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The phonon energies and the dynamic form factor, S(Q,co), in solid "Ar at temperatures from 10 K to the
melting point are calculated using the self-consistent-phonon (SCP) theory with the pair interaction represented
by the recent realistic potential developed by Aziz and Chen. The temperature dependence of the phonon
energies agree well with the observed values of Fujii et al. This is a substantial improvement over the previously
available calculations obtained using anharmonic perturbation theory. The temperature broadening of S(Q,co) also
agrees well with the observed phonon groups for low-energy phonons where data are available and with the
molecular dynamics (MD) calculations of Hansen and K1ein. The S(Q,co) for high-energy phonons near melting are
found to be extremely broad, broader than in solid helium, and S(Q,co) becomes very sensitive to intermediate
phonon energies used in its calculation, making the present SCP group shapes not reliable for high-energy phonons
near melting. Further experimental data or MD simulation of $(Q,co) near melting for high-energy phonons would
be most useful as a test of anharmonic theory, for example, of whether an explicit description of short-range
correlations in the atomic motion is important.

I. INTRODUCTION

The dynamical properties of solid argon have a
long and rich history of study. This is because
the potential of the solid can be well represented
by a sum of pair interactions between argon atoms
with the addition of the Axilrod-Teller-Muto (ATM)
triple-dipole interaction. Comparison of theory
with experiment then represents a reliable test of
our understanding of the dynamics.

Prior to the pioneering measurements of phonon
energies and lifetimes using inelastic neutron scat-
tering by Daniels et a/. ' in solid krypton and by Eg-
ger et a/. , Batchelder et ak. , and Fujii et al. in
solid 36Ar, the early work on solid argon focused
mainly on the elastic and thermodynamic proper-
ties. This work, both theory and properties, is
elegantly reviewed by Dobbs and Jones, Pollack,
Boato, Guggenheim, '0 and Hor ton. ' The calcula-
tions of Horton and Leech' and the review by Hor-
ton' stand out as the early detailed discussion of
the phonon frequency dispersion curves. In all
these studies the pair interaction was represented
by a model pair potential, generally of the Mie and
Lennard- Jones type.

The first. detailed calculation of the phonon fre-
quencies and lifetimes in solid argon over a wide
temperature range was by Bohlin and Hogberg'
who used quasiharmonic theory with a perturbation
treatment of the quartic and cubic anharmonic
terms (QHPT). Niklasson' also used the QHPT
to calculate phonon properties in argon and both he
and Bohlin and Hogberg employed the Lennard-
Jones potential.

The first calculations in solid argon using real-
istic pair potentials appeared in a series of papers
by Bobetic and Barker. (BB),ts Barker ef al. ,

's and

Klein eI; a/. ' They employed a, potential developed
by Bobetic and Barker to represent the pair argon
interaction and the ATM potential to represent the
three-body interactions. For calculating phonon
frequencies this potential is indistinguishable
from the more widely known and accurate Barker-
Fisher-Watts' potential although some difference
can be seen in the expansivity. With this potential
and using the QHPT Bobetic and Barker's and Bar-
ker et al. ' obtained elastic constants and phonon
frequencies in good agreement with the observed
values near 0 K. However, Klein et al. found the
temperature dependence of these QHPT frequencies
agreed poorly with the temperature dependence ob-
served by Batchelder et al. This was not improv-
ed when the QHPT was replaced by the self-consis-
ten t harmonic approximation.

Goldman et al. calculated the phonon dispersion
curves at 0 K using a more complete self-consist-
ent theory and the Lennard-Jones potential and also
found good agreement with the observed phonon en-
ergies at 0 K available at that time. Using the
powerful molecular dynamics (MD) method, Hansen
and Klein ' evaluated directly the dynamic form
factor S(Q, &o} in a "Lennard-Jones solid. " They
found significant differences between their "exact"
S(Q, o&} and that calculated using the self-consist-

' ent-phonon (SCP) theory for selected phonons at
high temperature. An exhaustive review of all the
dynamic and thermodynamic properties of all the
rare-gas crystals has been made by Klein and
Koe hler. '8

In this context we have evaluated the phonon fre-
quencies and S(Q, o&) in solid s'Ar at all tempera-
tures using the self-consistent-phonon theory and
the recent realistic potential developed by Aziz and
Chen. The Aziz-Chen potential is shown in Fig. 1.
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Here Q is the wave vector of the excitation created
by the neutron and I'v is the energy transferred
from the neutron to the solid. The S(Q, e) is then
expanded in powers of the displacements u& of
atoms l from their lattice points R, and, ignoring
the elastic Bragg scattering component,

I

S(Q, ~)=Sz(Q, ~)+Sz2(Q, ~)+S2(Q, ~)+ " . (2)

The Sz(Q, ar), proportional to ([Q u] ), describes the
scattering in which the excitation is a single phonon
having wave vector zl =Q. The S2(Q, &o), proportion-
al to ((Q u)4), describes the scattering process in
which two phonons are created (or destroyed) and

Sz2(Q, &o) represents the interference contribution
be'.ween the scattering from one- and two-phonon
processes. The higher-order processes we hope
should be small or at least uniform, uninteresting
functions of v.

FIG. l. Argon pair potential in the well region:
Aziz-Chen tHef, 22), - ~ ~ Barker-Fisher-Watts (Ref. 19),—- Parson-Siska-Lee (Ref. 35), and -'- Lennard-Jones.

The results are compared with the more recent and
accurate neutron scattering data of Fujii et al. and
the MD studies of Hansen and Klein. The aim is to
test whether the temperature dependence of the
phonon frequencies and the temperature broadening
of S(Q, &o) can be correctly predicted. This will
help answer (1) whether at high temperature the
SCP theory is a substantial improvement over the
QHPT and (2} whether the SCP theory itself is re-
liable at high temperatures. Since the role of the
ATM forces has been clearly established by Bar-
ker et al. , we do not include them in the calcula-
tion of the phonon frequencies here. Their contri-
bution to the frequencies is discussed in Sec. III.

The technical details of the present calculations
are outlined in Sec. II and the low-temperature re-
sults are presented in Sec. III. The temperature
dependence of the phonon frequencies and the dy-
namic form factors are presented in Secs. IV and
V. The results are discussed in Sec. VI.

H. THE SELF-CONSISTENT THEORY

A. Dynamic form factor

The cross section for the coherent scattering of
neutrons from a solid is proportional to the dynam-
ic form factor,

B. Phonon dynamics

The one-phonon Sz(Q, &o) is 3

S1(Q~ zzz) = [n(zzz) + l]zf'(Q) Z (Q'&,~)'

Xf,',A(zf y, &o)a(Q —zf }.

Here n(&o) is the Bose function, d(Q) is the Debye-
Waller factor, f,z, =(h/2m&v, „), t, z, and e,„are the
polarization and frequency of the phonon having
branch X, and nz is the atomic mass.

In the self-consistent harmonic (SCH) approxima-
tion, the ~,~ are given by the usual harmonic ex-
pression, 26

(o,'z, eq, ——(e—"'"«—I)(V(0) V(l)v(roz))e, z,qX qX

in which the force constants (V(0) V(l)v(roz)) are
evaluated as derivatives of the interatomic poten-
tial v(ro, ) averaged over the vibrational distribu-
tion of the atoms about their lattice points. The vi-
brational distribution is described by a Gaussian
function of rms amplitude (u, ) consistent with the
SCH frequencies,

(u'z) =Q f,'z [2n(zzz, z,) + I].
In the SCH theory in which the cubic anharmonic
term is added as a perturbation2 (SCH+C) the
one-phonon response function in Sz(Q, &o) takes the
usual anharmonic form,
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The 4 and 1" are the phonon frequency shift and in-
verse lifetime due to the cubic anharmonic term
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(6) FIG. 2. Phonon energies calculated in the SCH+ C ap-
proximation (solid line) and observed by Fujii et al.
(Ref. 6) (points).

where
1 1

M(1, 2, ~) =(n, +n, +1)
(d + (O~ + (d2 (d —((d~ + (dp)

-(nt —n()
1 1

(0 + G02 —601 (d —602 + (d1

J(1,2, pd)

= (nq +n2 + I)s~[&(pd —((u, + (u,)) —6 ((u+ (u, + (u, )]

+ (n 2 n f )r[6((0 + 47$ (0 $ ) '5 ((0 (0$ + (0f )]
where v, = pd«„& and n~ ——n(or&) and so on. In these
expressions V(qX, 1,2} is essentially the Fourier
transform of (V(0) V(0) V(l)v(p»)), the third de-
rivative of v(rp, ) averaged over the same vibration-
al distribution as appearing in (4). If 4(qX, ur) and
F(qX, v) depend little on frequency, then A(qX, &o) is
a simple Lorentzian function peaking at v =co,„
+ 2a&,ih(qX, pd) with a full width at half maximum
FWHM of W = 2F(qX, &o). The position of this peak
is usually identified as the SCH+ C phonon fre-
quency.

For harmoniclike phonons,

S2(Q, &o}= [n(ru) + 1Jd'(Q)

X 1 '1
12

x~(1, 2, ~)~(Q —(q, +q, )) . (6)

Here J'(1, 2, pd) given in (7) is usually referred to as
the two-phonon density of states. Since in S&(Q, &o)

there is a sum over all phonons having wave vector
q~ [with qp fixed by 4(Q —(q, +qt))] we expect
S2(Q, &d) to be a reasonably uniform function of &o.

The interference term, S,p(Q, u&}, has been dis-
cussed extensively ' and we do not discuss it
here.

SCH + C QHPT
AC BB

potential potential Obs.

QH QH
AC I J

potential potential

ably confident of the dynamics, we may compare
the calculated phonon frequencies and elastic con-
stants with experiment as a test of the interatomic
potential. In Fig. 2 we compare the phonon fre-
quencies calculated using the SCH + C approxima™
tion and the Aziz-Chen potential with the observed
values of Fujii et a/. There we see the overall
agreement is excellent, especially for the trans-
verse branches. The SCH+ C longitudinal frequen-
cies do, however, lie definitely above the observed
values for wave vectors at the Brillouin-zone edge.
The SCH + C longitudinal frequencies lie below the
observed values at small wave vector.

Barker et al. ' and Klein et aL. ' have calculated
the phonon frequencies at 0 K and higher tempera-
tures, respectively, using quasiharmonic pertur-
bation theory (QHPT). They described the pair po-
tential using the Bobetic-Barker form (a slightly
extended Barker-Pompe potential) and included the
three-body, triple-dipole Axilrod- Teller-Muto
(ATM) forces. Their transverse phonon frequen-
cies at 0 and 4 K are indistinguishable from the
present results and experiment. This is demon-
strated in Table I where some selected transverse
phonon energies are compared. Their longitudinal
frequencies lie above the present SCH+ C results,
due to the addition of the three-body forces, and
therefore agree better with experiment at low q
but less well at high q.

F

TABLE I. The phonon energies (meV) for selected
transverse phonons along the [t'00] direction in ppAr at
&=10 K (AC means Aziz-Chen potential). The QHPT BB
are the values calculated by Klein et al. using quasihar-
monic perturbation theory and the Bobetic-Barker poten-
tial at 7=4 K. The observed values are from Fujii et al.
(aef. 6).

HI. PHONONS AT LOW TEMPERATURE

In PPAr at low temperature (T ~ 10 K), where an-
harmonic effects are small and we may be reason-

0.4 3.47
0.7 5.24
1,0 5.90

3.47
5.25
5.91

3.46 + 0.01
5.25 + 0.01
5.94 + 0.03

3.35
5.07
5.69

3.29
4.97
5.58
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TABLE II. Elastic constants c]g of Ar at T =10 K in 10 dynes/cm, & = (c44- ci2)/&f2.

Ci2 &44

Theory

Present
Barker et a$. (T = 0 K).~

(a) with ATM forces
(b) without ATM forces

395

416
387

205

232
200

220

228
228

190

186
187

0.07

-0.01
0.014

Experiment

Neutron
Fujii et al.
(a) Model 1
(b) Sound speed
Batchelder et al.
(x=4K)

Dorner and Eggerd
(T=4K)

425+ 5
421+ 8

240+ 5
227+ 9

224+ 1
217+ 6

185+ 10
194+17

411 190 210 221

367 + 14 174+ 17 234+ 11 193+ 31

-0.07 + 0.02
-0.04 + 0.05

0.11

0.34 + 0.12

~ Reference 16. I

Force-constant model and sound speed obtained from fits to the same neutron data, Ref. 6.
Reference 5.

d Reference 4.

The impact of including the three-body Axilrod-
Teller-Muto forces can be seen clearly from the
elastic constants listed in Table II. If we compare
the calculations of Barker et al. with and without
the ATM forces, we see the transverse branches
controlled by c44 and cii-ci2 are unaffected by in-
cluding the ATM forces while cii and ci2 are in-
creased by -8/q and -14/q, respectively This.
means that while transverse phonons are unaffect-
ed by the ATM forces, the longitudinal frequencies
are increased by -4%. At high q this increase is
reduced to 1-2% (M. L. Klein, private communi-
cation}. The phonon frequencies calculated by
Barker et al. and Klein et al. are essentially un-
changed if the Bobetic-Barker pair potential is
replaced by the Barker-Fisher-Watts pair poten-
tial. ' The present elastic constants shown in
Table II were calculated from the slope of the
SCH+C phonon dispersion curves and have an es-
timated uncertainty of e 5 (10~ dynes/cm ).

From this we may conclude (a) that the phonon
frequencies calculated using any of the modern
realistic pair potentials and either quasiharmonic
perturbation theory or self-consistent theory are
essentially the same in Ar at low temperature, (b)
that three-body forces increase the longitudinal
frequencies by -4/0 and are needed to get good
agreement with experiment at low q (see Table II),
and (c) there remains a, small but definite dis-
agreement at high q, with the calculated longitud-
inal frequencies lying 1-3% above the observed
values. Since, as we shall see in Sec. V, the long-
itudinal groups at high q are already quite broad at

T =10K, it is not clear whether the disagreement
arises from problems in establishing the one-pho-
non frequency accurately or whether there remains
some physics in this disagreement. Otherwise,
agreement with experiment verifies the pair poten-
tials and suggests that the QHPT and SCH+C the-
ories predict the frequencies equally well at T &10
K.

IV. TEMPERATURE DEPENDENCE OF THE
PHONON ENERGIES

The SCH+ C phonon energy is defined in this
section, as in the previous section, as the mid-
point of the peak in S(Q, &o) of (2) at one-half the
peak height. The SCH frequencies ai, z are used in
all the response functions that enter S(Q, &o). For
the lower-energy phonons considered in this sec-
tion this definition coincides with the definition as
the position of the maximum in S,(Q, &o}. However,
for some of the high-energy phonons discussed in
the following section having a broad and somewhat
asymmetric S(Q, ~), the midpoint at one-half the
peak height can differ significantly from the posi-
tion' of the maximum in S&(Q, &o). In addition, the
two-phonon contribution has a significant energy
dependence at higher energy making it difficult to
separate the one-phonon component from the total
S(Q, uy) if it were not calculated separately. In this

case only adore ct comparison of the total calculated
S(Q, ~}with the observed scattering intensity is
meaningful. To discuss phonon energies here we
restrict ourselves, as did the experiments of Fujii
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et al. , to lower-energy phonons where phonon en-
ergies can be meaningfully defined and where the
one-phonon S&(Q, &u) can be readily distinguished
within the total S(Q, &u).

In Fig. 3 the SCH+C phonon energy for two
transverse phonons is shown as a function of temp-
erature. There we see that the temperature de-
pendence of the SCH + C phonon energies agrees
very well with the more recently observed values
of Fujii et al. Also shown on the left-hand side of
Fig. 3, as crosses, are the phonon energies cal-
culated by Klein et al. ' using the QHPT and the

FIG. 5. Temperature dependence of longitudinal phonon
energies along the [100) direction.

Bobetic-Barker potential which do not agree so
well with experiment. We believe the difference
between their energies at higher temperatures and
the present SCH+ C values represent the difference
between the SCH+C and QHPT rather than a dif-
ference in the potential for the following reasons.
Firstly, as shown in Fig. 1, the model realistic
potentials do not differ substantially in the well re-
gion. Secondly, the phonon energies at low temp-
erature are insensitive to these small differences
as noted in Sec. III, particularly the transverse
branch along the [100]direction (see Table I).
Thirdly, we have calculated the cubic anharmonic
shift in the QHPT and found it to be substantially
different at high temperature from the same shift
in the SCH+C theory. For these reasons we be-
lieve the SCH+C theory is a substantial improve-
ment over the QHPT at high temperatures. The
differences between the QH, the SCH, and the SCH
+C frequencies at 10 and 75 K are shown in Fig. 4.

The temperature dependence of two longitudinal
phonon energies is shown in Fig. 5. There we see
that, while the SCH+ C energies lie below the ob-
served values at all temperatures, owing to the
neglect of ATM forces, the temperature dependence
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FIG. 6. Temperature dependence of transverse phonon
energies along the [111jdirection.
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TABLE III. Elastic constants c;~ of Ar at T =82 K in 10 dynes/cm, 6=(c44-ci2)/ci2.

Ci2 ~44 ii i2

Theory

Present
Klein and Murphy

(T =80 K)'
Fisher and Watts

(Z' =80 K)'
Gibbons et al.

T =80 K)c

220

250

237

135

163

161

157

119

112

112

83

80

-0.015

-0.027

-0.030

-0.029

Experiment
Neutrond
Brillouin

248+ 6
238+ 4

153+ 5
156+3

124+ 4
112+3

95+ 11
82+ 7

-0.019+ 0.04
-0.028+ 0.04

Bobetic-Barker potential, Ref. 15;
Barker-Fisher-Watts potential, Ref. 34;
Parson-Siska-Lee potential, Ref. 35, all including Axilrod-Teller-Muto three-body

forces.
Fujii et a/. , Ref. 6.

e Gewurtz and Stoicheff, Ref. 36.

agrees will with experiment. A final exampI. e is
shown in- Fig. 6. These comparisons show the
temperature dependence of the phonon energies can
be calculated quite accurately using the SCH+C
approximation.

In Table III are listed the elastic constants of Ar
at T =82 K. There we see the present SCH+C c44
and cii-ci2 agree well with previous values and ex-
periment, but the cii and ci2 are too small owing to
neglect of the three-body ATM forces. The neutron
data represent zero-sound elastic constants and lie
slightly above the first-sound Brillouin values.
Clearly, ATM forces are needed to get agreement
with experiment. The good agreement between the
theory including these forces and experiment rep-
resents a triumph of both theory and experiment.

/

monic term. The cubic anharmonic force constant
was not, however, reevaluated, and to keep the
one-phonon response peak position consistent with
the SCH+ C frequencies defined above, the v~),

+2m, ~h(q A, u} was set at u&scenic in A(qX, a&). The
aim of the second approximation is the use of the
SCH+ C frequencies which are the best estimate
here of the true argon-crystal. frequencies in I',
Sq2(Q. , ~), and S2(Q, &o) to get a more realistic value
for the width of the phonon group and the contribu-
tion of S~2(Q, &o} and S,(Q, &o) to S(Q, &o) in (2). Set-
ting v,'~+ 2&@,~h(qX, &o) = use„+c will be valid if
b (qX, &o) is not a very sensitive function of v. The
S(Q, e) was folded with a Gaussian of FWHM of 0.4
meV (0.5 meV) for transverse (longitudinal) pho-
nons to simulate the neutron scattering instrument-

V. DYNAMIC FORM FACTOR

In this section we present calculations of the
dynamic form factor S(Q, &o) of Eq. (2) using the
SCP theory. This is done in two approximations.
In the first the cubic anharmonic shift b(qX, &u) and
one-phonon damping I'(qX, e) are calculated simply
as perturbations to the SCH frequencies. That is
the averaged cubic force constant, 4, I', S»(Q, u&),

and S~(Q, &o) are all evaluated using the SCH fre-
quencies. The SCH phonons are the "intermediate
propagator" phonons in S(Q, &u). It was this ap-
proximation that was used to obtain the SCH+ C
frequencies of the previous section.

In the second approximation the SCH+C frequen-
cies are used as the intermediate frequencies in
I'(q&, (o), Sq2(Q, &o), and S2(Q, &u). The second ap-
proximation simulates the first iteration in a fully
self-consistent theory including the cubic anhar-

2.0 I

[Ioo]
l.5- r=r(s
I.O-

«D

2.0

I.5—3
~ Io-

I I

I IOO] L (5,0,0)

0.5—

5.0 6.0 7.0 8.0 9.0 IO.O

ENERGY TRANSFER %~(meVj

FIG. 7. Dynamic form factor, S(Q, ~), for the longi-
tudinal phonon of wave vector Q= (27t'/a) (3.0, 0,0). The
upper (lower) curve uses the SCH (SCH+ C) frequencies
in I'(qX, u} and S2(Q, a).
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FIG. 8. As Fig. 7 for Q= (27r/a) (2.4, 2.4, 2.4).

0 Q- 2II

al resolution width.
The S(Q, u&) for two high-frequency, longitudinal

phonons having reduced wave vectors near the
Brillouin-zone edge are displayed in Figs. 7 and 8.
The one-phonon groups for these phonons are al-
readybroad atr =10K. AtT =75Kwe seetheone-
phonon peak is dispersed over a very wide frequency
range. It also depends very sensitively on whether
the SCH or SCH+ C frequencies are used in the one-
phonon width I'(q1., v) andS, (Q, &u). Since the SCH+ C

frequencies are lower than the SCH frequencies the
I'(SCH+ C) and S,(SCH+ C) lie in a. lower-frequen-
cy range than I'( SCH) and S2(SCH). It turns out
that this lowering means that I'(SCH + C) and St(SCH
+ C) become substantially larger in the one-phonon
peak energy range than the I'(SCH) and St(SCH).
This is true only for the high-energy phonons. The
lower-energy phonons lie in an energy range below
where either I'(SCH+C) or I'(SCH) are substantial.

This is displayed in Fig. 9 which shows I"(SCH) and
I'(SCH+ C) as well as 4(SCH) for the longitudinal
phonon at Q =(2wja) (3, 0, 0).

The contribution of S,(Q, ~) to the total S(Q, ~) for
the longitudinal phonon at Q = (2mja) (3.0, 0, 0) is
shown in Fig. 10. There we see that S2(Q, &u) is
largely responsible for the large shoulder on the
high-energy side of S(Q, &o). Since this Q lies mid-
way between the two reciprocal-lattice vectors the
interference term S»(Q, u&) vanishes by symmetry
for this phonon. The individual contributions of

S~t(Q, &o) and S2(Q, &u) to S(Q, ur) for the longitudinal
phonon at Q =(2sja) (2.4, 2.4, 2.4) are shown in Fig.
11. There we see the interference term is import-
ant for these high-energy phonons. However, in
general the interference terms were significantly
smaller in argon than in neon and helium
where they are very substantial.

The S(Q, ~) for a lower-energy longitudinal pho-
non is shown in Fig. 12. There we see the S(Q, &a)

is relatively insensitive to whether the SCH or SCH
+C frequencies are used as the intermediate prop-
agator frequencies. These S(Q, m) may be com-
pared directly with the observed groups of Fujii
et al. shown in Fig. 13. There we see the calcu-
lated S(Q, v) agrees well with the observed inten-
sity except at T =75 K. The observed groups show
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FIG. 9. Functions 2~,),&(q&, ~) and 2~,), ~(q~, ~) calcu-
lated with the SCH phonons as the intermediate propa-
gator frequencies and 2~,), ~(q~, co) calculated with SCH
+ C phonons as the propagator frequencies.

FIG. 11. Contributions of S2(g, u) and Stt(g, cu) to
St (Q, ~)+ ~gp (4, ~)+ S2 (Q, &u) for the longitudinal phonon at
g= (2m/a) (2.4, 2.4, 2.4) at T= 75 K.
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frequencies. For higher-energy phonons @&a ~ 6
meV, S,(Q, &o) is broad and peaks in the energy
range where I'(qX, &o) and S2(Q, &o) are rapidly in-
creasing (see Figs. 9 and 10) leading to a plateau
on the high-energy side of S(Q, &o). For these pho-
nons S(Q, &o) is very sensitive to whetner the SCH
or SCH+C frequencies are used as intermediate
propagator frequencies. In a fully self-consistent,
second-order theory the frequencies given by the
mean position of the phonon group should be used.
For the higher-energy phonons having a high-fre-
quency tail this mean frequency will be larger than
the SCH+ C frequency. Thus, using the SCH+C
frequencies will tend to overestimate the effect of
changing the intermediate frequencies. The pur-
pose here is to show that for 5'(d ~ 6 meV the group
widths are sensitive to the intermediate frequen-
cies. A definitive group shape will have to await a
fully self-consistent theory which would have to
include shor t-range correlations.

VI. COMPARISON WITH MOLECULAR DYNAMICS

Using the method of molecular dynamics (MD) it
is now possible to simulate classical liquids and
solids directly. In this method Newton's equations
of motion are solved numerically for N atoms in a
volume V to evaluate the atomic positions r, (t)
=R, +u, (t) as a function of time. With this infor-
mation properties such as the dynamic form factor
S(Q, ur) in (1) can be calculated directly. Within
the accuracy of the method, the resulting S(Q, &o)

should be exact, including all anharmonic contrib-
utions. Thus a comparison of S(Q, v) calculated
using the $CP theory with MD should provide a test
of the theory.

In an interesting study, Hansen and Klein have
simulated the rare-gas solids using MD, assuming
the rare-gas atoms interact via the Lennard- Jones
potential

v(r) =4&I (o/r)" —(o/r) ],
where for Ar o =3.405 A and &=119,8 K. This
potential is compared with the more realistic po-
tentials in Fig. 1. To make direct comparison with
their simulation we have calculated S(Q, &o) using
the Lennard-Jones potential in Ar at densities and
temperatures considered by them.

In Fig. 15, the S(Q, &o) for the longitudinal phonon
having wave vector Q = (2v/a) (0.5, 0, 0) in 36Ar at
T =39.5 K (a = 5.3521) and T = 87.5 K (a =5.4603)
calculated here using the SCH+C theory and by
Hansen and Klein using the MD method are com-
pared. Both S(Q, &o} are folded with a Gaussian, of
FWHM=0. 22 in the MD case and of FWHM=0. 4
meV in the SCH+C case. In this calculation the
Lennard- Jones potential was truncated after the
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FIG. 15. S(Q, co) for the longitudinal phononhalfway.
to the zone boundary in the I100] direction (Lennard-
Jones potential) ——SCH+ C, — MD.

I

7.0

first-neighbor shell. For more direct comparison
the SCH+ C theory S(Q, &v) was multiplied by a
single scale factor of 1.18 at both temperatures so
that at T =39.5 K the two S(Q, &o) lie directly on top
of one another. Without this factor the SCH+ C
S(Q, &o) would lie somewhat below the MD S(Q, &o),

perhaps due to multiphonon contribution not includ-
ed in the SCH+C S(Q, &u). The temperature T
=87.5 K lies slightly above the melting point (T
=84 K).

From Fig. 15 we see that the peak positions of
the S(Q, u&} agree well, particularly the change of
this peak position with temperature. The increase
in the width and intensity of S(Q, &o) with tempera-
ture also agrees well. Thus except for the humps
on the MD S(Q, &u), which may be due to statistical
noise, the SCH+ C S(Q, u&) reproduces the MD re-
sults well. This phonon group, calculated using
the Aziz-Chen potential and observed by Fujii et
a/. , is also shown in Figs. 12 and 13, respective-
ly. Since the SCH+CS(Q, v) in Fig. 12 peaks at
energies slightly below but in a good agreement
with the observed peaks in Fig. 13, the MD and
experiment phonon group peaks are consistent.
The observed group at T =75 K in Fig. 13 is sub-
stantially broader than would be predicted by MD
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simulation.
In Fig. 16 a similar comparison is made for the

transverse phonon having wave vector Q =(2s/a)
(2, 1, 1) [equivalent to a reduced q = (2v/a} (1, 0, 0)
at T =87.5 K]. In this case the Lennard-Jones po-
tential was truncated after three neighbor shells.
The two S(Q, e) are plotted in the unadjusted units
noted in the figure. While the intensity and width
of the SCH+ C theory S(Q, ar) and Si(Q, &o) compares
well with the MD results, the SCH+ C S(Q, v) peaks
at much higher energy. This disagreement in peak
position is surprising since the peak position of the
SCH+ C theory S(Q, &o) for the T[100Jbranch calcu-
lated using the Aziz-Chen potential agreed extreme-
ly well with experiment at all temperatures, as
shown in Fig. 3. Regarding the SCH+ C theory as
an interpolation scheme to connect the MD simula-
tion and experiment suggests the MD peak position
would not agree with experiment in this case.

From Figs. 15 and 16 we conclude that the width
and shape of the SCH +C theory S(Q, ic) agree well
with the MD simulation near melting in 36Ar, al-
though the peak position does not always agree
well.

VII. DISCUSSION

In the previous sections we saw that the SCH+C
theory predicts phonon frequencies in good agree-
ment with experiment right up to 82 K. The values
obtained are much improved over those predicted
by QHPT. For low-frequency phonons, where com-
paxison with experiment is possible, the phonon
lifetimes and shape of S(Q, &u) are also quite well
predicted (see Figs. 12 and 13). These shapes are
also reasonably insensitive to how S(Q, &o} is calcu-
lated. In addition, the Aziz-Chen potential, which
describes gas and liquid-argon properties pre-
cisely, clearly predicts the phonon properties well
although the phonon data are not really precise
enough to distinguish between the Aziz-Chen and
Barker-Fisher-Watts potentials, for example.

With the above positive points we recall that the

S(Q, &o) for the high-frequency, longitudinal phonons
predicted by the SCH+ C theory are very broad and
very sensitive to the values used for the intermedi-
ate propagator frequencies at T ~ 55 K (e.g. , see

.Figs. 7 and 8). This is both because S,(Q, ur) itself
is very broad and because S,(Q, ic) falls in a fre-
quency range where S,(Q, &o) is rapidly increasing
with ar. For these reasons a fully self-consistent
theory including the cubic anharmonic term is re-
quired to establish S(Q, &o} for high-frequency pho-
nons precisely. This fully self-consistent theory
should also include recalculating the averaged
harmonic and cubic force constants at each stage of
the iteration.

It is also clear both from experiment and theory
that S(Q, &o) for high-frequency phonons in 36Ar at
T ~ 55 K is indeed very broad. A similarly broad
S(Q, &o), having a plateau on the high-frequency side
due to a rapidly rising S,(Q, &c), was found for
high-frequency phonons in fcc He and Ne. How-
ever, the Si(Q, a&) appears to be even broader in Ar
near melting than in Ne, fcc He or even in the
more quantum hcp and bcc phases of helium. The
Si(Q, &u) is broad for high-energy phonons in Ar be-
cause S,(Q, &u) lies in a frequency range where
I'(q, ~) is large (see Fig. 9). In bcc He, for ex-
ample, S,(Q, &e) always lies in a frequency range
below which the corresponding I'(q, &c) becomes
large (see Fig. 4, Ref. 40). Thus the phonons are
broader in Ar due to the closer relative positions
of S,(Q, &o) and F(q, &c) in Ar rather than to larger
intrinsic anharmonic effects. Thus, although the
quantum phases of helium are the most anharmon-
ic, the phonons have long lifetimes because the
phonon energies are small and lie in a region
where F(q, &u) is small. The rms vibrational amp-
litude in bcc He is -30-35 /o of the interatomic
spacing compared to 15-18 /o in Ar at the triple
point.
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Finally, would a theory including an explicit
description of short-range correlations improve
agreement with experiment 7 Certainly, including
short-range correlations changes the force con-
stants and in that sense they are important.
Also, the SCH+C theory is an improvement over
the QHPT largely because the initial SCH frequen-
cies are closer to the observed values and the sub-
sequent cubic frequency shift is smaller; that is,
the SCH frequencies are a better basis. If includ-
ing short-range correlations provides a still bet-
ter basis, then improvement can be expected. In
this case the cubic anharmonic term would be fur-
ther reduced. Experience in solid helium shows
that this reduction in the cubic coefficient
(V(0)V(0)V(l)v(ro, )), when short-range correlations

are included, substantially lengthens the phonon
lifetime. Since experiment and MD tend to con-
firm that the phonon lifetimes in Ar are indeed
short, incorporating short-range correlations
should not change the averaged force constants too
dramatically. An experimental determination of
S(Q, u&) for the high-energy phonons in Ar would
therefore be most interesting as a critical test of
future theories.
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