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Pair-cluster theory for the dielectric constant of composite media
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By considering the embedding of nearest-neighbor grains of a random composite in an "effective medium, "a pair-
cluster theory for the dielectric constant of composites is formulated in which the interactions between pairs of
nearest-neighbor grains are explicitly taken into account. Compared to the well-known effective-medium theory, the
new theory displays similar dc behavior but predicts different optical dielectric constants. A comparison of the two
theories shows in particular that the absence of optical dielectric anomaly in the effective-medium theory is
attributable to the neglect of nearest-neighbor interactions. Differences between the optical characteristics of the
Maxwell-Garnett theory and the pair-cluster theory are also pointed out and discussed in relation to the underlying
microstructures.

The effective-medium theory' ' (EMT) and the
Maxwell-Garnett theory' (MGT) are the two most
widely used mean-field-type theories for the cal-
culation of dielectric constants of composite me-
dia. Both theories are derived on the assumption
that the composite material consists of grains
which are much smaller than the wavelength of
the probing electromagnetic radiation. However,
they differ in the treatment of the two components
in a composite system. Whereas in the EMT the
two components are treated in an equivalent man-
ner, in the MGT the grains of one component are
taken to be embedded in the matrix of the other
component. The different microstructures im-
plicitly implied by the two theories are schemati-
cally illustrated in Fig. 1. In a recent paper, 4

Gittleman et al. have pointed out that the EMT
and the MGT predict grossly different optical
dielectric constants. In particular, the EMT does
not produce the optical dielectric anomaly ob-
served in granular metal films, ' ' while the MGT
does predict the existence of the anomaly. Ip
view of the demonstrated link' between the optical
and dc transport properties of granular metals and
its underlying microstructure, ' ' the disagreement
between the two theories raises an interesting
question: Is the absence of the optical dielectric
anomaly in the EMT an inherent consequence of
its microstructure or simply a reflection of the
approximation used in the derivation of EMT'? It
is the purpose of this note to answer the above
question by constructing an alternative "pair-
cluster" form of the EMT in which the interactions
between pairs of nearest-neighbor grains are
explicitly taken into account. For metal-insulator
composites, the new theory displays similar dc
behavior as the EMT (see Fig. 3). However, at
optical frequencies the pair-cluster theory is

shown to exhibit dielectric anomaly. Since the
microstructure treated by the pair-cluster theory
is implicitly the same as that for the EMT, the
difference between the two theories clearly points
to the neglect of nearest-neighbor interactions
as the culprit for the absence of dielectric anomaly
in the EMT.

Consider a random composite of two components,
e and P, schematically depicted in Fig. 1. In the
EMT, grains of o. and P are assumed to be em-
bedded in a uniform effective medium of dielectric
constant E. When an electric field E is applied,
the field inside each grain, E &~&, can be easily
calculated in the case of spherical grain geometry:
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FIG. 1. (a) Microstructure treated by the effective-
medium theory. (b) Microstructure treated by the Max-
well'-Garnett theory.
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The deviation of E &z& from the uniform field
value E is simply given by &E &~&=E &~&

-E. By
imposing the effective medium condition that the
deviations should average to zero, we obtain the
KMT equation:

(2)

V„=Q r""g(8)A,"„,P„„(cos8)+r"Bv,P„(cos8),
0

V,„,= -Er cos8 + Q r ""'CvP, (cos8),
7=0

(4)

where 8 is the angle measured from the s direc-
tion, r is the radial distance, P, (cos8) stands for
lth Legendre polynomial, and e(8) is equal to the
dielectric constant of the upper hemisphere for
0 & 8 & m/2 and equal to the dielectric constant
of the lower hemisphere for mi2 & 8 & m. Similar
expansions in the parallel case are given by

Vi = g r Amp yP2g |(cos8)cosy
L=O

where P is the volume fraction of component a.
In the derivation of Eq. (2) it is important to note
that the only interfaces explicitly considered are
those between the individual grains of n (or P) and
the effective medium. Therefore, if there are
effects intrinsically associated with the inter-
faces between the n and P components, they are
not expected to be adequately accounted for by the
EMT. In order to overcome this deficiency, let
us consider the alternative scheme of embedding
a pair of nearest-neighbor grains in a uniform
effective medium. In the same spirit as the EMT,
we will approximate the geometry of the two-
grain pair by a sphere in which each half can be
either component o. or P. The general problem
is then the solution of the electrostatic problem
shown in Fig. 2(a). However, it is clear that the
solution of the general case is obtainable as the
superposition of the two special cases illustrated
in Fig. 2(b), where the applied electric field is
either parallel or perpendicular to the plane se-
parating the two components. In the perpendicular
case, the electric potential inside and outside
the sphere can be written in the expansions

where Q is the azimuthal angle and P', "(cos8) is
the associated Legendre function of the first
order. By imposing the boundary conditions

V„=V,„, at x=1, (7)

e(8)B„V„=&8„V,„, at r =1, (8)

and multiplying through by P, (cos8) [or P',"(cos8)
cosQ], we can easily integrate both sides of Eqs.
(7) and (8) by utilizing the orthogonality properties
of Legendre polynomials and their tabulated in-
tegrals. " The resulting series contain no de-
pendence on either 8 or &f& and form sets of linear
simultaneous equations from which the coefficients
A, ' ', B, ' ', and C7' ' are explicitly determined.
In terms of A ~ and B~ ~', one can easily ex-
press the average field deviation &E (from the
uniform applied field E) within any given sphere
The effective-medium condition, that the average
of &K over all orientations and all two-hemis-
phere combinations shouM equal zero, then yields

(b)

FIG. 2. Solution to the general electrostatic problem
shown in (a), where a sphere with distinct dielectric con-
stant in each half is polarized by a uniform field applied
at arbitrary angle, can be decomposed into two simpler
problems shown in (b), where the applied field is either
perpendicular or parallel to the plane separating the two
halves.

+r "Bfe(8)P,",'(cos8)cosg,

V,„,=-Er sin8cosg

+ p v ""'CsiP',"(cos8)cosp,
L=O
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Here y, and y, are obtained from the solutions
of the following sets of linear equations:
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where

(&i ~2) & V'ff v
7m~2m-1 t

m=&

n 2n+1 4n+1 nl nm

„=, [2ne, ~, +(n+-,')e(e, +~,)]
(12)

By truncating the infinite series in Eqs. (10) and
(11) to N terms and solving the resulting ec!na-
tions numerically for various X values, it was
found that results accurate to better than 1/p are
achieved by retaining only the leading terms in the
series. In that case Egs. (9)-(11)can be combined
to yield

4 2t -Eq —e2

2~+e, 2~+~, ' &«(~, -e.)'+(&i' 2'4 )&

He(&, -e,)'+2(e,&, +~a, +re, )/8

With

x=-' ~ I~ [2m&,e2+(n+1/2)(e, +&2)e]

Im 2m
m(4m+1)[(2m +1)!]'

4' (m! )'(2m —1)'(m+1)'(2m+1) '

shown in Fig. 3. It i's seen that although the per-
colation threshold, p, =0.31, differs from the
EMT value of p, =0.33, the overall variation of
the effective conductivity 0 as a function of p is
very similar to the EMT. In Fig. 4 we show the

p=0. 1

The dc percolation transport property of the
pair-cluster model is obtained from Eqs. (15)-
(18) by using &, =1 (or i) and e, =0. The result is
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FIG; 3. Effective conductivity 0 as a function of com-

position p for the pair-cluster theory (—) and the effec-
tive-medium theory (-—).
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FIG. 4. Calculated optical transmission as a function
of light wavelength for a series of 500-A-thick Ag-Si02
composite films. The dashed line denotes the effective-
medium theory. The values of composition p are labeled
in the figure. For clarity, the pairs of curves are dis-
placed vertically with respect to one another.
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calculated optical transmission spectrum for a
series of 500-A-thick Ag-SiOt films. The optical
dielectric constant of the composite is evaluated
by using both the pair-cluster theory (solid line)
and the EMT (dashed line). For e, I used the

experimentally determined constants" of Ag,
modified to take into account the decrease of
conduction-electron relaxation time 7' due to
small-particle microstructure. ' The value of 7'

used in the calculation is 2.5 & 10 "sec, cor-
0

responding to a particle size of 50 A. For c, the
constant value of 2.2 was employed. It is easily
seen that the pair-cluster theory exhibits an ab-
sorption peak, the dielectric anomaly, which the
EMT does not have. In addition, the pair-cluster
theory also shows an extra transmission peak.
Since the pair-cluster model differs from the EMT
primarily in the treatment of nearest-neighbor
interaction, the origin of the dielectric anomaly
and the extra transmission peak can clearly be

FIG. 5. Optical transmission for a series of 500-%-
thick Ag-Si02 composite films calculated by the Maxwell-
Garnett theory.

identified as local in nature.
Compared to the MGT, the location of the ab-

sorption peak in the pair-cluster theory and its
variation with composition P are very different,
as seen from Figs. 4 and 5. Whereas in the MGT
the absorption peak shifts down in frequency and
becomes more pronounced as P approaches 1, in
the pair-cluster model the dielectric anomaly
stays at a relatively fixed frequency and dis-
appears in the range 0.7&P& 0.4. Such dis-
similarities are traceable to the di.fferent under-
lying microstructures in the two cases. Since
the shift of absorption peak (toward lower fre-
quencies) in the MGT is associated with decreasing
(relative) thickness of the oxide coating on metal-
lic particles, it is understandable that the same
peak should not vary its position in the pair-clus-
ter model, because in that case the oxide and
metallic grains have a minimum size which does
not vary with the composition. On the other hand,
the disappearance of the absorption peak for
0.7&Py 0.4 can be ascribed to the occurrence of
a matrix inversion within that composition re-
gion, and in contrast to the MGT, at p& 0.7 the
absorption peak of the pair-cluster theory is as-
sociated with the resonance caused by the insula- .

ting inclusions in the metal continuum. " It is
interesting to note that the matrix inversion in the
pair-cluster theory and the EMT can actually. be
discerned by the transition in the infrared be-
havior from a frequency-independent transmission
(characteristic of SiO, ) to a transmission which
increases with frequency (characteristic of Ag).

In summary, since the pair-cluster theory and
the EMT represent two different treatments for
the same composite microstructure, the com-
parison of the two theories has revealed that the
optical dielectric constant is sensitive to the
short-range interactions while the dc transport
behavior is relatively impervious to approxima-
tions on the local environment of a grain. Fur-
ther comparison between the pair-cluster theory
and the Maxwell-Garnett theory has illustrated
the effect of different microstructures on the.
optical properties of composites.

The author wishes to thank B. Cohen for helpful
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