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High-frequency dielectric properties of covalent semiconductors within the nearly-free-electron
approximation. I.The one-plasmon-band model
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The macroscopic dielectric response function e~(k,co) is calculated analytically for covalent semiconductors in the

high-frequency limit. The effects of the periodic crystal potential are included by second-order perturbation theory

within the self-consistent-field approximation. A study of the plasmon line shape, i.e., of the energy-loss function

Im[ —I/eu(O, to)] and of the optical absorption Imeu(O, co) demonstrates the importance of local-field corrections in

covalent semiconductors. In the long-wavelength limit, the theorygredicts that the unknown effective

pseudopotential form factors Uo for reciprocal-lattice vectors with ~G() (G,M~ may be obtained successively for

increasing (G~ and increasing excitation energies fico from energy-loss experiments or optical measurements.

Available experimental data in two cases (Si and Ge) show absorption edges near the predicted. energies associated

with particular UG. For the first time, the anisotropic plasmon dispersion has been calculated for semiconductors

and is compared with recent loss experiments on single crystals of Si, GaAs, and InSb. Owing to the similarity of the

crystal potential in these compounds, the theory predicts the same trends for all three materials, namely:

co" '(k) &co"'"(k) & co"'"(k). For Si and GaAs this is in agreement with experiment whereas unexpectedly the

experiment sho~s that co"'"(k)&~" '(k) & co,"'"(k) for InSb.

I, INTRODUCTION

In recent years, due to improved experimental,
techniques, electron-energy-loss spectroscopy
(ELS) has been increasingly used to study high-
frequency electronic excitations in solids. ' ' The
"classic" electronic excitation studied by this
technique is the plasmon, which is the quantum
of the longitudinal electron density fluctuations of
the conduction or valence electrons in a solid.
Electron-energy-loss spectroscopy has also been
used to investigate interband transitions, core-
electron excitations, and excitons. Here, we shall.
be concerned with plasmons and their interactions
with interband transitions and local fields which
are both a consequence of the periodic crystal
potential.

In the self-consistent-field approximation (SCI")
the response of the electrons to a weak scalar ex-
ternal potential can be calculated from the micro-
scopic dielectric function which is obtained from
the response of independent particles to a total
potential. This total potential consists of the ex-
ternal potential and the potential induced by the
charge-density fluctuations due to the external
perturbation. If exchange and correlation effects
are neglected, the induced potential is related to
the charge-density fluctuations by Poisson's
equation.

%'ithin the homogeneous electron-gas model in
which the periodic potential of the positive ions is

*'smeared" out to a structureless positive back-
ground that neutralizes the total charge of the
electron gas, the dielectric response is given by
a simple scalar function, the well-known (longi-
tudinal) Lindhard dielectric function ex (tl, &d).

The assumption of quasihomogeneity, i,e. , the
generalization to Bloch electrons in a real crystal,
leads to the Ehrenreich-Cohen dielectric func-
tions' e (tl, co), which for many years formed the

EC
basis of our understanding of the dielectric pro-
perties such as the optical properties of metals
and semiconductors.

During the la, st ten years, however, it has be-
come increasingly clear that eE (0, to) is insuf-
ficient to describe accurately the optical proper-
ties of covalent semiconductors. The problem
arises from the assumption of quasihomogeneity
which means that the induced potential tIi. d(r) has
the same wavelength as the external potential

(r) —
y xt lq

q

However, in a crystal the unperturbed valence-
or conduction-electron density is really a periodic
function of position, although in simple metals
this modulation is sufficiently weak to justify the
assumption of quasihomogeneity as borne out by
detailed calculations of the energy-loss spectra
of simple metals. ' In covalent semiconductors,
however, the covalent-bond charges are a clear
manifestation of the inhomogeneous distribution

22 6268 1980 The American Physical Society



HIGH-FREQUENCY DIELECTRIC PROPERTIES OF. . . . I. 6269

of the valence electrons. This inhomogeneity is
reflected in the-dielectric response giving rise to
an induced potential

~md &f& r+ g P~d el(%+G & ~ r

a+6
G &9

where G is a reciprocal-lattice vector. The
~- arise from local fields which are set up by

the short-wavelength charge-density fluctuations
p(q+6). Adler and Wiser' have shown that the
inclusion of the microscopic local fields leads to
the definition of a microscopic dielectric matrix
[e(k+G, k+6, &u)] given by

(1.3)

in which k is restricted to the first Brillouin zone
and

~ o),E~ denote single-particle Bloch states
with o as shorthand for all the quantum numbers.
All measurable quantities such as the optical pro-
perties and the loss function may then be obtained
by inversion of this dielectric matrix. Thus if we
define a macroscopic dielectric function e„(q, u&)

as the quantity that would be used in Maxwell's
equations, we find that

(1.4)

with q =%+ G, . In particular, for the optical pro-
perties

e~(0, e) = 1/e '(0, 0, ru) . (1.5)

e„(qtu) =, e~ (q, e) = e $ + G„%+G„&u),

or to e~(q, ~) if'the periodicity of the crystal po-
tential is neglected completely.

As we have said, local-field effects cannot be
neglected in covalent semiconductors, so a calcu-
lation of their dielectric properties in general en-
tails an extensive numerical problem. As is corn-
mon in any band-structure calculation one has to
limit oneself to some finite energy (or frequency)
range which, together with the desired accuracy
of the required e„(q, &u), ultimately defines the
size of the electronic band-structure problem
which provides the input for the calculation of the
dielectric matrix. A typical calculation where
these problems have been considered in detail is
the investigation by Louie et al. ' of the long-wave-
length dielectric properties of Si for values up to
the plasma frequency ~~. Their work revealed

Here e '(k +G„k+6„co)or e '(0, 0, e) is an
element of the -inverted matrix so that it should be
noted, for example, that both(1. 4) and (1.5) are
the inverse of an element of the inverse dielectric
matrix. The local-field effects are manifest in
the off-diagonal elements of the dielectric matrix
so, if these effects are neglected, the matrix be-
comes diagonal and the problem reduces to

I

very clearly the importance of local-field effects
for high frequencies, in particular, in the evalua-
tion of the energy-loss function Im[-1/c„(0, ru)].

It is precisely this high-frequency regime, i.e.,
where@»& the gap energy, Eg p which is con-
sidered in the present investigation. However,
whereas most. of the previous work is restricted
to the long-wavelength limit, we consider finite q
in order to study the effect of the periodic crystal
potential on the plasmon dispersion and compare
our results with recent loss experiments on single
crystals of Si,' GaAs, and InSb."

In a previous Letter by one of the authors" the
energy-loss function at q=0 was calculated for a
series of covalent semiconductors within what we
would now term an effective "one-plasmon-band
model. " The effective 1&1 dielectric matrix ob-
tained' ' by folding down the infinite dielectric
matrix was calculated to second order in the cry-
stal potential in the nearly-free-electron approxi-
mation (NFE). The results for Si were found in
good agreement with those of Louie et al. '

In contrast with most simple metals, the plas-
mon dispersion in semiconductors reaches the
Brillouin-zone boundary —where plasmon band
splitting should occur for jk—)

& q„where q, is
the cutoff wave vector for plasmons in the homo-
geneous electron-gas model. As is frequent in
ordinary electron-band-structure problems a
single-band approximation breaks down in the
neighborhood of the Brillouin- (or Jones-) zone
boundary. Near the boundary, at least an effective
"two-plasmon-band model" is needed, which would
be obtained by folding down the dielectric matrix
to a 2& 2 matrix. Our present calcul'ation in which
we fold down the dielectric matrix to a 1X1 ma-
trix is therefore restricted to k values well within
the first Brillouin zone. A following publication"
will be devoted to a detailed analysis of plasmon
bands and band splittings at the zone boundary
and to whether they can be observed in covalent
semiconductors.

In Sec. II we briefly define the one-plasmon-
band approximation. The dielectric properties in
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the long-wavelength limit are discussed in Sec.
III together with the derivation of e„(0,&u), which
to second order in the crystal potential is repre-
sented by a particularly simple formula. We also
discuss there the possibility of estimating the ef-,
fective crystal potential form factors from optical-
or energy-loss experiments by exploiting the pro-
perties of the simple formula for e„(0,&u). The
increasing importance of local-field corrections
with increasing frequency is shown by evaluating
the optical absorption Im e„(0,a&) for Si and the
loss function Im[- I/e„(0, e)] for'a number of
semiconductors of the diamond or zinc-blende
structures. Comparison with existing experiment-
al data is made. In Sec. IV the more elaborated
but still analytic extension of the theory to finite
k is outlined. The theory is applied to study the
change of the dielectric properties with increasing
k and in particular the anisotropy of the plasmon
dispersion as observed by recent ELS experiments
on Si, GaAs, and InSb. General conclusions are
drawn in Sec. Vand remaining problems, in par-
ticular with respect to the plasmon dispersion,
are discussed.

II. THE ONE-PLASMON-BAND APPROXIMATION

As discussed in the Introduction, the effect of the
periodic potential on the dieleetrie properties re-
sults in a dielectric matrix in k space where rows
and columns are labeled by reciprocal-lattice vec-
tors G, O'. In order to make this more apparent
and also to save some writing, we introduce the
notation

potential, '

(g) g (k (g) g ~O, G( I d)~G, O ( I &)

G ~o e~(lk+Gl, ~)

V(r) = Ztr- e-" '
6

(2.4)

in keeping only terms to second order in Ug we
have replaced e G G (k, co) in the denominator by its
zero-order approximation, namely by e~() k+6(,
(d).

It should be noted that a calculation to second
order in the effective potential is only applicable
to energies &co that are large compared to the gap.
The plasmon energy in covalent semiconductors
satisfies this condition and explains why the plas-
ma frequency is fairly accurately determined by
the homogeneous electron gas value e~ = (4~n, e'/
m)'~', with n, being the density of the valence
electrons. Since (VG /N~~)=0. 2 for most semi-

lll
conductors (see Table I), a perturbation expan-
sion to second order in Uo/h ~ is expected to work
well for ~" ~~. The relation between the coef-
ficients in Table I and UG is given by"

(2.3)
The first term of Eq. (2.3) is the Ehrenreich-

Cohen approximation' to the dielectric properties,
which is sufficiently accurate for most simple me-
tals. The second term of (2.3) depends on off-
diagonal elements of the dielectric matrix and in-
cludes the local-field effects. Since the off-diag-
onal elements are proportional to the Fourier com-
ponents UG of the effective crystal potential,

G~$, cu) =- e(k+6, k+G', &u).
UG = V~G cos(G r) + i Va" sin(G 7), (2.5)

The plasmon dispersion in the homogeneous
electron-gas model is defined by

e~(q, (u) =0,

which corresponds to a pole in the loss function
Im[-I/e~(q, cu)]. In calculating the loss function

for a real crystal, however, we have to invert the
dielectric matrix, Since every element of the in-
verted dielectric matrix is inversely proportional
to the determinant of this matrix, plasmons are
now defined as the poles. of

with ~ =-,' a(l, 1, 1) and

V; =
2 [. V, (G)+ V2(G)],

V", =-,'[V, (G) -V, (G)],
(2.6)

where the indices 1 and 2 stand for pseudopoten-
tials due to the two types of atoms in the III-V
compounds.

det[e o G $, (u) ]= 0, (2.2)
III. THE LONG-WAVELENGTH LIMIT

which defines a band-structure problem. "
long as R is sufficiently well inside the first zone
and as we are only concerned with the lowest
plasmon band, the problem can be reduced to an
effective 1&1 dielectric matrix. If we keep only
terms to second order in the effective crystal

A brief account of some of the results presented
in this section was previously reported in a Letter
by one of the authors. " Here we present a de-
tailed derivation and discussion.

For k well within the- first Brillouin zone, we
said in Sec. II that the individual terms of the
dielectric matrix that constitute e„(k, (u), as in
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TABLE I. Empirical pseudopotential form factors derived from experimental, (Refs. 14 and

15) energy-band splittings (V3 =V&,Vs =V&,V&& =V&3&&, etc). a is the lattice constant;
)Vf/Sru&0) demonstrates the smallness of the p~sendopotential compared to the plasmon energy.

V3 (Ry) Vs S VA V VAii a (A} [Vz /S~J, ~

Diamond
Si
Ge
Sn
GaP
GaAs
InP
InAs
GaSb
Alsb
InSb

-0.811
-0.21
-0.23
-0.20
—0.22
-0.23
-0.23
-0.22
-0.22
-0.21
-0.20

0.337
0.04
0.01
0.00
0.03
0.01
0.01
0.00
0.00
0.02
0.00

0.132
0.08
0.06
0.04
0.07
0.06
0.06
0.05
0.05
0.06
0.04

0
0
0
0
0.12
0.07
0.07
0.08
0.06
0.06
0.06

0
0
0
0
0.07
0.05
0.05
'0.05
0.05
0.04
0.05

0
0
0
0
0.02
0.01
0.01
0.03
0.01
0.02
0.01 .

3.57
5.43
5.66
6.49
5 44
5.64
5,.86
6.04
6.12
6.13
6.48

0.35
0.17
0.20
0.21
0.18
0.20
0.21
0.21
0.22
0.21
0.21

(2 3), may be calculated analytically by expanding
the single-particle Bloch functions and correspond-
ing energies to second order in the effective cry-
stal potential. A different derivation, however,
may be used to calculate the long-wavelength lim-
it which results in a particularly simple form of
e„(0,is). This limit is of particular interest since
the optical properties as well as the loss function

(3.1)

for fj-5 derive from e„(0,~).
We use the identity

-Eo )&o'ls '"' (o')

-~] r
@'&' @ P

and a similar relation for (E,-E;) (o'je'"' '[g),
that, in the limit as k-0, it follows from (1.3)

Ime(0, 0, &u)= lim s &», Z [n(E,)-n(E, i)])(o[k ~ p)c'))'5(S&u+E, -E'i) .4xe' k' 1 (3.2)

Since

&oil pro'&=&oik pt )5o., '+ E 'E" &o~[3i', k p][o'&' (3.3)

[X,k p]=[V(r),% p]=g@$ G)U;s-"',
G

we obtain

Ims(0, 0, iu) =lim Z $ G)$ 6')UGUgi
0 G, G'

x p [n(E )-n(E )](o[e 'G'(o')(o'(e'G" ') o) 5(K&u+E, -Ec ),
a, o'

(3.4)

(3.5)

where the contribution of the first term of (3.3) has been omitted" since it is only nonzero for I+-0.
As we are interested in Ime(0, 0,, &u) to second order in the pseudopotential, the last double summation

in (3.5) is evaluated for free electrons. It then follows that only terms with G' = G contribute, and using
the definition of the I.indhard dielectric function e~(G, &u} the final result may be written as

Ime (0, 0, ru) = lim 4~ h, , I, Ime~(G, &u) ~, (3.6}

with Eo =S'G'/2m. Since this formula is only valid for semiconductors for 1&v»E„~, we do not want to
rely on the Kramers-Kronig relation for the derivation of Res (0, 0, e) but prefer to calculate it directly.
From (1.3) one has
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)
42(e2 P n(E ) n-(E, e)

g++@ (&[&
i-k 2.[or )(o 2[&ik ~ (3.7)

The above expression can quite generally be rewritten by using the identity

1 1 Q 0
x+ a x x' x'(x+ a) (3.8)

and the f-sum rule'

&-$q I . I &I &fq r & + & &$q r &I &I &-fq r

Os 0
(3.9)

which is obtained from the double commutator

[e '"', [X,e'" ']]"=Ii'if'im.

Re find that

) 1
~(u' 4)[e' P n(E ) -n(E ) (EG E)-)(

I
ik. , ),)(,Ii2, 4 If&u+E, —E, (h(d)'

t

(3.10)

It is obvious that in the limit k -0 the last term in Eq. (3.10) represents band-structure contributions.
If these are sufficiently weak, then the plasmon energy in the long-wavelength limit is approximately
given by the homogeneous electron-gas result.

The evaluation of the limit k-0 proceeds as for Imm(0, 0, cu) and yields

S4
Rec. (0, 0, (4)) =lim 1 — R2 —M (k Q)(k Q')U-U&,

&(4"e' n gO -n

If we now use the fact that

1 1 — 1 1 1

(E EGe )' h(2-)+ E, EGe -@co(EG Ei )' -(K(o)' (E, E) (k-co)'(h(a+ E E ~ )- (3.12)

and proceed as for Imc(0, 0, (2)), the final result can be cast in the form

~ (k Q)' (U-)'E'
Ree (0, 0, 40= iim 2 —,+4 E . . . Re[e (G, te) —e (G, O))) . (3.13)

Note that the first term of (3.12) does not contribute to Res (0, 0, (d) since it is odd in ~. Equations

(3.6) and (3.13) may thus be represented together by

(k Q)2
( UG [GER

e(0, 0, |e)=(im i-, +4i . . . [e (G, m) —e (G, O)j) (3.14)

If local-field effects are neglected, then, as in the first term in Eq. (2.13),

e„(0,(u) = e (0, 0, &u) .

The calculation of the off-diagonal elements is easily carried out in a similar manner, leading to

e(0, G, te) = (im —2, , [ e (G, te) -e (G, 0)))

(3.15)

(3.16)

e(G, O, m)= iim" —2, ", [ee(G, eO-e (G, O)]). (3.17)
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Local-field effects are now included by inserting (3.14), (3.16), and (3.17) into (2.3), which leads to

(3.18)

while if local-field effects are included,

~ $ G)2 j
U-('g'

Ime„(0, u&) = 4 Z, , ( ),
G

„~,(G, 0) '
Ime~(G, &u) .

6z ~G, Nj (3.19)

The physical basis of the factor ~e~(G, 0)/e&(G,
&)~' can be viewed as follows": U6, which repre-
sents the effective crystal potential in the single-
particle Hamiltonian, is a statically screened po-
tential, i.e.,

Uo =Uo/c~(G, O), (3.20)

where U~ is the bare potential. Then

Um 2
G

c~(G, &o)

which means that the inclusion of local-field ef-
fects results in a "dynamical screening"" of the
crystal potential.

The natural question which now arises is how

many terms have to be included in the G summa-
tion. This question is easy to answer in the case
of the optical absorption, i.e., Im~„(0, &u), be-
cause for a given Ne only those terms for .which

the point (G, to) falls in the particle-hole excita-
tion spectrum of the free-electron gas contribute,
due to the fact that only for. these points i.s
Ime ~(G, ar) nonzero. Obviously the strength of
the pseudopotential is reflected in the strength of
the optical absorption. From Fig. 1 it is seen that
with increasing ~ an increasing number of sets of
reciprocal-lattice vectors, i.e., Fourier coeffic-
ients U~, have to be taken into account. Actually
one can predict the onset of the absorption as-
sociated with a particular U6 from

Su&(G)=8 [(G/0 )' —2(G/0 )] . (3.21)

Here E~ and k~ are free-electron parameters
defined in the usual way as functions of the elec-

We can see the difference between (3.14) and

(3.18), for instance, by considering the optical
absorption. Without local-field effects we have

(k G)' lU;I'~'
Ime (0, 0, &u) =4»

(
o

),
~ Ime~(G, &o),

(3.6)

0 1.0 2.0
k(A ')

3.0 4.0 5.0 6.0

70

60

50
~(eVj
40

30

0
4)p

1

20

10

0
kc 1 G~3 G~8 2 G~j] Gf, G~jg 3 G~gG~Py

k

FIG. 1. Electron gas excitation spectrum with elec-
tron density appropriate to Si. Only the points (G, co)
within the particle-hole spectrum contribute to
Immy(0, w) {for example, at co= co& only the first three
sets of reciprocal-lattice vectors are important). co(G)
correspond to the onset of interband transitions as-
sociated with a certain Uo. co and k are given in units
of Ez and kz, respectively.

tron density n 0 For the covalent semiconductors
only the. lowest three symmetric and antisymme-
tric form factors have been determined from op-
tical data at low frequencies (e«&so~) within the
empirical pseudopotential method. " So far,
nothing is known of the higher coefficients and

they are usually set equal to zero. According to
(3.21), one finds for Q4 = (2w/a) (4, 0, 0), Kv(G, )
=17.8 eV.

Recent experimental data" on Ime„(0, +) ob-
tained from ELS data by a Kramers-Kronig analy-
sis are shown in Fig. 2 together with theoretical
curves as calculated" from Eqs. (3.6) and (3.19)
with U~ set equal to zero, as is usually assumed.

4
We then observe very good agreement between
theory and experiment only below about 19 eV if
local-field effects are included. We believe this
is a clear indication that V~ „40. Figure 3 shows
the difference between the theoretical curve and
the experimental curve in Fig. 2 and the form of
the additional contribution expected from

~ V«, ~

=1 Ry. Scaling the theoretical curve down to the
experimental curve would in principle allow a
determination of V400 but since the loss experi-
ment was only carried out up to I~ = 25 eV we do
not know how reliable the Ime, „~~ (0, e) is. A
search for more experimental data revealed that
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0.6-

3
-~ 0.4—
4)
E

td

1.0 1.2 1.4 1.6 1.8 2.0
R(&)

2,5-

2.0— ,.' si

02-
or

I I I I I I I I

12- 16 20 24
~(eV)

a fairly strong onset of additional interband ab-
sorption" occurs in Ge at about 25.5 eV in close
agreement with S&o(G») = 25.3 eV. Figure 2 also
shows that the importance of local-field effects
increases with increasing frequency and seems
to become the dominant absorption mechanism
at high co. To demonstrate this and the qualita-
tively different behavior of simple metals we
have plotted in Fig. 4 the ratio

R(g = Ime„(0, &u)/Im-(0, 0, (u) (3.22)

FIG. 2. Calculated Im&~(0, co) for Si with pseudopo-
tential from Ref. 21 compared with experiment from
Ref. 20. Dashed curve is without local-field correc-
tions tEq. (3.6)]. co is given in units of the Fermi energy

Tl(dp (Al) 'hu)p(SI )

10 15 20
1

25 bu)(eV)

FIG. 4. g(~) calculated from Eqs. (3.22) (solid
curves) and (3.23) (dashed curves) with pseudopotential
from Ref. 21 for Si and Ref. 19 for Al.

selves to those pseudopotential coefficients which

are known. The dominant structure in the energy-
loss spectrum originates from the plasmon. As
already noted, the peak position is fairly well

given by ~~, the homogeneous electron-gas value
of the plasmon frequency, whereas the height and
linewidth of the loss function are mainly deter-
mined by Ime„(0, v). Up to a&~0, Imc„(0, ur) is de-
termined by the known pseudopotential coeffic-
ients. This explains why the overall agreement
between the experimentally' ' ' ""determined
loss function and the theoretical curve —as shown
in Figs. 5 and 6—is very good in most cases,

for Si and Al. If only the dominant pseudopoten-
tial coefficient is considered, which for Si is .

U~ and for Al is U~„,, one hasill di

1.0
ld

1.4
I I I

I
/

'i expt'

1.8
4)

8
1.0 1.4 1.8

/I\

/

si

R(ru) = is~(G„O)/e~(G„(u)i', (3.23)

0.4—

0.3—

which is also shown as dashed curves in Fig. 4,
Gp being Gy] y ox G2pp for Si and Al, respectively.

The energy-loss function Imf —I/&„(0, ~)] de-
pends on both Rem„(0, e) and ImE„(0, u&). In this
case the extent of the G summation in (3.18) is
less clear, but in practice we have to limit our-

2
4l

I

E

0&, i

30

1.0

Ge

I I I I

40 50
u)(eV)

(Ii)

1.4 1.8
I I I

/ 'L

/
/

/

22

Sn

14 18
&(eV)

At

1.0 1.4 1.8
I I I I I

0.2—

0.1-

16 18 20 22 24 26 e{eV) 16 20
&(ev)

10 12 14 16
~(eV)

-0.1-

FIG. 3. Solid curve: contribution 1'o Ime&(0, co)

starting at (Q4pp) when ) V4pp )
= 1 Ry is assumed; dashed

curve: difference between experimental and theoretical
Ime~(0, co) when Im&~(0, co) was calculated with V4pp= 0,
as in Fig. 2.

FIG. 5. Energy-loss spectra for semiconductors of
the diamond structure for k=0. Theoretical curves with
pseudopotential from Refs. 14 and 15. Experiments:
(a) Ref. 2, (b) Ref. 23, (c) Ref. 20, (d) Ref. 25. Dashed
curves: theory without local-field effects. co is given
in units of the Fermi energy Ez.
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FIG. 6. Energy-loss spectra for semiconductors of
the zinc-blende structure for k= 0. Theoretical curves
with pseudopotential from Ref. 14. Experiment from
Ref. 24. Dashed curves: theory without local-field
effects. ~ is given in units of the Fermi energy Ez.

structure (Fig. 5) we believe that inclusion of the
higher VG, in particular V~„, and V~, would

considerably improve the agreement with exper-
iment, as one can easily show that the effect of
the pseudopotential form factors is to shift the
theoretical plasmon peak to lower energies. The
reason is that any excitation above the plasmon
frequency shifts the plasmon frequency down and

vice versa. However, for the III-V semiconduc-
tors of the zinc-blende structure, interband
transitions from d-core states can be observed in
the loss spectrum near 20 eV. Since dynamical
effects of core electrons are excluded in the
pseudopotential model their effect cannot be ac-
counted for by the present theory, but as discus-
sed by- Philipp and Ehrenreich, "they also shift
the plasma frequency downward in energy.

In Table II we compare the experimental re-
sults for the plasmon linewidth h, ,~, and for the
height of the loss function Im(-e ') in the long-
wavelength limit with our theoretical results. It
is apparent from Table II that inclusion of local-
field effects to second order in the effective cry-
stal potential leads to a substantial increase in
the long-wavelength plasmon linewidth, in good
agreement with experiment in most cases. Also,
the results we obtained for the height of the loss
peak are quite satisfactory, given the present
stage of experimental knowledge. Table II also
displays the results for the long-wavelength plas-
mon linewidth

provided local-field effects have been included,
of course. However, in almost all cases the
position of the theoretical plasmon peak is slight-
ly higher than the position of the experimental
peak. For the semiconductors of the diamond

and for the height of the loss peak

Im(- f ) mex t f x (Id@ )j

(3.24)

TABLE II. Experimental and theoretical results for the plasmon linewidth &&~2 (in eV} and
for the height of the loss function Im(-& ) in the long-wavelength limit. LF—this work, in-
cluding local-field effects, NLF—this work, neglecting local-field effects, P—phenomeno-
logical Penn model (Ref. 27).

Crystal ~exit Im(-& )m~ Im(-& ) " Im(-& ) Im(-& )"""

Diamond
Si
Ge
GaP
GaAs
InAs
GaSb
InSb

13 6
3.6,' 3.8 '
3.4,' 3.6 '

3 5
4.1
37
2.8'
3.1'

15.7 20.7 10.5
3.5 4.5 2.2
3 9 4 9 2 1
4.7 7.4 2.7
4.3 7.1 2.3
4.6 7.1 2.2
4.4 5.2 2.X

4.2 5.1 1.9

23a
6.3 3 9
5.4,' 3.6 '

3.5
3.6
27'
37
3.1'

2.0
4e8
4.1
3.6
3.7
3.1
3.2
3.1

1.5
3.6
3.2
2.2
2.2
2.0
2.7
2.5

2.9
7,6

6.3
6.8
6.3
6.6
6.7

~ Reference 2.
Reference 23.' Reference 20.
Reference 25.

e Reference 24.
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obtained by using a phenomenological two-band
Penn model according to which, "for k = P,

2

e, (u)) D(S ~)
(@ ), ((@ ), @,pg, ~ (3 )

e

Here, Z» is an average energy gap between the
valence and conduction states, 8 is a parameter
which describes core d-electron effects, and both
E» and D are fitted to the experimentally deter-
mined dielectric constant e, (k=0, so =0) =c,.
Formulas (3.24) and (3.25) are only valid for suf-
ficiently sharp lines; .fo'r broader lines, the line-
width, for example, is overestimated. This
arises from the fact that Imc„(0, e) is not constant
over the width of the peak, which is the underlying
assumption in the derivation of (3.24) and (3.25).
Although the phenomenological Penn model has
been highly successful in describing chemical
trends, it is clear from Table II that we should go
beyond the spherical model to obtain agreement
with experiment. Moreover, this spherical model
cannot explain the anisotropy of the plasmon dis-
persion which is studied in the next section using
an analytic extension of the present pseudopoten-
tial scheme to finite k.

IV. THE ANISOTROPY OF THE PLASMON
DISPERSION

It is well known from any band-structure calcu-
lation that the band energies not only depend on
the modulus of k but also on the direction of k.
EI S experiments on single crystals are therefore
expected to show that co~ (k) depends on the direc-
tion of% with respect to the symmetry axes of the
crystal. Recent ELS measurements in Si, GaAs,
and InSb confirm this. In order to explain this
behavior we extend the theory presented in Sec.
III to finite k values. ' Again, the matrix elements
in (1.3) may be readily evaluated by using second-
order perturbation theory in the pseudopotential.
In what follows it is convenient to work with ener-
gies and wave vectors in units of the free-electron
parameters: the Fermi energy E~ and the Fermi
wave vector &~, respectively, which are defined
in the usual way as functions of the (valence) elec-
tron density np.

If we decompose the elements of the dielectric
matrix into an absorptive part AG o (k, ~) and a
dispersive part Ho Gi(k, ~)

fG ot(kq(d)=Ho o&(kqG0)+&AG Gt(kp&) y (4 1)

we obtain for points (k, &v) outside the free-electron
particle-hole excitation spectrum when co & 2 k+ k',

2

4-, -, $, cu)= „,' g IUGI' d'p n(p)
p2 —(p+G)2 (p+k) —(p+k+G

x [&(+ +p' —(p+ k + G)') —6(v + (p+ k + G) ' —p') ] (4.2)

H;;(k, to) =a~(k, &u) [+I(k, ~)+I(k, —&u)]. (4.3)

(4.4)

with

1 1 1

The free-electron contribution e~(A, &u) has been split off in (4.3), so the I (k, &u) and I (k, —co) contain only
the contribution that depends on the crystal potential and we have

pB

I (k, v) = —
&, IUEI E(G;k, &u),

G&o

2

[~+0'-(p+k)'][0'-(p+G)'ll. ~+p' -(p+"+G)']

1 1 1

[p —(p+G) ] ~+(P+~) (P+~) +p —(p+k+G)

J~ +p' - (p + k)'] [p' - (p + G)'] 4G
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In calculating e„$, (()) to second order in the crystal potential it is sufficient to evaluate the off-diagonal
elements to first order and we obtain

8)' t' ~ )' —(p+G)' (p+k)' —( +k+6)')

x[6((()+P' —(p+k+ G)') —5((()+ (pack+ G)' —P')] (4.6)

and

(4.V)

with

J'$, &o) = d'p n(p)~
1

( [(d +p' —(p +k)'] [(u +p' —(p +k + G)']

[P'-(p+G)'][ +P'-(p-k)'] [P'-(p+G)'1[ +P'-(p+k+G)'] J (4.6)

(() ~1003 (k) & (() ulo 1 ('k) & (() Q, 11l (k) (4.9)

and similar expressions for AG-, $, (()) and

Ho, ; (k, (1)). The above integrals may be evaluated
analytically as shown in detail in the Appendix.
The integrations are conveniently carried out by
introducing cylindrical coordinates (p((,p, Q).
With an appropriate choice of the polar axis, the

Q integration is performed first, followed by the

p and finally p(( integration. All the integrals
required can be found in standard integral tables. -

Although the final result is very lengthly, its
analytic form allows a very quick calculation of
the loss function Im[- I/e„$, &())] as a function of
k. It is a simple exercise to work out the limit
R-l) and check that we recover the results of
Sec-. III.

In Fig. 7 the calculated loss function of Si is
shown for three values of % along the [111]direc-
tion together with Rem„(k, &()) and Ime~(R, (1)). The
dashed line gives the position of the maximum of
the loss function, which even for the broad peaks
is close to the zeros of Res„$,, (d). Imc„(%, (()) re-
mains almost constant along the dashed curve, ex-
plaining the small change in width of the loss peak
for the different% values. Thus the dispersion of
the loss peak reflects fairly accurately the disper-
sion of the plasmon in these materials. In Fig. 8 re-
cent experimental dispersion curves of the loss peak
b,E = max[Im(- Ile„)] for single crystals of Si,'
GaAs, and InSb (Ref. 10) along the three princi-
pal symmetry axes are compared with their theo-
retical counterparts. Owing to the similarities of
the crystal potential and hence the band structure
in these materials the theory predicts in all three
cases that the anisotropy should be of the form

This agrees with the experimental findings in Si
and GaAs. In InSb, however, the experiment
shows

&() ~u10' $)& ~ a~oo' (k) & &() p" ' (k) . (4.10)

At present we cannot offer any explanation for this
discrepancy, apart from the fact that it reflects
the limited knowledge of the pseudopotential, i.e.,
of the band structure at these high energies (see
discussion in Sec. III).

V. CONCLUSIONS

We have shown that the application of the nearly-
free-electron pseudopotential theory to calculating
the dielectric properties of covalent semiconduc-
tors within the self-consistent-field approximation
yields a quantitative description of the optical pro-
perties and the loss function in the long wavelength
limit. It is demonstrated that local-field effects
due to the inhomogeneous distribution of valence
electrons in semiconductors (as manifest in the
covalent-bond charges) must be included and that
their influence increases at high frequencies.

The present simple theory suggests that the so-
far unknown pseudopotential form factors for

~
G [

values greater than
~ G»J may be successively de-

termined from either optical or loss experiments
fork-0. Of course such a procedure only makes
sense for excitation energies well below the onset
of core excitations. Good candidates for such an
investigation are diamond, Si, and Ge. The new

form factors could then be used (and tested) to
evaluate the plasmon dispersion more precisely.

With the present limited knowledge of the pseudo-
potential form factors the anisotropy of the plas-
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and Im[-1/~~(k, co)] of Si (pseudopotential from Ref. 21)
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mon dispersion can be satisfactorily understood
for single crystals of Si and Gahs. InSb, which is
believed to have a similar band structure, unex-
pectedly shows a different anisotropy for the [100j
and [110]direction from Si and GaAs, whereas it
is similar in the [111]direction which shows the
least dispersion in all three cases.

The particular advantage of the present theory
lies in the fact that all calculations can be per-.
formed analytically. The results are particularly
simple and apparent in the long-wavelength limit
when they can be expressed in terms of the I.ind-
hard function. They offer an easy check for high
frequencies on numerical ab initio computations
based on a previous numerical band-structure

0

~ 0

13- +

0.2
I I

0.4 0.6
I& (A )

I

0.8

-1.5

(c)
I T

1.0

FIG. 8. Energy-loss dispersion along the [111],
[110], and [100] directions. Si: experiment —Ref. 9,
pseudopotential —Ref. 21; GaAs and InSb: experiment-
Bef. 10, pseudopotential —Ref. 14.

calculation. Such a check with a previous numer-
ical calculation of the loss function of Si (Refs. 8

and 11) shows the rather close agreement of the
present results with the extensive numerical cal-
culation, which in principle is more precise, pro-
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vided a sufficiently large number of bands is taken
into account. However fine, details of the band
structure will be lost in the calculation of dielec-
tric properties since the optical absorption, for
examyle, is an average value over all electronic
excitations of a given energy Ne. Only excitations
corresponding to a large accessible volume in

phase space will survive as a particular structure
in the optical absorption. This might explain why

a local pseudoyotential, "as used here, and the use
of pseudo-wave-functions instead of proper ortho-
gonalized plane waves (OPW's), is sufficient, "in

particular with respect to the present state of the
experimental accuracy.

It should be noted that for semiconductors this
theory is only applicable for energies large com-
pared to the gap. For energies of the order of the

gap, a tight-binding approach is more suitable as
recent calculations of the optical properties of
diamond and Si have shown, "'"in which, in par-
ticular, exchange and correlation effects were also
considered, giving rise to excitonic effects. At

high energies, ' i.e., co-&~, we conclude from the
very good agreement between our theory (in which

exchange and correlations are neglected) and ex-
periment for %-0 that exchange and correlation
effects should not influence the results apprecia-
bly.

For increasing R the discrepancies between theo-
ry and experiments become noticeable; for ex-
ample, the calculated absolute value of the dis-
persion is too high compared with experiments.
This quite generally seems to be a weakness of the
SCF approximation, which is already known from
the plasmon dispersion in simple metals. " Ex-
change and correlation effects tend to reduce the
dispersion. " As demonstrated by Fig. 9, the
strongest dispersion is obtained from the random-

phase approximation (RPA) exemplified by the sol-
ution for the homogeneous electron gas with a den-

sity n, appropriate to Al which is not very differ-
ent from the valence electron density n, of Si.
The SCF gives a quadratic dispersion for small k
which becomes steeper for large%. For Al a
quadratic dispersion is experimentally observed
for small %, but with a smaller dispersion con-
stant, which becomes steeper, but less than in the

SCF, for large %. The semiconductors behave

qualitatively different from metals; there the

plasmon dispersion is less steep for large fc. An

almost dispersionless plasmon is found in ionic
crystals such as the alkali halides. "'" Neverthe-
less in all these cases the long-wavelength plas-
mon energy is fairly accurately determined by the
homogeneous electron-gas value, and an NFE ap
proximation lends itself as the next step of im-
provement, giving very good results for fc 0 and

~EIE,,

2.0

1.8

1.6

1.2—

I

0.2
I

O.I+

FIG. 9. Energy-loss dispersion for homogeneous
electron gas (solid curve) with density appropriate for
Al. Experiment for Si is from Ref. 9 and for Al from
Ref. 37.
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also explaining band-structure effects such as the

anisotropy in several cases."
We have seen that the coupling to local fields

provides an important decay mechanism for plas-
mons in semiconductors in addition to interband

transitions. Another effect is that local fields

should be responsible for the existence of plas-
mon bands in the sense that at s, given%, two (or
more) plasmons may be experimentally observ-

able in the loss spectrum, and in particular at the

zone boundary, a gap between plasmon bands

should open. First theoretical estimates of plas-
mon band gape yield sizable values" (2 eV for Ge),

indicating that this should be observable, but un-

fortunately lifetime effects were not considered.

In the following paper" the present theory will be

extended to a two-plasmon-band model to investi-

gate the question as to whether a plasmon band

structure can be observed in semiconductors.
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APPENDIX

Here we indicate briefly how the integrals appearing in Eqs. (4.2)-(4.8) can be evaluated analytically.

1. Evaluation of Ao 0{k,m) and A~o G{k

We first perform the momentum integration of Eq. (4.2) by introducing cylindrical coordinates
Q„,P„, Q) and choosing q =k+5 as the polar axis. By using the properties of the 5 function, Eq. (4.2) may
be written as

3(d 1

&.-,.-(»» =;
I
Ue I' dP„[L (P„)6(~-2P„q—q') -L,(p„)6(~+2p„q+q')]

500

(A1)

with

e(x) =

0, x&0

Hence,
(i-x2)'~ '

1I.,&x& = c, (s) —2p,p, ccsp c, (s) —2pp, cCsp)

o., (x) = (u —)'2' —2k„x,

n2(x) = ~+0' —2('2 q —2k„x.

(As)

(A4)

A similar expression for I,(x) is obtained by
changing ~ to -& in the definitions of Q. , and n, .
The integrals in E(l. (A2) are easily performed by
carrying out first the (t) integration" and then the
P, integration; it follows then that

m

1( ) 2/2 (lJ $2)l/2 (1,P2)1/2

where p, p, and k„, k, mean vector components
parallel and perpendicular to q, respectively, and

2. Evaluation of Ho Qgk, M) and Hp g{k,w)

We begin with the integration of (4.8). As the
integration of the first two terms in J(k, (d) fol-
lows the same path we restrict ourselves to the
third term in J(k, (d) which can be written as

J,(k, (d) =- dp„ (A9)

where

I

with the same definitions as before for n, &„
and a similar expression for K2(x) again obtained
by simply changing ~ to -~ in ny/2.

with

(0, + V'
(( —p')"'s () —)p)"') ' M(s)= f cp, p,j cp

(A10)

(t), 12(x) =2k, (1-x2)'~2/n, q,(x).
The integration of Eg. (4.6) is entirely anal-

ogous to the one just performed and yields

(A6) with

n(x) = (u —q2 —2q„x (A11)

and g =4+5, with q „ql and p„,pl denoting vector
components parallel and perpendicular to the polar
axis defined by G. The integration in (A10) is
carried out as before by first performing the Q
integration, "which gives

where
(A7)

M(x) = ', (1 [1 g'(x)]'~'e(1 y'(x))] n(x),
2QL

(A12)
Z, ( )= ", [n, [1—(1 —y', )"']-~,[1-(1-P'.)"']),

L

(As)

where

y(x) =2q, (1 -x')'i 2/a(x) . (A13)
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If we substitute (A12) into (A9), we may write

Z3(k, u)) =Z„(k, (u)+ J,~(k, (o), (A14)

one point x, , o,'(x,.) would be zero and P(x, ) (0],
and using the identity

where
P(x) P'(x) P'(r) P(r)x~+22x (A19)

lf we define

P(x) = n'(x) —4q', (1 —x'),

(A16)

(AIV)

we then have

v ' dx P(x)
4q,'G, x+G/2 yp(x)

x sgn[a(X)]e(P(x)). (A18)

When P(x) &0 in the interval [-1,1], o. (x) cannot
change sign in this interval [otherwise in at least

j (k )—
2q G x+G/2 j '

. (A15)

which is trivial to integrate, and

i
~( )[I —t'(x)1" '

4q', G, x+G 2

for P(x) =a x' +2b x+c (as it is the case), we see
'that (A18) is of the form

f dx P(x), P'(x) P'(y) dx

v'p(„) & P(x) 2 &P(x)

+P(ytf, (A20)
(x -y)&P(x)

where all integrals are standard. "
When P(x) (0 in some interval (x„x,) contained

in the interval [-1,1], it is easy to see that x,i,
are the roots of P(x) =0. We then split (A18) in two
integrals from -1 to x, and x, to +1 (assuming
x, &x,) and proceed as before.

All the other integration corresponding to
H() (((k, ~) are evaluated in a similar manner. It
is important to note that all the important limiting
cases were used to check the accuracy of the very
lengthy analytical formula obtained, which we do
not reproduce here as it offers no further direct
physical insight.
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