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Study of crystalline electric fields in RD, (R =Tb, Dy, Ho, Er)
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Neutron energy-loss spectra of RD, (R = Tb, Dy, Ho, Er) were taken using powder samples on a triple-axis

spectrometer. Excitations, believed to be crystalline electric-field (CEF) transitions were observed for all the

compounds. In DyD„ the observed transition energy is in good agreement with the CEF parameters derived

from magnetic susceptibility and Mossbauer spectroscopy. The observed transitions in the spectra of HoD, and

ErD, could not be fitted, taking into account the relative intensities, to any calculated scheme of cubic

symmetry. With TbD„it was possible to fit the spectra to a calculated scheme and CEF parameters were

deduced for T & T„.However, these parameters failed to yield the correct T„in the molecular-field calculations.

Hence, a cubic CEF model is, in general, insufficient for describing the CEF transitions in R D,.

I. INTRODUCTION

The crystal structure of RD, (R rare ea-rth) is
cubic, of the fluorite type. ' In this structure, the
R ions form an fcc lattice. Each lattice point is
a center of a cube of D ions. The R ion experi-
ences, therefore, a simple cubic crystalline elec-
tric field (CEF). The CEF level schemes for Tb3',
Dy", Ho~, and Er~ in cubic fields computed by
Lea, Leask, and Wolf (LLW)' are presented in Fig.
1.

The cubic rare-earth deuterides (RD2) exhibit in-
teresting electronic and magnetic properties and
have been studied by a variety of techniques.
These properties are drastically affected by the
crystalline electric field (CEF}. Susceptibility,
specific heat ' M'ossbauer experiments, ' " neu-
tron elastic scattering, ""and inelastic scattering
(NIS}" "have been carried out to investigate the
CEF interactions. All indirect CEF-level mea-
surements' "and the NIS measurement on PrD,
(Ref. 13) lead to a model of hydridic hydrogen in
a cubic CEF, while the NIS measurement on CeD,
(Ref. 14) was inconsistent with such a model.

In this paper we report results obtained from
NIS performed onRD2(R = Tb, Dy, Ho, Er). Pow-
der samples" and a triple-axis spectrometer were
used in all the experiments.

II. EXPERIMENTAL AND ANALYSIS

Neutron energy-loss spectra of RD, (R = Tb, Dy,
Ho, Er) were taken. Excitation transitions were
observed for all the compounds. Common
features to all the observed excitation lines in this
study are as follows:

(i) The lines are relatively narrow, hence the
excitations are at the most weakly dispersive.

(ii) The temperature dependence of the line in-
tensities is consistent with that of CEF transitions.

(iii) The momentum-transfer (Q) dependence of
the intensity is unlike the R" form factor (as ex-
pected of CEF transitions} but is rather Q inde-
pendent.

Neutron energy-loss spectra were taken with an
LaD, powder sample at 1V and 200 K (Fig. 2). As
lanthanum is diamagnetic, this sample served as
a blank for the four magnetic samples.

The I aD, spectra clearly demonstrate the ab-
sence of phonon contributions. Hence, we have no
explanation for the Q dependence of the excitation
intensities.

A. TbD2

. TbD, undergoes a phase transition from para-
magnetism to antiferromagnetism at 17.2 K (Ref.
11) [16.1 K according to another study (Ref. 4}].
Mossbauer-effect measurements of Tb~ in YD,
in various dilutions lead to the conclusion of a
nonmagnetic CEF ground state for the Tb" ion.
Specific-heat results (Ref. 4) are consistent with
the nonmagnetic r, level as ground state and r5"
about 50 K above it. A neutron elastic scattering
study yielded" X =0.8 and W= —8.253 K, i.e., r,
as ground level and I'"',very close above it [Fig.
1(a)].

Two CEF transitions are observed in the NIS
energy-loss spectra above T„,having the energies
of about 3.5 and 8 meV (Fig.3). Below T„,the
energies of the transitions are shifted to higher
values (4.V and 10 meV. respectively at 9 K). A
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D. ErD2

ErD~undergoes a phase transition to an anti-
ferromagnetic state at 7.'N =2.3 K. Energy-loss

16 meV has a very small transition probability
and is not observed. The I",- I', transition is
forbidden.

A spectrum was obtained at 100 K where I "'
is populated. Broad weak lines in this syectrum
can be assoclatedwith r, -r8(l), r&(l)- rs(2), and
~,"'-r, transitions.

C, HoD2

HoD, undergoes a phas'e transition to an anti-
ferromagnetic state at &„-5.2 K." Energy-loss
spectra were taken at several temperatures above
T„(Fig.8). Two transition lines are observed
at about -9 and -15 meV, and the constant inten-
sity ratio implies that these are transitions from
the ground state to two excited ones. Consider-
ing, even qualitatively, the expected-intensities
ratio of transitions ' from every possible ground
state to two excited states, in the LLW scheme
[Fig. 1(c)], there is no X value that can be fitted
to the observed transitions.

spectra were taken at three temperatures above
T„(Fig.7). Three transition lines were observed
at about -3.5, -8.5, and -14 meV. [The -3.5-
meV transition was better resolved from the elas-
tic peak by lower-energy incoming neutrons (not
shown). ] Their temperature dependence implies
that the transitions at -3.5 and -14 meV are from
the ground state to two excited ones, while the
-8.5-meV transit1on 1s from an excited state
to a higher one. The -8.5- and -14-meV tran-
sition lines were observed in a former NIS study"
and fitted to X, W values in the LLW scheme
[Fig. 1(b)]. No& value can, however, be found

in the LLW scheme [Fig. 1(b)] so that the three
observed transition energies wQ1 fit the calculated
ones.

III. DISCUSSION

CEF transition lines were observed in the NIS
energy-loss spectra of RD2 (R= Tb, Dy, Ho, Er).
Only the DyD, spectrum can be fitted to the LLW
scheme of CEF levels, and the &, ~' values ob-
tained are in excellent agreement with those ob-
tained by indirect methods. ' The TbD» HoD»
and ErD, spectra cannot be fitted to the respec-
tive LLW schemes for any X value. It has to be
noted that the 8-K spectrum of DyD, yielded only
one transition line, which can be fitted anyway
to any scheme and the agreement of the observed
transition to the reported X, W might be accident-
al. The only other published direct NIS study on
RD, where the observed data were fitted to cal-
culated CEF parameters was on PrD2 (Ref. 13)
where, too, only one transition line was observed.
The transitions observed in the CeD2 study'4 could
not be, however, fitted to the LLW scheme.

It seems, therefore, that the CEF transitions
of the RD, system cannot, in general, be explained
within the assumption of CEF of cubic symmetry.
For CeD, it was found" "that a few percent of the
tetrahedral sites are vacant, the excess hydrogens
entering octahedral sites and thus introducing a
perturbation on the cubic field. This possibility
should be checked for the compounds of this
study.
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