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A cluster Bethe lattice method has been employed for a study of the effects of short-range order on the electronic
and optical properties of binary SiGe alloys. A realistic six-parameter tight-binding parameter Hamiltonian has been
used for the study of chemically ordered and random sequences. In random alloys, one observes properties which
are simply averages over the properties of the constituent atoms weighted with their concentrations. In chemically
ordered alloys, the ionicity manifests itself as a dip in the valence-band electron density of states. The amount of
ionicity is proportional to the strength of the dip which increases with the concentration of one constituent in
minority to a maximum for a Si, ;Ge, 5 alloy. One observes an “ionic gap” of width ~ 1.2 eV in the Si,;Ge, alloy.
This degree of short-range order may be measurable by photoemission experiments. The variation of the band gap
with concentration is seen to be in good agreement with the experimental data available for the optical gap in
crystalline SiGe alloys. We also observe a small impurity band in the band gap in both sequences except in the

Siy sGe, 5 alloy which simulates a zinc-blende-type alloy.

I. INTRODUCTION

The crystalline electronic properties of ele-
mental semiconductors (Ge, Si) are by now quite
well understood. There is a negligible electro-
negativity difference in Ge and Si atoms and one
expects a random distribution of atoms in a
GeSi alloy. However, the electronic and optical
properties of these crystalline and amorphous
binary are not well understood. There are some
electron energy band calculations in various ap-
proximations like a virtual crystal,! single site-
coherent potential,’ and zinc-blende perfect crys-
tal.? However, all these calculations may be con-
sidered merely as linear interpolation schemes
between the elemental properties of the consti-
tuents of the alloy. The effect of the short-range
order (SRO) on the properties has not been studied
except in the variational method of Gubanov and
Rudenko® where again a random alloy was assumed.
Thus a study of the effects of correlations among
neighboring atoms on the electronic and optical
properties of the simplest available GeSi alloy
is very much needed.

Unfortunately, the experimental situation
regarding the existence of the degree of SRO in
GeSi alloys is not clear. For example, in crys-
talline GeSi alloys, optical absorption® and p-n
junction tunneling® measurements are consistent
with a random distribution of the constituents in
order to understand the variation of the average
phonon frequency involved in the indirect transi-
tions. But the positive heat of formation’ and
diffuse x-ray scattering® measurements point
towards a tendency of clustering of like atoms.

In amorphous GeSi alloys the x-ray diffraction®
measurements have been understood on the basis
of a random alloy. On the other hand, the Raman
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spectra results of Lannin!® have shown need of a
theory which includes clustering effects.

The effects of SRO in GeSi alloys has been studied
recently by Kittler and Falicov!! using a cluster
Bethe-lattice method (CBLM). These authors have
considered a simple sp® Hamiltonian which in-
cludes the nearest-neighbor interactions along the
directed bond between sites along with the intra-
site interactions. However, there remains a
problem of extension of the CBLM to a more
realistic Hamiltonian. This is the subject matter
of the present paper.

In the present paper we consider a more realistic
six-parameter tight-binding Hamiltonian in which
all the nearest-neighbor interactions between the
s and p orbitals are accounted for. We make a
comparison between the electronic density of states
for different short-range order and alloy concen-
trations. Section II contains a brief summary of
the interpolation scheme relating to the bond
probabilities with the branching ratios of a Bethe
lattice. The method of cluster Bethe lattice
(CBLM) is applied to a GeSi alloy in Secs. III and
IV. The results and their discussion are included
in Sec. V.

II. INTERPOLATION SCHEME

In order to relate the bond probabilities to the
branching ratios of a Cayley tree, we employ an
interpolation scheme used earlier by Kittler and
Falicov.!? A probabilistic description of the local
environment of an atom can be formulated in terms
of bond probabilities and the concept of valence
saturation. For a tetrahedrally coordinated SiGe
alloy, the coordination number is four. Let us
define the probabilities of the existence of dif-

" ferent bonds in an alloy. Let s, 27, and g be the
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respective probabilities of finding an arbitrary
bond between the nearest-neighboring atoms of
Si-Si type, Si-Ge or Ge-Si type, and Ge-Ge type.
The probabilities should satisfy the normalization
condition.

s+2r+g=1, (1)

Let the concentrations of Ge and Si atoms be C
and 1 -C, respectively, and the total numbers

of atoms in the solid be N. Each atom has four
bonds and each bondis counted twice while summing
over all the atoms, so that the total number of
nearest-neighbor bonds would be 2N. Now con-
sider Ge atoms. The total number of Ge-Ge and
Ge-Si bonds should saturate all the CN Ge atoms
and one gets

(2)2Ng +(2N)2r =4CN ,
i.e.,

(g+7)=C. (2)

The first term contains an extra factor of 2
because each Ge-Ge bond saturates two Ge-
atoms. Similarly, for Si atoms one obtains

(s+r)=1-C, o (3)

7 will be determined by the type of sequence which
one desires to consider in a solid. It will take dif-
ferent values for different sequences like segrega-
tion, chemically ordered (binary), or random se-
quences,

The probability parameters may now be used
to interpolate the branching ratios of the Cayley
tree in the cluster Bethe-lattice method in order
to ensure that the same amount of nearest-
neighbor correlation is present in the Cayley
tree as in the cluster under investigation. In a
cluster, let us denote the average number of like-
atom nearest-neighbor bonds made by an a (b) atom
by P, (P,), and the average number of unlike-
atom nearest-neighbor bonds by @, (@,). Here
we specify the Ge and Si atoms by a and b, re-
spectively. It is obvious that
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Let us consider a particular site in the Cayley
tree. Its descendants will be determined by the
level of the valence saturation already present
due to its parent atom. Let P,, (@,,) be the prob-
ability of like (unlike) atom descendants of an
. a atom having b as its parent atom. The branching

ratios of the descendants would be consistent with
the saturation condition and the cluster averages
for the following values of average probabilities

in the cluster:
Paa=Pab=g/c’ Qaa=Qab=7’/C ’
Pbb:Pbazs/(l _c), be=Qba =7’/(1 _C) .

Three different sequences may now be chosen
for describing the different bonding tendencies.

(i) Segregation sequence:. If the like atoms are
clustered, we would not have any Ge-Si bond.
One may write »=0, g=C, ands=1-C:

Paazpbb=1! Qaa:bezo' (6)

(ii) Random sequence: Here any kind of atom
has equal probability to saturate the valence of
an atom compatible with the multiplicities

(5)

P,=Q, and P,=Q,. (7
We thus have

g=C% r=Cc(1-C), s=(1-C).

Pu=C, Qu=(1-C), (8)

Pyp=(1-C), @,=C.

(iii) Chemically ordered or binary sequence: In
this sequence atoms of small concentration will try
to surround themselves with the atoms of high con-
centration. Consequently, we have two situations
corresponding to g=0 or s=0,

(a) g=0, r=C, ands=1-2C,

Pgup=0, Q,=1, (9)
Py,=(1-2C)/(1-C), be'-‘-c/(l -C). (10)
(b) s=0, r=(1-C), and g=(2C-1),
P,=(2C -1)/C, Q,=(1-C)/C, (11)
Py,=0, Qp=1. ’ (12)

III. CLUSTER BETHE LATTICE
A. Pure lattice

We now consider the evaluation of the Bethe-
lattice Green’s function for a simple tight-binding
Hamiltonian but realistic enough in reproducing
a good description of the valence bands of a pure
solid. In this nearest-neighbor interaction model,
the electrons on each atom are described by one
s orbital and three p orbitals (p,,p,,p,). One needs
to know six interaction integrals which are pa-
rametrized and fitted to crystalline bulk band
structures. The interaction integrals are'?

E =(s IH13>7 Ep=<p‘Hlp>;
U=<SIHIS,>’ V=<p,|Hl[7;>, (13)

S=(s|H|py, T=(bs|H|py),
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(a) (b)

FIG. 1. (a) A lattice site in the tetrahedrally coor-
dinated lattice with its four nearest neighbors. (b) The
transfer matrices at the two nearest-neighboring sites.

where the primes on orbitals specify the nearest-
neighbor site.

The four nearest neighbors of an atom of a
tetrahedrally coordinated lattice are shown in
Fig. 1(a). In the Bethe-lattice method one reduces
the infinite coupled equations of Green’s-function
matrix elements to a finite small set of equations
involving the transfer matrices (or effective
fields).™

The Dyson equation for the Green’s-function
matrix may be written as

(EI-HG=I+YVG, (14)

where E is the energy, G is the Green’s-function
matrix, Ijo is the diagonal matrix for the energies
of the noninteracting orbitals at the same site,
V is the interaction Hamiltonian matrix between
the orbitals lying on the nearest-neighboring sites,
and [ is the unit matrix.

Equations (14) form an infinite set of coupled
equations which can be reduced to a finite set
by using the two symmetries of the Bethe lattice.
In Fig. 1(b) we represent a four-dimensional vec-
tor in the space of orbitals by a dot. In the open
structure of Bethe lattice, every dot can be trans-
formed into any other dot by a fixed set of trans-
formation. Also, any two nearest-neighbor dots
are connected to each other by only one self-
avoiding path. One can thus define a transfer
matrix £, for each inequivalent line (v) joining
any two nearest-neighbor dots. In Fig. 1(b) we
have shown them as {,/;,%;,¢, at one site and
t,1, 13,1, at the neighboring site. The whole
lattice is replaced by only one dot interacting with
the four transfer matrices. By definition the
Green’s function at one site should be identically
equal to one with the entire Bethe lattice. We

TABLE I. Parameters of the tight-binding Hamiltonian
(in eV) for Ge, Si, and GeSi alloys used in the calculation.

Solid  Eg E, U 14 S T
Ge  —4.29 4.13 -1.70 0.66 1.33 1.71
Si  -2.66 4.54 —2.03 0.79 1.47 1.88

GesSi -1.87 0.73 1.40 1.80

0.40 Ge
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0.00

-2 410 -8 -6 -4 -2 0 2 4 6
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FIG. 2. Electron density of states in amorphous Ge.

may thus write the Green’s-function matrix for
the site ¢ as

Gii=EL;-Hy ~-F)",

where

4
E=Zl Vii Ligys (15)
J=

and £,;, denotes the transfer matrix at site 7

along the direction of atom j. With the requirement
that the Green’s function G;; should be identically
equal to one obtained by just taking two dots with
the corresponding transfer matrices, one obtains
the following two equations for the transfer ma-
trices in a pure solid:

Lg=EL; -H}, - F+ VL)'V (16)
and '
0.40 Sio_1 Geo_g
RANDOM

DENSITY (ARB UNITS)

ENERGY (eV)

FIG. 3. Electron density of states in an amorphous
Siy,1Gey, 9 alloy in random sequence. The contribution
of Si atoms is denoted by the (----) line and that of Ge
atoms by the (— — — —) line. The continuous curve
depicts the total density of states.
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FIG. 4. Same as in Fig. 3 except that the results are
for an Sij;Ge, g alloy in chemically ordered or binary
sequence.

iy =(ELy—HY ~F + Vit ) Vi; . )

Equations (16) and (17) may be solved for deter-
mining the eight transfer matrices #, and ;.
Knowing them, one determines the Green’s function
(15) at any site. The local density of states at
atom ¢ may be obtained from

D(E)=-(1/m)Im TrG,; . (18)

B. GeSi alloy
In a SiGe alloy, equations similar to (16) and
(17) may be written for the eight transfer matrices
after taking into account the various probabilities
ofrthe Ge-Ge, Ge-Si, Si—-Ge, and Si-Si bonds.
The equations may then be solved numerically

0.40 Si0_3 Geg 7
RANDOM

0.30
@ i
% RN

0.20 / \
m ! \
@ ! \
< ! \
~ Il 1\
E o0} [ /
a “ S~ .
Z -- ~
w - 5
o \

0.00 1 "

-0 -8 -6 -4 -2 0
ENERGY (eV)

FIG. 5. Same as in Fig. 3 except that the results are
for an Si; 3Ge, ; alloy in random sequence.
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FIG. 6. Same as in Fig. 3 except that the results are
for an Si) 3Ge, ¢ alloy in chemically ordered or binary
sequence.

by iteration.

In the interpolation scheme employed here, we
have four different kinds of sites in the Bethe
lattice. The branching ratios at a site are deter-
mined by the kind of atom at that particular site
and its parent atom. The transfer matrices for a
particular site with respect to its parent atom

. are determined by the kind of bond between them,

i.e., Ge-Ge, Ge-Si, Si-Ge, or Si-Si. The equa-

tions for an alloy are
4= Vao(BI~Hos = PooVoals = QuaVars) ™
B =VaBI-Hi, - PVt - QuValts)™
by =Va(EL =Bl = PoeVoly ~QuVar k)™
bL=ValBL-Hi~PaVacti = QuVarts)™ »
1 Z.Yba(E..I. —I_Igb ‘Pbb_‘fbbL - Qr;b_‘_’tmfz)-l s
I =Vi{EI-H}, —Py Vi, — QuViata)™,
L =Yu(EL-H}, - Py Viply = QuyVsata)™
Z4 = Zgb(EL—_Iigb _Pbbzg‘bg - be!{a!})-l .

(19)

The local Green’s functions at the two constituent
atoms may be written as

gu:(E,I__gga - é‘PaaZaaEJ - %‘ Qaa_YabEB)-i s

GCop=(EI-H}, — % PpVyfy— % QusVsalz)™ . (20)

The superscript T denotes the transpose of the
matrix. The total density of states is the sum
over the four orbitals at the central atom of a
five-atom cluster which is averaged over all the
possible cluster configurations consistent with
the short-range order assumed. The contribution
of each constituent atom towards the electronic
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FIG. 7. Same as in Fig. 3 except that the results are
for an Si; 4Ge, g alloy in chemically ordered or binary
sequence.

density of the solid would be proportional to its
concentration in the solid.

IV. CALCULATION

In order to have any numerical result, one has
to make a choice of the tight-binding parameters
for pure Ge and Si and their alloy. For Ge and
Si, we employ the parameters determined by
Chadi and Cohen.!® The relative positions of the
s-and p orbitals for Ge and Si atoms are taken
similar to Kittel and Falicov.!! As no reliable
values of the interaction parameters for Ge-Si
or Si-Ge bonds are available, we have made the
simplest choice, i.e., we take the averages of the
interaction parameters of the constituent atoms
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FIG. 8. Same as in Fig. 3 except that the results are
for an Sig,;Geg, 5 alloy in random sequence.
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FIG. 9. Same as in Fig. 3 except that the results are
for an Sij 5Gey. 5 alloy in chemically ordered or binary
sequence.

to simulate them for the alloy. The values of the
different parameters used in the calculation are
given in Table I.

Equations (19) were solved for various concen-
trations of the constituents by iteration. The cal-
culations have been performed for the binary and
random sequences and the results are presented
in Figs. 2-15. In these figures the relative con-
tributions of the constituent atoms have also been
depicted. Figures 2 and 15 depict the density of
states in the pure materials.

The variation of the semiconductor energy gap
with concentration is found to be similar for both
the sequences. This variation is shown in Fig.
16. For comparison we reproduce the experi-
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FIG. 10. Same as in Fig. 3 except that the results
are for an Si; ¢Ge, 4 alloy in chemically ordered or
binary sequence.



0.40F  Sig7Geq 3

RANDOM

DENSITY (ARB UNITS)

ENERGY (eV)

FIG. 11. Same as in Fig. 3 except that the results
are for an Si, ;Gey,; alloy in random sequence.

mental data of Kline et al.!® for the optical gap
in crystalline GeSi alloys as well as the earlier
results of Kittler and Falicov!! for the band gap.

V. RESULTS AND DISCUSSION

In random alloys we observe average properties
in proportion to the concentrations of the constitu-
ent Ge and Si atoms. However, in chemically or-
dered or binary alloys, we observe the effects of
ionicity. At any concentration the manifestation of
ionicity in separating the two regions correspond-
ing to Ge and Si atoms is determined by the amount
of correlation in the alloy. An actual ionic gap
opens up only for a 40% concentration of Ge atoms.
Ina Ge, ;Si, ;alloy, wefind a gap of width~1.2 eV

0.40 F  Sig7Geg3
BINARY

DENSITY (ARB UNITS)

ENERGY (eV)

FIG. 12. Same as in Fig. 3 except that the results are
for an Si; ;Ge, 3 alloy in chemically ordered or binary
sequence.
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FIG. 13. Same as in Fig. 3 except that the results are
for an Siy, 4Ge,,; alloy in random sequence.

which is nearly equal to that obtained by Stukel® (~1.1
eV) in a ZnS-type crystal structure of SiGe. How-
ever, the amount of ionicity manifests itself as
the area of the dip in the binary sequence. For
very small concentrations of one constituent this
dip is quite small. The strength of the dip in-
creases with the concentration up to the Siy ;Gey 5
alloy, where one observes a full ionic gap, and
then decreases until a pure Ge is reached. These
dips should be observable in the photoemission
experiments and one may measure the degree of
SRO in alloys. The variation of the ionic gap with
concentration is shown in Fig. 17.

In both sequences there appears a weak band in
the band gap in the energy range 2.0-3.0 eV,
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FIG. 14. Same as in Fig. 3 except that the results are
for an Sij gGey alloy in chemically ordered or binary

sequence.
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FIG. 15. Electron density of states in amorphous Si.

except in the case of Ge, ;Si; 5 alloy in the binary
sequence, where the alloy simulates a perfect
zinc-blende structure. Also, the band does not
appear in pure Ge and Si. The total density of
states in this band increases with the concentration
of minority atoms reaching to a maximum for
nearly equal concentrations of the constituent

Si Ge alloys

0.6} X% Expt. ot Kline et al.

Present calculation

-==7= Kittler and Falicov calculation |

20} x

Direct optical or band gap (eV)

Ge 01 02 03 04 05 06 07 08 09 Si

[si] atoms

FIG. 16. Variation of the band gap or optical gap with
concentration in GeSi alloys. The solid curve denotes
the present results for the band gap. The calculated
band gaps of Kittler and Falicov (Ref. 11) for the binary
and random sequences are shown by (++-) and (----)
curves, respectively. The experimental points of Kline
‘et al. (Ref. 16) for the minimum optical gap at each
concentration are depicted by (x—x—x).

“lonic gap"in Ge Si alloys

“lonic gap” (eV)

[=)
T

1
0.40 0.50 0.60
[Ge] atoms
FIG. 17, Variation of ionic gap with Ge concentration.

atoms. The impurity band seems to arise from
the alloying.

The measurements of Kline ef al. reveal'® a
linear dependence of several direct optical gaps
on concentration in GeSi alloys. If we assume
that the variation of the smallest direct optical
gap with concentration is similar to that of band
gap in the present calculation, we may derive
the concentration dependence. In Fig. 16 this
dependence is depicted and compared with the
experimental points. We observe a negligible
departure from linearity, i.e., only a small bowing

"in the band gap. Also, we observe a concentration

dependence which is similar in random and binary
sequences. These results are different from those
of Kittler and Falicov'! who have seen large and
different bowings in random and binary sequences.
Although the form of the variation of the band gap
with concentration is in good agreement with ex-
periment, there arises an almost constant dif-
ference of ~1.9 eV between the calculated and the
experimental values over most of the concentration
range. It arises in part from the smaller band-
width of the Bethe lattice and can be corrected by
changing the interaction parameters in the lattice.!’
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