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The vibrational properties of a diatomic AS,C, , in which the mass m~ and mc are randomly distributed have
been investigated. The calculation has been performed in the short-range-forces approximation. A nonlinear

Lagrangian which describes the vibrational properties is obtained by averaging over the random mass. The mass
disorder creates a region of continuous loca1ized states near the edge and the center of the averaged crystal
Brillouin zone. Experimentally Gap, As, , has been studied by means of Raman scattering; the predicted
behavior has been observed which explains the existence of a two-mode behavior in the acoustical region, as
well as the appearance of a new peak with LO symmetry in the range of optical frequencies.

I. INTRODUCTION

The purpose of this work is to analyze the vi-
brational behavior of a diatomic mixed crystal
AB C

y Spe cial attention is paid to the behavior
of the phonon density of states close to the band
edge. In this region no contribution is usually
obtained when the density of states is calculated
by the ordinary perturbation method.

'The Green's function of the lattice vibration is
written as a functional integral, as used by Eco-
nomou' and Nitzan' for the problem of the spin-
glass. This enables us to calculate subsequently
the average phonon density of states.

In order to perform the configurational average
of the Green function we use the "replica" or
"n-0" trick." The average is performed on a
system with a binary probability for the random
masses. This way we obtain a nonlinear action.
The saddle-point method used by Berezin' and
Cardy' is applied to our case. 'The nonzero den-
sity of states which is obtained is a continuum of
localized states in the vicinity of the zone edge
and of the zone center.

In order to check the theoretical results from
the experimental point of view, we analyze the
Raman spectra of GaP, A, , Until now, most of
the experimental and theoretical work on mixed
crystals has been devoted to the study of the vi-
brational properties of phonons in the center of
the Brillouin zone' and comparatively few experi-
ments have been devoted to the study of the vibra-
tional properties near the edge of the Brillouin
zone (BZ)."

For all concentrations z the acoustical part of
the Raman spectra of GaP, As, , crystals shows
two peaks for the TA branch; one is the virtual-
mode frequency and the second is the localized
mode. 'The virtual-crystal vibrations are due to
Iong-range correlation; the localized ones relate
to short-range correlation above this frequency.

'They correspond to the nonzero density of states
in accordance with our theoretical calculation.
Under the same framework we explain the appear-
ance at low concentration of As of a peak between
the LOr and TOr GaP frequencies. It is attributed
to the nonzero density of states of the localized
mode close to the optical-band edge.

II. FUNCTIONAL REPRESENTATION OF THE
GREEN'S FUNCTIONS

In this chapter the lattice-vibration Green's
function is written in a functional integral form.
We use the n -0 trick for the calculation of the
average Green's function.

The equation of motion for a lattice with two
atoms per unit cell / and 3 x 2 Cartesian coor-
dinates is given by

M„(l), V (l, t) = —Q Q ~ (l, l')V (l', t) .
et

When Fourier transformed, this expression be-
comes in a matrix form

(M&u' —Q) V)=0,

or

(&u' D) ~u) = 0, - (3)

where D is the dynamical matrix,
~
V) is the state

vector of the displacements, and M is the mass
matrix. We have

The "mass-weighted" displacement Green's func-
tion, which gives the density of states, is the in-
verse of the dynamical matrix'

(4)

which can be written as a functional integral (see
the Appendix)
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. G„,(), (', ei') Z='f [du]u, ())u, .(l')exp[-S(u)],

g = S g exp — Su'"'
p=l

(12)

where

[du]=d'u, (l = 1)d'u, (l = 1), . . . ,

d'u, (l =N')d'u, (l =N'), (6)

S(u) =——,
' Q u (l)(&'-D), , u (l'),

du exp -S u

We introduce for every displacement an n-com-
ponent field

~u (l)) = [u."'(l), . . . ,u'"'(l), . . . ,u'"'(l)],

and the two-points correlation function becomes

G„,(l, l', ei')=lim J [du]u, ())u, . (l')exp[M(u)]p" '
n~o

'This is the n- 0 trick" which has been used before
for electrons in a random potential. At this stage
we are able to calculate the averaged Green's
function which will be done in the next section.

III. AVERAGED GREEN'S-FUNCTION CALCULATION

In order to perform the configurational average
on the Green's function we introduce a probability
distribution for the random mass M, which takes
two values M~ and M~. The mass 1lfy is fixed and
has the value M„.

We assume the following probability distribution:
N~

[P(M,(l); l = 1,2, ~ ~ )=, P(M, (l)), (13)
t=x

where

&(M (1))=&6dd ]), dd
+ (1

1

=lim u u l u l'
n~o

xexp — S u

where

[$(u)]:—[du "'] ~ [du'"']

(10)

z is the concentration of M~ and 1 —z is the con-
centration M~. With this probability distribution,
the configurational average for the two-point cor-
relation function is (until now it was convenient
to use o'. to label both the atom and the Cartesian
coordinates but from now on we have to separate
the two~ n will label the Cartesian coordinate
and s specifies the atoms)

(G„,(l, l';s, s'; xi')) = iim f [XS(u)]u (l, s)u„(l', s')exp] =' g (l', )sic' '(sp,eu))is
n~O e ~ l y si+'g &'y s'i r

x exp~ —' u„'"'(l, 1)D, , (l, l'; 1, 1)u,'", '(l', 1)
~

le+ l f'

sm

i=1 OIe&~& 8

[M~ (l)M„(l')]' '

+ (1-z) exp~2 Q u'"'(l, 2) ' '
)

u'"'(l, 2)

We consider only the nearest-neighbor interaction; with this approximation the averaged Green s function
takes a simple form. The next-nearest neighbors have second-order influence on the averaged Green's
function. The multiplicative factor z and (1 -z) might be written in exponential form and expression (15)
becomes in a symmetric form
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(G„.(l, l', s, s', ts'))=1(m f [sl( )],(l, s) „.(I', s')
n~0

us'(I, s)[r«' —G"„.(I, I' s s')[ "'(I',s'))xexp =,
al y l p si al s l'~ & r r

x exp lncosh —,
' u'r' l, 2 Q, l, l', 2, 2 ——— u'r' L, 2

1 1

VM~

x — u'". 'l', 1 +2 ln (16)

s = 1 represents the mass M~ and s = 2 is the mass Ms or Mc. D', ,(l, l', s, s') is given by

y„,(l, /', l, 1)
M~

G;, .(I, I'; s, s ') = (
" (l, l'; I, 2)

2 «), s = I, s ' = 2

Q, .(l,l', 2, 2) —
i

—+ is
s=s'=2.1f'1 1

(17)

We note that in the one-dimensional case the nonlinear part of the effective action takes a simple form:
mu

Q Innnsh Q Isn, u[[ -2Gn, u",'(u [ [,«u[ [)
—(ll —G)u,",'u,",'« ln

r=1
(18)

where K is the force constant between atoms in the unit cell 1 and 6 is the force constant between atoms
in the cells l and (l+ 1); b., and b, are defined by

1 1 1 i 1 1 1
2M- M I' 2/M «M gM )

The effective action can be written

S,«= g —,'[&u'-v&(q)]u~""(q) —g lncosh —,
' gu'"'(l, 2)(t), „(l,l;2,2)&,u'"'(l, 2)

(19)

+-,' g u(")(1,2)(t),(l, 1', 2, 1)h,u'", )(1', 1) + 2 ln

(20)

where j is the wave vector, j applies to either the optical or to the acoustical mode, and cu,'.(q) is the
eigenfrequency of the virtual lattice defined in terms of the dynamical matrix,

(~2 DO) ~~) 0 (21)
/

The nonlinear part of the action contains the deviatfon from the virtual (averaged) lattice. At this stage
we write the effective action in the continuous representation at the center and at the edge of the Brillouin
zone. We neglect terms which contain derivatives higher than V' and we assume that there are no inter-

- actions between modes. With these approximations we are able to write the effective action for every
mode.

S,«= d a a'y~2 &u~"' x '+~a ' —&J u&"' x —a lncosh 2 ~~u~"' x + —,
' ln

r='1 r=1 ~u

(22)

a is the lattice spacing, d is the dimensionality of
the lattice, and the factor a comes from the con-
version of the sum over sites into an integral
(a' —the volume of the unit cell in d dimensions).

QE( (l))=flu E( ()). us

y~ is the constant which takes into considera-
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tion the bending of the band at the edge or at the
center of the Brillouin zone with momentum q, .

&~(q) = &~(e.)+ -'y ~(e -e.)'.

We can write

u'" (x) =u,"'(x)+q(x),

~ of Seff (u ) + g 5 S ~

(28)

(29)

y~ is negative for zone-edge optical phonons and
for zone-center acoustical phonons; it is positive
for zone-edge acoustical phonons and for zone-
center optical phonons. The factor & In[z/(I -z)]
expresses the shift of the band edge as a function
of the concentration. ~~ is the coupling constant
which expresses the deviation from the virtual
crystal. Its value is of the order of magnitude
of half of the square-root difference between the
pure crystals ' band-edge frequencies.

A numerical estimation can be made for the X~
parameter. We assume a lattice-dynamic model
with two force constants. With this model we can
calculate the ratio of the vibration amplitude be-
tween the two atoms for a given mode in the vir-
tual crystal. From this ratio we can estimate the
value of X~ for every mode.

In order to simplify the discussion we scale the
displacement of the atoms in the following way:

u(x) -yu(x) with y'y~a'~ = 1, (24)

g~(r) 2+ ~2 ~2 y-lg-2 (t)
t'=1

-a~ ln cosh —,X~y~'a ' uz'"' + —, In~
I,j. z)

(25)

'The autocorrelation is given by the imaginary
part of the two-point correlation function when
~' is replaced by u'+ if

(ImG(x, x', (u'+ ie)) = Im lim [S(u)]u(x) u(x, )
n~oe 6~ o

x exp[-S„,(x)].

(26)

We note that if we perform the ordinary loop ex-
pansion for (co'- &@2')yz'& 0, each term in the per-
turbation expansion is nonsingular as &-0. This
means that to any order in the perturbation theory
the density of state is zero. It is expected that
the density of states would be nonzero in the re-
gion of localized states; the perturbation series
must diverge enormously, and this divergence is
controlled by the existence of a nontrivial solution
of the effective action. We look for the existence
of nontrivial saddle points u,'"'(x) of S,«.

u',"'(x) satisfies the following equation:

—v'u'"' + (u
' —(u',)y,-'a-'u'"'

—Aga yg tanh 2Agyg a Qu

+ —,
' ln

i
uP =0.z

1 —z ji ( 30)

~II

+-,'ln
~

u, (x)=0.
1 —z)

(31)

In the rest of this section we give a qualitative
analysis of this- equation and we perform explicitly
the calculations for the density of states.

We start our discussion with the transverse-
acoustic mode of the zone edge. It was seen ex-
perimentally that in GaP, As, , andin ZnS, Se, ,
we have a two-mode behavior for the TA(X) zone-
edge phonon. We substitute the parameter ~TA

and ~~r„[~72„is the frequency calculated for con-
centration z = 0.5 in the virtual-crystal approxi-
mation (VCA)].

For u, (x) e 0 we write Eq. (31) in the form

v'u, (x) =- XTAa 2y '
u (x) YA

2 2
x —tanh —,A. rAy~„a u, (x)

~TA

fr

(32)

(for the TA mode yr„' is positive).
In the Wentzel-Kramers-Brillouin (WKB) ap-

proximation, —V'u, (x)/u, (x) is equal to the square
of the momentum. For —V'u, (x)/u, (x) & 0 we have
a damped wave in space which happens for fre-
quencies

2 2
TA TA ' (33)

—V'u, (x)/u, (x) & 0 corresponds to a traveling wave
and this is satisfied for frequencies

When we look for a wavelike solution we find a
region which corresponds to an unstable wave.
This wave can be interpreted as a localized mode.
Equation (30) is satisfied for every one of the t
components of uP. We have for u, (x)

—V'u, (x) + ((u' —u),')y~'a '.u, (x)

—&&a 'yz'tanh ,'&zy—z'a 'u,'(x)

5Sef~
~(t') ( )

C

(27)
(u &&ur„+X~A tanh 2 ln2 2

Il —Zj
(34)
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In addition we have the interesting region where
—V'u, (x)/u, (x) can be positive or negative, which

'

corresponds to unstable wave propagation; this
-takes place in the frequency range

»»

(uT2„+ AT„ tanh —', ln
j

& (u' & (ur2A+ AT„. (35)
1 g]

giving a finite density of states close to ~'= uJ+AJ,
which corresponds to the local or gap modes. For
case (b) we use the expansion of lncosh[f(x)+a, ]:

ln cosh [f(x) +a,] = ln cosh(a, ) + tanh(a, )f(x)

+ —,
' sech'(a, )f(x)'

We define cu'„as
VCA

(uT ~TA+ XTA tanh —.ln (36)

giving the action
n

S g= dx — Vu

This corresponds to the maximum propagating
fr equency.

In the range of frequencies given by Eq. (35)
(the range of unstable wave propagation) we have
solutions u, which correspond to V'u, (x) = 0 and

u, (x) x 0. u, is the solution of

2 2
"=tanh —,'A. T„y „'a 'uo(x)+ —', ln

where

and

n n

( )' I ~ ( )'
2 u -4g ~u

t'= j.
(39)

~' —coJ —~J tanh 2 ln yJ'a '
1 —z

(40)

(3'I) z
g XJyJ a" ' sech' 2 ln 1-8 (41)

The value of up can be found graphically from the
tanh curve which tends toward 1 when u,'(x) tends
toward +~.

The region of unstable wave propagation is in-
terpreted as a region of localized nature. (For a
given frequency we have regions where the wave
propagates and others where the wave is damped. )
It is seen that for u,'(x) &u'„—V'u, (x)/u, (x) & 0
and for u,'(x) & u', , —V'u, (x)/u, (x) & 0.

For (~' —&uT„)/AT„= 1, u', -~ in the approxima-
tion considered here, we have V'uc = 0. This
means that in addition to the VCA mode at-
(jT„+XTA In[&/(I —&)], when ~' is close to ~»+ &»
we have a new mode corresponding to the zone
edge at q = q, . For zone center q = 0 corresponds
to the ordinary local mode. A similar derivation
can be used for the optical bands and we obtain
qualitatively similar results.

An explicit calculation of the density of states
can be performed which will be limited to the fol-
lowing range of frequencies:

CO —(dJ(a) = 1, u', -~
J

The action (39) is used to calculate the density
of states for 02&0 close to the edge or to the cen-
ter of the Brillouin zone. We follow the method
of perturbation at large order used in Ref. 4 and
write

(G(x, x')) = g g '(G), ,
k=p

(42)

dx ucx
c

(- V' -0')u, (x) =gu,'(x),

where

(44)

where (G)„ is the kth order of (G) which is given
by

(G(x, x'; 0'+i~))„= . „, [u(u)] u(x) u(x')1 dg
2$7T g

x exp(-s, ff) .
(43)

We calculate the saddle point in the space of g
and u(x),

2 2

(b)
' «1, u,'-0

A,J
l

(c) intermediate range .

In case (a), ln cosh[f(x)]= f(x) and we obtain the
following action:

n

S — dx" -' Vu(") '+ ~2-~2-~ y-'a-'u'""
F=&

(38)

u =(u() ~ - ~ u(). . . u()i

At the saddle point we obtain for the effective
action

n4-"
~eff (ue) — Cg ~

u, (x) = V.(jnjx),jnj

Cd = 4 t/', x d x .

(45)

(46)

(47)

(48)
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x exp ' V, x-x, V, x'-x, d"x„

where

(48)

g
(~2)2- d2/

for d = 3 we have

(50)

Im(G(x, x'; Q'+ ie)), 2 „2
(~2)3/2g 2 exp t d (~2)1/2~ C

j

x V, x-x, V, x' —x, d'x, .

To evaluate the leading contribution to Im(G(x, x';
Q2+i&)) near the saddle point, we integrate over
the fluctuations in its vicinity. We write u(x)
=u, (x)+q(x) and we keep the term O(312) in the
action. Before carrying out the Gaussian integra-
tion over g we must separate out the zero modes.
This is done using the transformation to the col-
lective coordinate introduced by Langher" and by
Christ and Lee." Following the treatment of Ref.
4 we obtain

Im (G (x x Q +iE))d '() ()

( tQ 2)d /2- 15 -(d+ 1)/2

(54)

Z (Q'+ ic) = (n + 2)g'D, (Q', a '),
where

(55)

The density of states calculated with (52) gives
the same results as given by (51) with parameter
0' and g instead of 0' and g.

The existence of the band tail at the zone edge
' explains the appearance of the Baman peak be-
tween the TOI. and LOI. of GaP at small concen-
trations of As. This experimental fact will be
analyzed in Sec. IV.

In order to check the validity of our model,
we compare our results to those of Maradudin. "
In the 02& 0 range we can use the ordinary loop
expansion; considering the action given by Eq.
(44) we obtain a small correction to the density
of states.

Then we study the lifetime of the phonon close
to the center and to the edge of the Brillouin zone
and compare with the results of Bef. 12. In order
to calculate the phonon lifetime we write the action
given in E(I. (43) in the momentum representation.

%e calculate the self-energy" of the phonon up
to the second order. [The calculations are iden-
tical to those given in Ref. 13 for a u4 field with

O(n) symmetry. ]
The self-energy up to the second order is

In case (c), in order to calculate the density of
states for frequencies in the range

gl g p2y-lpd-2
y& a

e'+ A, tanh —,
'

In~
~

& ~'«ed+Ad,
~1 —zj

we linearized Efl. (3V) around the point au, . We
calculate up to the second order:

a. 1 d

D,(Q, a- )=
q -0

The lifetime 7 is given by

(56)

ln cosh -', j). y 'ad ' Q [+u,' (x) + (u
' + u "

)]
'

r
t =IttlE((( +tf ) = fttg f ( tl(tl (( ) .

(57)

Evaluating Efl. (5V) we obtain

n

—lncosh 2&dye'a' 'g u," +-,'ln

The action for this case takes the form

Pg'(Q2)'/2, d=3
7 '=ImZ(Q2+ie),

ffg'(Q') '/' d=1.

We compare our result to those obtained by
Maraduchn'2 for d = 1.

(58)

(52)
~ '=ImZ((o2+in), ,= p2(de(((d2- fdd2~) '/', (59)

where p2 is given by
where

2 1 d 22, 2 .-Q2=12dyd2a d sech2 Adydla 2u22+ —, In~ 'u22,

(53)

/[AM +(1 z)M ]-
B

((tM, '+((-g)M, ') '
Mc

(60)
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Comparing the two results after introducing the
explicit value of g we see a good agreement. In
fact Eq. (59) can be used to fit AJ instead of using
the model given in Bef. 8.

In order to compare Maradudin's results to ours
we shall take the simple case z = 0.5. In our
theory the mean-square frequency deviation A.~

is of the order A~ = v p, &u~ and from (58)

7 =kg /(Q ) =IT)L~()R —R (2)

which is in agreement with Eq. (59).

Ga

IV. RAMAN SCATTERING (RS) BY MIXED GaP2Asj
CRYSTALS

These crystals were epitaxial deposited layers,
the substrat;e being GaP for GaP-rich crystals
and GaAs for GaAs-rich materials. The Baman
spectra were obtained with a Spex triple mono-
chromator; the 4880-A line of argon was chosen
because its penetration depth was smaller than
the thickness of the layer. In order to improve
the BS efficiency the laser light penetrates the
layer at an angle close to the Brewster angle.
Experiments were performed at room tempera-
ture and at 2 K for most of the crystals.

Figure 1 shows the room-temperature spectra
of GR ~ GR p BA p 2p GRPp gAsp 4p GRPp 35A p 65'
and GaAs. The QRP and GaAs spectra are iden-
tical to those previously published. When GaP
and GaAs are mixed we observe the two-mode
behavior of the zone-center phonons. The zone-
edge optical phonons exhibit a typical two-mode
behavior, the QaP-like and the GRAs-like peaks
without any cross combinations between GaP and
GaAs. These results are in accordance with the
inf rared results. '

In pure GaAs and pure QaP the combination of
acoustical phonons generates a 2&uT„~X& (GaAs) peak
at 158 cm ' and a 2~r„IX~ (GaP) peak at 214 cm ',
respectively. In mixed crystals for all concen-
trations, two peaks are seen in the frequency
range of combination between acoustical phonons.
The first peak exhibits a concentration depen-
dence; for ~=0.6, 2~T„=180cm; for x =0.35,
2cuT„= 172 cm '. The second one does not shift
appreciably with concentration for z = 0.6, 2~TA
=210 cm '; for z =0.35, 2~T„=206 cm '.

These experimental results can be understood
in the framework of the theory presented in the
previous sections. The nonlinear action given by
Eq. (25) is used to calculate the density of states,
and we integrate the Gaussian fluctuations around
the stationary points. The total contribution is
the sum of the integrations around all these points.
One contribution is given by V u =0; it fulfills

O

O

Cf)

UJI-
Z'

OPo.e ASo

200 400 600
WAVE NUMBER (cm-i)

800

FIG. 1. Room-temperature Raman spectra of mixed
GaI', As& 8 for concentrations z = 1, 0.8, 0.6, 0.35, and
0.

case (a) and from Eq. (38), it is important only
when

i(ur'-(u, '. )/&,. i
=1 .

A second contribution is obtained from case (b),
the solution of Eq. (47) and gives a contribution
to the density of states given by Eq. (49).

For the sake of simplicity, we shall explicitly
analyze the crystRl GRPp 5As, „ the action for
other concentrations can be deduced according to
Eq. (25). For this case, the action takes the form
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S~= d x VQ + (d —(dg Q~AQ + ~~ x
r=Z

n

—x 'lnxxsh( —'l
xx yx'xx P x"„' (x))

with

1 1 1 1
m~ 2 mp m~ j

According to case (a) and to Eg. (38), the local
mode will appear when

40 = (dye + ~~~ . .

In order to compare this frequency with the exper-
imental results we have to evaluate ~~A. In the
unit cell, the Ga atoms occupy site 1, and site 2
is occupied by P(As) atoms.

The zone-edge phonon frequencies can be ob-
tained using a one-dimensional. model with two
force constants. The nonlinear part of the action
is given by Eq. (18). The coupling constants K and
G are expressed, respectively, as the sum and
the difference of two force constants A and 8,
which will be deduced from the experimental fre-
(quencies of GaP (GaAs) at the X point; A and B
are not concentration dependent. At the edge of
the BZ the frequencies and the displacement vec-
tors are the solution of

The transverse frequencies are
(1
iM Mj

~ f 4W'(M-'-M-')+16B'M-'M P'.
The displacements are

~To =k(& —&)

At the X point the longitudinal frequencies corre-
spond to the linear chain with only the force con-
stant A. 0 0 and B= 0.

From the &u ~» (GaP) = 367 cm ' and u&z„&»(Gap)
=105 cm ' we can deduce A and B:

A. =7.5&&10' sec '(a.u.),
B=6.6&&10' sec '(a.u. ) .

Under these approximations the average VCA fre-
quency is

coqA- 2A. +

—[ 4A'(m ' -m ')'+ 16Bm ' m 'j ' '

=(85 cm ')',

which is approximately

0.3x10' sec '

~l 4B 1

m~ ((8'„—4A/m~) '

1(1 1
2 I, net mA,

2 ~m, Vm, j 4m

The calculated localized frequency for the crystal
GaP, , is ((d»+X~„)'~'=102 cm '. This value and
the value ~Y& compare very well with the experi-
mental ones which are for the crystals
GaPo. 6Aso.4coxA=90 cm and co&o =1 5 cm

Intuitively we can say that frequencies which are
in the range of the common density of states are
propagating waves. The highest propagating wave

frequency is the VCA zone-edge mode. In addition
we have a range of frequencies outside the common
acoustical density of states. This range corre™
sponds to short spatial correlation, and the wave
propagation is limited to regions which correspond
to GaP in the mixed crystal. This is the contin-
uous range of localized states which peaks close to
the 2TAz(GaP) fre(luency.

On the other hand, at the center of the Brillouin
zone, we observe in addition to the usual two-
mode behavior, a peak which appears for small
concentrations of As. This peak which is between
the TO~ and LO~ of GaP has LO polarization. "
Figure 2 shows the Raman-scattering spectra of
GaPp g5Asp p5 at 2 K showing cle ar ly this pe ak. It
corrresponds to the oscillation of phosphorus at
the edge of the Brillouin zone which is made Ram-
an active by the disorder.

For frequencies close to those of the Brillouin-
zone edge, the density of states is the phonon band
tail 'given by Eq. (49) which is deduced from case
(b) and E(l. (39).

At the X point of the Brillouin zone, the LO(X)
vibrations can be considered as one-dimensional
vibrations. They depend almost solely on one
force constant C, and they are expected to be more
localized than the transverse modes.

Close to the ~~ &» frequency we have
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$3
ImG(X, X), , ~ S'exp-

ger

with

)Jgj(odor o)

Ga Pp95 A$pp5

T=2 K

3 "",'~"' ' se h' —,'I

in a one-dimensional crystal. Also,

4 1
Lo(x) 2 C

P As

= (d) Io (X&
= (404 CI11 )

P

For small As concentrations s =0.05, we have

g~=o o8ym(x)

with y'„0'&» of the order of unity.
The density of states of the continuum of local-

ized modes is maximum when

ImG(X X S )d () 0
8

200
I

400
NAVE NUMBER (cm-~)

which gives

S = gruff=0 002yLO
g e

This shows that the localized density of states has
a contribution close to the v«&,d„, frequency.
This explains the additional Haman peak observed
below the ~L«» frequency.

FIG. 2. Rain spectra at 2 K of GaPp &5Asp pg.
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APPENDIX

We represent the two-point correlation function by the function derivative

ar. n'r' 7=0
(Al)

(A2)

r
oc

[du]exp- 2 g u (l)((d' D)„, „., u„(—l') -g J„(l)u„(l)
~~ oo ar, n'r' nr ]

=const [det( ttx)] 't'etxcp[-, g Z„( )t( 'tc-D) ],d-(l
)) (Ad)

ar, n'r'

where X =(J,(1), J,(1), . . . , J,(N') J,(N')). We use the Gaussian transformation for a discrete number of
variables, which appear in one dimension

1
exp —,X'+ SX ~dX =const && exp(a' S')4a' ]

and can be generalized to read in our case

Substituting J=0 we obtain the known functional representation of a determinant

[det(u'-tt)] u'xconst= [du]exp( 'F u ( )( tDt)c„, -„...u, (t')),I',

~oo ar, a~r~
(A4)

From (Al) and (A3) we obtain the two-point correlation function in functional form



22 L 0 C A L I Z E D S T A T E S I 'N NI I & E D G + P z A 8 y g C R Y S T A L S

G„„(l,l';&')=& ' 6~,l„[d&]e~—
~

a Q &„(l)(&'-D), , I, (&')-P&„(l)~„(l)
~

at, n'r' ai & 7=0

(:„,(t(',,'tx')=X ' [Xxlx,(()x, ()')exp)-'* Z x (()(&'-&), , x ~ ()')) .
~ OO ~r, n~r~

(A6)

(A6)

For more details on functional representation of the Green's function we refer to Amit. "
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