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Energy bands and excitons in solid neon
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The energy bands of solid neon are computed with a modified orthogonalized plane-wave method, which includes

rigorously the Hartree-Fock exchange potential in its nonlocal form. Starting from the computed energy bands, the

binding energies for valence and core excitons are obtained. The results are compared with earlier calculations and

with experiments.

I. INTRODUCTION

Energy bands and excitons in neon have been
investigated both experimentally and theoretically
by a large number of authors. " The band struc-
ture of neon has been computed with the Korringa-
Kohn-Rostoker (KKR) method, ' the a,ugmented-
plane-wave (A PW}method4, also using electron-
atom scattering phase shifts, ' and the localized or-
bital methodwithSlater-type orbitals (STO's) (Ref. 6)
or Qaussian-type orbitals (GTO's). ' For a thorough
comparison of the results of the various methods
we refer to the discussion of Rossler. ' Here we

only mention that the major source of inaccuracy
and discrepancy seems to be related to the dif-
ficult task of the evaluation of the exchange term
in its nonlocal form. In the case of argon, for
instance, Lipari and Fowler' have shown that the
orthogonalized plane-wave (OPW) method with
nonlocal exchange gives the acceptable Hartree-
Fock (HF) energy gap of = 17 eV, while the often
adopted local Slater approximation [Hartree-Fock-
Slater (HFS)] would lead to = 7 eV. In the case of
LiH, it hasbeen shown' that the HF energy gap is
= 9 eV, while the HFS approximation fails to re-
produce the insulating character of this compound.

In Sec. II, we compute the band structure of
neon using the OP% method with the exchange
potential in its nonlocal form. The computational
method used is an extention of the new procedure
recently tested in the case of solid lithium hy-
dride', the exchange integrals involving two plane
waves and two localized functions are evaluated
analytically through the Dawson auxiliary func-
tion, thus drastically reducing the amount of
computational labor.

In Sec. III we calculate the binding energies of
valence and core excitons. Following the most
recent developments on exciton theory (see, for
instance, Hefs. 10-14 and references quoted there-

in}, the crucial problem of central cell correc-

tions is solved exploiting the accurately known

experimental energiesof excitons in the isolated
neon atom. The band kinetic operator, corres-
ponding to our computed energy bands, is treated
with an appropriate variational method. Section IV
contains the conclusions.

II. ENERGY BANDS OF NEON BY THE OPW METHOD

A. Details of calculation

The computational method used in the present
work is an extension of the procedure recently
put forward in the case of lithium hydride. .' Here
we briefly summarize some relevant aspects,
sending the reader for more details to Ref. 9.

The crystal structure of solid neon is fcc, with

lattice parameter a = 8.43 a.u. The fundamental
vectors of the direct (reciprocal) lattice are
given by

T, = 2 a(0, 1, 1) [h, = (2m/a) (-1,1, 1)]

and cyclic permutations.
The neon atom has the closed-shell electronic

configuration 1s', 2s', 2P'. In the minimal basis
set, the optimized screenings" of 1s, 2s, and 2p
Slater-type orbitals are $„=9.6421 a.u. ,
= $» ——2.8792. The ionization energies are taken
as E„=-62.99 (Ref. 16), „E=-3.56 (8Ref. 17),
and E»=-1.585 Ry (Ref. 18). To set up the OPW
method for describing the conduction energy
bands, we orthogonalize plane waves to the five
Bloch sums corresponding to 1s, 2s, 2P„2|t}„
and 2P, wave functions of neon.

All the matrix elements appearing in the OPW
method, including the exchange potential in its
nonlocal form, can be evaluated analytically
(see Ref. 9 and references quoted therein). The
explicit expression of the OPW matrix elements
is reported in Ref. 9 in the case where the oc-
cupied states are s like; here w'e give the ex-
tensions appropriate for p like occupied states.
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In the OP% method the exact account of the
exchange potential in its nonlocal form requires
the evaluation of bielectronic integrhls involving
two plane waves and two Slater-type localized
functions. The first step toward an accurate
and simple numerical evaluation consists in
expanding STO's into GTO's. The expansion is
performed using the scaling theorem y.nd the
universal parameters available in the literature
(see, for instance, Ref. 19); For instance, the
parameters for the 4G representation of 1s, 2s,
and 2p orbitals of neon, obtained by the least-
squares method, "are reported in Table I.

Next, we have to evaluate the fundamental in-
tegrals:

2,(K„e,6, Kr)= fe "" e--'"*K;.(r, ) r, —L2 l

x e ~"2 Y~(r, )e'&i &2dr, dr,
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TABLE I. Parameters for the 4G representation of 1g,
28, and 2p Slater-type orbitals. The values &; and c; are
taken from Hef. 19.

J~(K„()(,P, K,.) =

1
e 'Y2 e 2F)* (r2)

e~-j, o, j 1 2

4gg, {r)= ~ $ re ~"Yg {r)
f1/4

~ (y4 ~c;(()(,f ) re ' "
ll'& (r)2 S/4 -O.i L272

i

x ~,e '~& 1'~(r, )e+&'2 dr, dr, ~ (2)

Expression (1) has been given in Ref. 9 in terms
of the auxiliary Dawson function"
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%e have

pressed in terms of the Dawson function itself.
With somewhat lengthy but straightforward al-
gebra we have

J,(Ki, o, P, Ki)

l (K, —Ki)'&
=2~p(~, p).g. «pl, — 4'(,p)

)C'(K~&), (4)

ere
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To evaluate expression (2) we use the addition
theorem for spherical harmonics and we obtain

Je(K;, e, 6, K,)=—fry r, e 4'e e'~,

1
e ~~&e'~s'~2 dr, dr2

l rg —r2 l

We put E(l. (4) into E(l.(5) and we notioe that any
derivative of the Dawson function (3}can be ex-

ir( i 2 2 2 j) 6 2p2( + P)1/2 P 4( pp)

[C(Xv ) 1]

+K; Kee(KMr)+2r) . (6)

With the help of the manageable analytic ex-
pressions (4) and (6) and astandardlibraryprogram
for the auxiliary Dawson function, we can easily
evaluate the exchange bielectronic integrals.
The other matrix elements appearing in the OPW
method are simple2~; the conduction energy bands
of neon are obtained upon diagonalization of the
OPW secular equation.

B. Energy bands of neon

Our computed Hartree-Pock conduction bands
of neon are reported in Fig. 1. The irreducible
representations of the little groups at symmetry
points and symmetry lines are labeled following
the notations of Ref. 22. Relevant crystal ener-
gies are given for convenience in Table II; energies
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FIG. 1. Conduction energy bands of solid neon.

have been calculated at about 60 points, appro-
priately distributed in the Brillouin zone.

The results of Fig. 1 were obtained with a rela-
tively small number (about 30) of plane waves
orthogonalized to 1s, 2s, and 2P Bloch sums.
To assess the reliability of these results, at
a few selected symmetry points we set up the
OPW method with orthogonalization only to the
ls Bloch sum with a much higher number (up to
= 150) of OPW's. We found that the 2s valence
band rapidly approaches the energy of the 2s
atomic state, but the convergence of the 2P band
was very poor. This fact is similar to that ob-
served by Lipari and Fowler' in the uppermost

shell of argon. We explain this fact noting that
the Fourier transform of a 2s function is less
extended in k space than the Fourier transform
of a 2p function (with the same screening paramet-
er). Because of this convergence difficulty for
the 2P band we decided to set up the OPW method
with plane waves orthogonalized to 1s and 2P
functions. With a high (but still acceptable) num-
ber of OPW's (about one hundred) we could both
reproduce the 2s core band and test the reliability
of the conduction bands reported in the work.

The general trend of the conduction bands of
Fig. 1 can be easily understood by considering
the empty lattice analysis for fcc structure and

TABLE II. Energies (in Rydberg) of relevant crystal states in solid neon at the points I (k
= 0), Xlk= (2w/a)(1, 0, 0)), I [k = (2&/a)(+&, +&, $) l, end K[k= (2w/a)(i, +~, 0)) of the Brillouin zone.

Eis =-62.99 E2~ =-3.568 E~ =—1.585

r+, 0.146

I'5 1.623

I 2 1.660

I'4 1.782

I'i 1.989

I'3 2.154

X2 0.565

Xi 0.692

X4 1.083

X5 1.167

Xi 1.694

X3 2.671

I 2 0.418

L+, 0.626

L, ', 1.493

L2 1.531

I 3 1.663

L+, 2.054

Ki 0.627

K4 0.636

Ki 0.863

K2 1.233

Ki 1.431

Ki 1.931
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observing that the empty lattice states with s-like
and P -like symmetry feel the orthogonalization
repulsive effects. Furthermore, since the screen-
ing parameters )„and $» are very close (act-
ually they are taken as etlual in Ref. 15), the
effect of orthogonalization is expected to be more
important for s like states than for p like states.
This is essentially due to the l dependence of the
orthogonalization coefficients.

For instance, in the empty lattice analysis at
point I", we have the level sequence I',+~ P,', ~4,
1",', I",. The degeneracy of the empty lattice states
F, , I"4, I„F,is removed, raising the energy of
the s like state I", and p like state 14 with respect
to I", and I",, and giving the expected sequence

which is in agreement with the detailed calcula-
tions. %ith similar arguments the expected se-
quence at X is

X~ &X~ && X4 &X5&Xi,
while the expected sequence at L is

L~ &Lx & Ls &La~L3&L»

again in agreement with the detailed calculations.
Incidentally, we note that in argon and the other
rare-gas solids, the difference in the screening
parameters for s and p functions of the uppermost
shell, the fact that orthogonalization effect to
more extended functions are stronger, andthe
presence (in Kr and Xe) of d-core functions lead
for conduction states to a sequence different from
that peculiar to neon. Actually, in some symmetry
points, neither the empty lattice sequence is main-
tained.

It is interesting to compare the results of the
present calculation with those given in the liter-
ature (see Table III). From Table III, one can
see that there is an overall agreement between
different authors on the almost free-electron-
like character of the conduction bands, but remark-
able quantitative differences exist. Confining
our attention to the two lowest conduction bands,
we see, for instance, that all authors quoted in
Table III agree that L, & L» the difference being
E(I') E(f,,—) =2 ~ 83, 0.83, 0.62, 1.89, and 1.14
eV. For the difference E(X;)—E(X,} we have in-.
stead 1.73, -0.99, -1.24, 5.1, and 3.16 eV for the
authors cited in Table ID.

If we take as an estimation of the width of the
lower conduction band the energy difference be-
tween the lowest conduction state at X and the
lowest conduction state at 1", we have the follow-
ing data (see Table III): 5.VO eV (present paper},
6.52 eV (Ref. 4),~ 6.VI eV (Ref. 5), 8.19 eV (Ref.
6), and I.5V eV (Ref. 7). As a consecluence, the
effective conduction-band mass m,*at I' is higher
inthe present paper. %e have in fact m,*=1.27m,
in the present calculation, against the values
m,*=0.83m, of Bossier, ' m,*=0.802m, of Kunz
and Mickish, and m,*=0.79m, of Natalizi and
Resta. '

The currently available experimental data are
in favor of the effective mass calculated in this
paper, as can be seen from the following con-
siderations. There is evidence that the interpre-
tation of the higher members of the excitonic
spectrum in neon require a reduced effective
mass p = 0.8m, . Inour calculations we do not
compute the width of the valence band (whose
experimental value ' is &„=1.3 eV) because it
is small with respect to the energy gap (= 21 eV).

TABLE III. HF conduction-band energies (in eV) of neon at some symmetry points by dif-
ferent authors.

Present
&pork

Dagens and Natalizi and
Perrot {Ref.4) Resta (Ref. 5)

Kunz and
Mick& ~h (Ref-. 6-)

Eumema et al.
(Ref. 7)

X2

X+

X4

1.99

22.08

7.69

9.42

14.74

15.88

20.81

10.18

9.19

13.89

17.84

2.51

10.46

9.22

14.00

18.38

2.21

10.4

15.5

19.8

2.85

29,25

10.42

13.58

18.28

L2

L3

5.69

8.52

20.31

7.92

8.75

19.21

8.15

19.53

8.10

9.99

8.38

9.52
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If, as in Ref. 14 we parametrize the dispersion
of the valence band in the form

12

E(k) v 12 Qen v
v 16

I

at k=0 we obtain for the average effective mass
m„*=2.36m, . The reduced effective mass be-
tween mc~ =1.27m' and m~~ =2.36me gives @=0.82me~
in agreement with the value deduced from the
experimental binding energies of higher mem-
bers of the excitonic series.

Before concluding this section we wi. sh briefly
to comment on the corre1ation effects on the
Hartree- Fock band structure. Following the
approximations and the notations of Ref. 14, we
can estimate the correlation effects in rare-gas
solids through the semiclassical relation

Vq(0) =(e /RM„)(1-1/s, ) =1.3 eV,

where, for neon, the Mott-Littleton radius R
=4.18 a.u. and c,=1.24. Thus our HF energy gap
(23.5 eV) corrected for the polarization effects
gives a correlated energy gap (22.2 eV) in rea-
sonable agreement with the experimental one
(21.8 eV).

Following the procedure and the notations of
Ref. 14, valence exciton binding energies and
enve1ope functions are determined by the equa-
tion

[E,(- iV)+ E„( iV)+ V„(~)+V,(&)+V, (&)]C (r}
=EC (r), (7)

where E,(k) is the conduction-band energy (mea-
sured from k=0), E„(k) is the valence-band en-
ergy (measuvred form k=0 and positive sign),
V„(r) is the hole Coulomb potential, V,(r) is the
"central cell" correction potential determined by
exploiting experimental atomic energies, and

V~(r) is the polarization potential. For core ex-
citons, a similar equation applies except that
E,(k) has to be omitted.

The parametrization of the energy bands and the
expression for V„(r), V,(~), and V~(x} have been
obtained following step by step the procedures of
Ref. 14. However, a more accurate account of
the "band kinetic operator" E,(- iV)+E„(-iV) is
provided here with the following variational meth-
od.

Consider first the Schr'odinger equation

[-h~V'/2m*+ V„(x)+ V,(x) + V~(x)]F(r)=E(iF(r), (8)

III. VALENCE AND CORE EXCITONS

In the last two years, powerful (and still num-
erically simple} approaches have been developed
for studying excitons in closed-shell crystals and
in particular in rare gases (see, for instance,
Refs. 11, 13, and 14 and (luoted references). All
the mentioned papers exploit, though in a some-
what different theoretical framework, the accur-
ately known atomic excitation energies to sim-
plify the difficult-to-be- solved first-principle
equations for excitons in crystals.

which is obtained from (7) by replacing the com-
plicated operator E,(- iV)+E,(- iV} by the stan-
dard kinetic operator —5'V'/2m* with a given
va1ue of the effective-mass parameter m*. The
above equation is solved numerically with standard
programs" for various values of m*. Let us
indicate with F„(m*,r} and E,', (m*) the wave
functions and eigenvalues of E(l. (8) correspond-
ing, for instance, to the 1s state. The set of
functions F„(m*,r) are used variationally to
minimize the energy

E„(m*)=(F„(m*,r) ~[Ev(-iV)+Ev( iV)+ V„(x)+-V, (r)+ V~(x)]~F„(m*,r))
g2g2

=v,', (m'. )+(s'„(m', i) v, (—iv)+v.(- i&) —
l

- -„v„(m', r))
mi

g2 Q2=v,',(m")+ I (v,.(m', v) ('(v,(ic)+v„(E)-, uv,

where F„(m~, R) is the Fourier transform of
F„(m*,r). In order to evaluate with accuracy
the integral appearing in E(l. (9), we have found
it convenient to expand the function F~,(m*, r),
which is known numerically, into basis functions

1.„(nx)e " with 2n = [2m*E,',(m*)] ~~

and I.„(x) Laguerre polynomial of order n. In.
our case it was more than sufficient to take n
up to 5. Since the Fourier transform of a poly-
nomial times an exponential function is analytic,
the integral appearing in E(l. (9) can be performed
with high accuracy and little labor. As an exam-
ple, we report in Fig. 2 the behavior of E,',(m*)
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PIG. 2. Computation of the binding energy of 1s val-
ence exciton in solid neon. Energies are in eV and m* in
electron mass units. Ei~(m~) is the 1g eigenvalue of Kq.
(8) and Eq~(m*i is provided by Eq. (9).

for the valence 1s exciton of neon. It can be
seen that while E„(m*) is very sensitive to the
chosen value of m~, E|,(m*) is instead insensi-
tive to it.

In Table IV we report, for comparison, experi-
mental and theoretical valence and core excitation
energies in gaseous and solid neon. The experi-
mental excitation energies for the gas are taken
fromRefs. 1V and 18. The 2s core excitonic spec-
trum of solid neon is taken from Ref. 24. The
valence excitonic spectrum of solid neon has been
investigated by several authors (see, for in-
stance, Refs. 2, 25 and 26 and references quoted
therein); in particular, a lot of interest has been
devoted to the n = 1 exciton (see, for instance,
beefs. lp and 2'l and references quoted therein).
Prom Table IV we see that the agreement between

experimental and calculatedvalues is good. How-

ever, some discrepancies are found in experi-
ments in the case of the n =1 excitonic transition.
A thorough and detailed understanding of the 1s
exciton probably needs further work on the ex-
perimental and theoretical side.

IV. CONCLUSIONS

g, a0
Q

0

+
m
rt

Q Q ce
Cd

Q

Ca

04. gQ o~
Q0

Q Q

In this paper we have adopted a modified ortho-
gonalized plane-wave method to calculate the
energy bands of solid neon. An accurate and num-

erically simple account of the electronic exchange
potential is obtained using the Gaussian repre-
sentation of atomiclike orbitals. The band

structure is found to be consistent with the ex-
perimental valence and core exciton spectra. The
methodandprocedures of this paper shouM find

wide application and allow abetter comprehension
of the electronic structure and excitonic effects in

a number of large-gap insulators.
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