and will be
reported in forthcoming publications.

VI. CONCLUSIONS

From quantum-mechanical calculations dealing
specifically with hydrogen isotopes and positive
muons in Nb, a consistent account is given of
various properties of the self-trapped state of
light interstitial atoms. They include the following:
the type of interstitial sites occupied, the relative
stability of the 1T vs 4T(O)-site occupancy, its
dependence on isotope mass and the lattice pa-
rameter of the matrix, the distortion of the
surrounding lattice, etc. The 0-site occupancy
is predicted for positive muons in Nb. Some
properties of the excited state are also clarified,
including its wave function and its relevance to
the migration process.
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