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Multipole expansion in tight-binding Hartree-Fock calculations for infinite model polymers
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The importance of long-range electrostatic contributions in Hartree-Pock-Roothaan calculations on model
chainlike polymers is stated. The multipole expansion is used to handle them properly. General expressions and

working formulas are deduced. Special attention is paid to the Gaussian lobe functions. Applications on (LiH), and

(CH, )„chains are made to illustrate the points.

I. INTRODUCTION

Theoretical studies on model polymers, simple.
enough to be completely worked out on a rigorous
basis, can be self-justified; however, it is ex-
pected in the long run that theory wild eventually
be confronted with experiment and produce mu-
tual enrichment. Over this past decade, refine-
ments in polymer-chain preparations and dis-
covery of new compounds, development in spec-
troscopic techniques, and advances in elaborating
firmly based theoretical methods have greatly
contributed in making the quantum theory for
polymers an attractive and rapidly growing field
of research. '~

Since 1968,' theoretical calculations of various
degrees of sophistication have helped in the un-
derstanding of physical and chemical properties
of polymers. One of the significant contributions
is the affirmation of the validity of the convention-
al energy-band scheme in describing the valence
electronic spectra of chainlike systems. '

Also promising is the quantum study of the vi-
brational properties of polymers and more spec-
ifically of the influence of the extended nature of
the chains upon force constants and vibrational
spectra; an interesting contribution has already
been reported for the infinite chain of hydrogen
fluoride molecules. ' Another exciting field is the
conformational study of the extended polymers.
So far, most of the efforts have been made within
the frameworks of molecular classical mechanics
and molecular quantum chemistry' but applied to
oligomers rather than largely extended chains.
In doing so, effects of the long-range type are
often ignored. It would certainly be valuable to
bridge this gapby bringing in the complementary
point of view of polymer quantum calculations
and deciding on a consistent footing wherever

those effects play a significant role.
Methods including electron correlation would

obviously correspond to the best choice but these
are not yet ready for practical implementation.
Yet a Hartree-Fock (HF) approach is routinely
and successfully used for representing the ground-
state properties of closed-shell molecules and
crystals. In solid-state physics, HF calculations
are important in determining the electronic pro-
perties of solids; indeed they yield good charge
densities, Compton profiles, total energies, cell
geometry, etc. , and in addition they provide a
useful conceptual basis for interpreting modifica-
tions in spectra Iir, XPS (x-ray photoemission
spectroscopy), etc.] when homogeneous series of
compounds are considered. 'The same trends
hold true for molecular properties. %ith such
a promising record it is reasonable to expect
that a wide variety of properties related to the
electronic structure and geometry of polymeric
materials can also be investigated and predicted
following the same way.

It is only recently that self-consistent Hartree-
Fock-Roothaan calculations on realistic polymers
have been made possible by the development of
new mathematical techniques and faster computers.
Practically all of them have been performed in
the framework of the direct-space representation
which is an extension to infinite systems of the
linear combination of atomic orbitals-self-con-
sistent-field —molecular orbitals (LCAO-SCF-MO)
method originally deduced by Roothaan and Hall
for molecules. For practical reasons those cal-
culations did not include the long-range interac-
tions basically present in the formalism. How-
ever, this had long ago been pointed out'0 as a
source of problems, and indeed, both in three-di-
mensional solid-state physics"'" and polymer con-
formational analysis, ' one can find examples where
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long-range interactions significantly affect the
quality of the results. More recently this was also
discovered in polymer quantum calculations. ""
It turns out that band structures, force constants,
and total energy, most interesting quantities for
ground-state investigations, are sensitive with
respect to the number of neighbors included in
calculations. To achieve proper computations it
is first necessary to develop a technology capab)e
of handling Madelung-type interactions in the
direct space LCAO-SCF-CO (CO=crystalline or-
bitals) formalism which is at present the only one
of routine applicability. These interactions can be
accounted for by using either the Fourier repre-
sentation method for classical arrays of points
or the multipole expansion (two-center expansion)
of the Coulombic operator. "

The purpose of this paper is to present compu-
tational techniques based on the multipole expan-
sion for performing polymer ground-state cal-
culations in which the correct Hartree-Fock (HF)
exchange operator is employed and the long-
range Coulombic interactions are accounted for.
We illustrate the method by applying it to infinite.
linear chains of lithium hydride molecules and
of polyethylene using Gaussian lobe fu'nctions. "
The results will be critically discussed in relation
with the practice of quantum calculations.

H. BASIC FORMALISM AND THE MULTIPOLE
EXPANSION

In this section we review the basic formalism of
the multipole expansion" as it can be efficiently
used in quantum calculations of the electronic
properties of model polymers. During the devel-
opments, the stress will be put on the reduction
in computational labor it brings into the Hartree-
Fock-Roothaan method (LCAO-SCF-CO) for in-
finite chainlike systems. To provide this paper
with a reasonable self-containedness and to intro-
duce the quantities relevant to the subsequent
discussions, we proceed first by giving a brief
outline of the LCAO-SCF-CO formalism. For
a detailed presentation we refer the reader to
original papers. ""

A. The LCAO-SCF-CO procedure

Let us consider a one-dimensional periodic
lattice consisting of a macroscopic number,
2ot+ I (st-~), of unit cells of length a, each con-
taining 0 nuclei at positions A„A„.. . , A„, . . . ,
&„relative to the cell's origin jazo, j=0, +1,
+2, . . . , +X, and 2n, electrons distributed along
the nuclear backbone. As will be shown later,
a strict electroneutrality of the cells (2nD= Z, + Z,
+ + Z„) is necessary for the stability of the

system. The electrons are assumed to doubly
occupy a set of one-electron orbitals, (t „(k, r), of
Bloch-type, written as periodic combinations of
e basis functions X~,

(kr)„= (,2at+ 1) '~' g g C„,(k)e"'g,(i —jam&),
j=-'x p=i

where r is the position vector measured from an
arbitrary but fixed origin, z, is a unit vector in
the direction of lattice periodicity, and k is a
point in the first Brillouin zone (BZ), (- v/a, v/a),
of the polymer; L~c, the length of this Brillouin
zone, is equal to 2w/a. In this paper the sets of
indices (j, k, I ), (u, v), (]I), q, r, s), and (a, k, c, d)
refer to cells, nuclei, contracted atomic func-
tions, and primitive. functions, respectively.

The g(k, r )'s represent the wave functions of
a single electron in the periodic potential created
by the nuclei and the other electrons. The optimal
set'of those polymer orbitals for a given atomic
basis is obtained in the usual way by solving the
Hartree-Fock equations. The SCF monoelectronic
operator has the explicit form

Z(r)=-&V'(r) —g Zz„ lr (A„+kazo)
&=-9L u=f I

+ Lac dk' 2J„'» r -K„» r, 2

n =1

where n, is the number of doubly occupied bands.
The terms included in Eq. (2) are, respectively,
the kinetic operator, the attraction of a single
electron with all nuclei centered in all cells, the
averaged electrostatic potential of all electrons,
and the averaged exchange interaction.

As is usually the case for complex problems
where expansions into known functions are re-
quired, the ultimate equations are in matrix
form. By applying the Hartree-Fock condition
of minimum expectation value for the total energy
of the many-electron crystal wave functions, we
end up with the following system of equations:

P~C=~~2~ ~ ~ ~ ~ & ~

The solutions to this systems at various k points
in the BZ provide the band structure JE„(k)j,
which is a multivalued function of k in the re-
duced-zone scheme, and the corresponding eigen-
vectors (C„&(k)j. We note that E~~, is a matrix
element of the one-electron operator, E(r),
between the atomic orbital X~ centered in the
origin (or reference) cell and the atomic orbital
g q centered in cell j. $pq ) an overlap integral,



6256 DELHALLE, PIELA, BREDAS, AND ANDRE

is the matrix element between the same orbitals
Xp and X', when the unit operator is used. Both

E~p, and S~p, matrix elements decrease exponentially
with the distance r between the orbitals giving
rise to a natural convergence of the summations
over cells appearing in the secular system (3).

In the LCAO-CO procedure, the matrix ele-
ments I"p, are

E~~ ——T~p, QQ-Z„VJ„(h, A.„)
h u

hl'( h jl
h r s

pq rs, Pr qs.

when defining the following:

the kinetic integrals

Tp = p Xp r V' r gq r —jaz, dr

the nuclear attraction integrals

Xp r r —A„+ hazp 'y, r —jaz, dr,
(6)

the electron repulsion integrals

Oj
y ~(r, )y,(r, jaz,—)r, 2.Pq rs

&& X,(r, —haz, )y, (r, -laz, )dr, dr, .

(7)

The iterative parts of the calculations involves
elements of the density matrix D~, ; they are,
computed at each iteration by numerical integra-
tion over the occupied part of the first Brillouin
zone of the polymer

flap

D~ I -) J( Q C„*~(k)C„,(k)e'"I'dk .

The total energy F.~, where both electron and
nuclear contributions are included, is obtained in
the following way:

T,= Dpq Fpq+Ip
j q

+-,'PQQZ„i'„- (A„+ h z,) i-',
h u

where Ip, collects one-electron quantities

I'p, = T'p, -QQ Z„V~,(h, A „).
h u

A prime on summations excludes the terms
whose denominator vanishes.

B. Long-range problem

In actual applications it is obviously impossible
to deal with arbitrary large values of X since the
two-electron part of an LCAO-CO calculation
involves an enormous number of integrals ()), I„",'),
proportionalto X & . There is a need for limit-
ing X, to some amenable value N; in most of the
reported polymer calculations, A ranges from
1 to 5. For a chosen basis set, A' could be the
number of neighboring cells still contributing a
significant decaying tail of charge amplitude in
the reference cell. The normalization condition
is satisfied for every 1V:

2 g PgD„",'S"„,'=2n, = 2 g PPD„', S„', ,

when the C„~(k) 's are properly normalized in
Eq. (3) (the quantities D„,' and D"„,' are identical
with D„", "' and S„,"' respectively). However,
long-range interactions, which behave like con-
ditionally and slowly convergent series, are
actually embodied in I"p, and ET, and they are
significantly contributing far beyond this number

Owing to this particular behavior it would be
unadvisable to cut off without insight all the three
(j,h, l) summations after a few terms. An analy-
sis to this problem as it arises in the direct-
space I CAO-CO expressions" has been made
and it turns out that one summation, to which we
attachthe indexh, has to run from -Ot to +Z
(X-~). The limits of the other two, j and l,
can be given the values -X and + X. In addition
to the normalization constraint, exchange should
be essentially and accurately contributed from
the range [ N, +N]. As -a result, E~, and Er can
now be cast in more attractive form:

+8 h+N .
hl oh jl'

A~ T, ~P -ggv (A A)~ P g~ 2 I+C'(A'),
h=-N l= h-N r s Pq rSi pr qS

(12)

with

c' (~) —
( P—. Q) QA„Viq, (A, A)+). Q QQ „'C.Pq rs.

(13)

and
N

E,= Q ++Dip, (F~~, +I~q, )+ 2 Q QQ ~,Z iA (» +jazo)
i

+CT(N)
p q J= N u v
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with
+00 +N

C,(N) =
~ g -g [ ~

-.g g Z„Z'„[A„-(A,„+h, ) )

'

—PQ$P z. lY„V',', (h, A„)) .

(15)
C~(N) is a part of the long-range contribution to
the Fock matrix element I"~~„ the other part being
included in F~ because of the long-range effect
inducing a modification of the density matrix
elements. Similarly, Cr(N) is only a part of the
long-range contribution to the total energy, the
other one being already included in E~~ and D~~, .
This partitioning formulates the fact that beyond
a given distance of interactions, characterized
by N, the contribution to the Fock matrix ele-
ments and to the total energy are essentially of
the electrostatic and induction type. In the case
of an atomic basis set including spherical Gaus-
sian functions only, it can be further shown that
these terms have the same expression as for
classical point-charge interactions. "

In spite of the partitioning al.ready introduced we
still have to handle an inifinite h summation in-
volving bielectronic integrals, and Eqs. (13) and

(15) remain untractable from the computational
point of view. However, keeping in mind that l
varies from h -1V to A+X, it is easily under-
stood that the positions G~~, and G"„,', the centers
of charge distributions Z&(r) Z,(r -jazo) and

Z„(r —hazo) y,(r —lazo), respectively, involved in

the bielectronic integral (~", )"„,'), are getting more
and more distant as k increases. This goes up
to a point where the overlap between these two
distributions is virtually negligible. Similarly,
for the nuclear attraction term V~(h, A„) and
beyond a given lattice interdistance

~

ha j, there
will be no significant overlap left between the
charge distribution )t ~(r}x,(r —jazo) and the nuclei
belonging to the cell h. At this point, electron
repulsion, (~~ ~„",), nuclear attraction, V&,(h, A„},
andof course nuclear repulsion,

~

A„—(A., +hazo)~ ',
decay roughly like ~ha20+ 5

~

' and thus behave
clearly like individually divergent lattice sums;
they are the classical conditionally convergent
series encountered in evaluating Madelung con-
stants. The cancellation of the divergence inher-
ent in the problem is due to the electrical neutra-
lity of the system and it is actually achieved by an
approprite combination of the electron-electron
terms with the nuclear-attraction ones in the
case of C~&,(N) and of the nuclear-repulsion terms
with the nuclear-attraction ones in the case of
Cr(N). The next step is thus to find a way to con-
duct these summations up to infinity and at the
same time to get rid of an infinite number of
bielectronic integ rais.

C. Calculation of C&&q(N) and C&(N) via the multipole
expansion

One way to bring this twofold objective to a
successful end is to use" the bipolar expan-
sion ' of the Couiombic operators

~

r& —r2
~

',
(r —(A„+hazo) j

', and (A„—(A„+haz, )
(

~ appear-
ing in the electron-electron, nuclear. -attraction,
and nuclear-repulsion terms respectively. The
merit of this approach is to separate the coupled
variables (r&, r2), (r&, A„+ hazo), and (A„,A„
+hazo) and to expand the corresponding terms in
convergent series of products of functions in-
volving the coordinates of one particle only. The
condition for convergence is that the interacting
charge distributions must be enclosed inside
nonoverlapping spheres. Since in the nuclear-
repulsion contributions the nuclei are located
at fixed positions, it is an easy matter to arrange
things in such a way that this condition is sat-
isfied. On the contrary, electron positions are
characterized by probability distributions which
extend throughout space and we can only speak
of an asymptotic convergence. 25 Amos and Cris-
pin ' have made an explict analysis of the pro-
blem for Gaussian probability distributions. It .

is important to apply the bipolar expansion in
those regions of configuration space where the
values of the functions it represents can be cal-
culated with a good degree of accuracy.

To our knowledge, Karpfen and Schuster' were
the first to apply the bipolar expansion in the
context of quantum calculations on polymers.
They evaluated the long-range contributions to
the total energy of a chain of hydrogen fluoride
molecules interacting up to their third neighbors
(N =3). ' At the end of a conventional I.CAO-
SCF-CO calculation they applied an energy cor-
rection approximated as the sum of the electro-
static interactions of two isolated hydrogen
fluoride molecules successively located at the
lattice points. The calculations were repeated
over 103 lattice points and the multipole expan-
sion was carried out up to hexadecapole-hexa
decapole term. In a recent paper, two of
us'~ have shown how to include the long-range
interactions in the Fock matrix elements and to
combine correctly as well as to sum exactly up

to infinity those contributions with the help of
the Riemann zeta function, g(h). In this way
the goal was given a complete and consistent
solution. Indeed, the charge distributions of the
system relax in the true field of an infinite chain
and beyond a certain distance of interaction the
problematic bielectronic integrals are eliminated
with no loss of accuracy. The total energy, de-
terminant for structural investigations, can thus

be computed on a firm ground.
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A detailed deduction of the multipole expansion
formulas as they apply to polymers is given in
Refs. 19 and 28; hereafter we restrict ourselves
to the essentials. Introducing the bipolar expan-
sion into Eqs. (13) and (15) we obtain

where

g U(k, l ) -k-l-1n(ki(+1)
k=D l =0

&0("'=+h "-Q h "=g(n) -Qh " .

(17)

(18)

and

Cg 'jV' =~ Uy (k, l ) -k-l -ig(k+l+f')

k=o. l=o
(16) The quantities U~~"" and U~"" correspond to

the interaction of the 2'-pole and 2'-pole moments
and are defined as

anCl

U~(k, » p (h+I)!(-I) [(-I)k+(-I)(][(h+ hami)1(f+ hami)!] 'I'„""~f" "'
2ft=-s (k, l )

s(k, l )

UT'"= Q (h+I)!(-I) [(-I)'+(-I)'][(h+ am))!(l+ hami)!] ';VI(k )fbi"' '* .
222=-s (k, l )

(20)

In the above expressions, s is equal to the smaller of numbers k and l. Capital letter M" ' refers
to the mth component of the 2'th electric moment expressed in spherical coordinates and related to the
charge distributions either associated with the orbital product Xk(r)!!,(r -jaz0),

M~k,
"' ' =(!tk(r) i!r p, (cose)e' ix,(r -jaz0)), (21)

or with all nuclei,

M,"„,' ' = — Z„~„I', cos8„e™

or to the total charge, (electrons+ nuclei) associated with each translational unit,
0 +

cos6r„e' ~ +2 D~~ ~~ r ~"I'~ cos~ e' ~ ~, r-j~z
u=i f= —N q

c'„(x)= p
k=30 5, . . . ; k=odd

k-i
-k + «j (k-l -i 2»

l =i

k=3, 5, ...i k=odd
tt j (k)(~) (23)

Compared to Ref. 19, simplified notations have
been adopted by dropping the subscripts charac-
terizing the coordinate systems 1 and 2, respec-
tively, attachedto the reference cell 0 and to cell h
(here we use r„ instead of r0„and rk„). Indeed,
due to translational symmetry, quantities evalu-
ated in coordinate system 1 are identical to those
of system 2. Moreover in the case of electron co-
ordinates ri and r2, over which separate integra-
tions make the distinction irrelevant, we have
ignored the indices 1 and 2 (we use 2, 8, lt) instead

f +01 801 ~01 a h2 602 ~h2)'
Because of electroneutrality constraints which

give U~~"'0) = UT
'0' ——0, Eqs. (16) and (17) can be

simplified and, to avoid coordinate dependence of
the results, ~' ~' they deserve special attention
when coming to the point of truncating the infinite
summations over k and l. Taking these points
into account, Eqs. (16) and (17) read

l

and

CT(R)=2
k=3, 5, ...; k=odd

k-i
A (k) k V rr(k l f, l)

l --1

(k)
k=2, 5, . ..;k=odd ~T (N)' (24)

In actual calculations, Cartesian coordinates
are generally used and thus we provide the U~~,

'""'s
expressed in these coordinates for the first powers
of a ' (See Table I). Note that in these expressions
the summation over the index m has been per-
formed as well as some grouping manipulations
to obtain a final form almost ready for applica-
tion (an explicit reference to the various powers
of x, y, z, and 2 is also given in square brackets).
To help the reader interested in the details, an
illustrative deduction of U~,

"is given in the
Appendix. The content of Table I is restricted to
a minimum, but any useful quantity can be de-
duced thereof. Only the terms U~~,

""for which0(l are l.isted, the missing ones, Upq p being
obtained from U~( "after interchanging M~ and
M. Similarly all the quantities for evaluating
U&"" are built up by replacing the notation ~, by
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TABLE I NPq expr es sed in C a rte sian coo rdinate s; the 1is t is restricted to k l. The Appendix contains exp Iana-
tions about the notation. MJ =- SJ; UJ ' = p.Ar At s Pe

k+i+1
Uj (02 2) Ms&0) M(2) [3g2 ~2]Pe At

= 2M~" b]M b;]+ 2M~ [y]M" [y] -4M' [z]M [g fPe, Pe Ar At

pj &0,4) i MJ&0) M&4) [35z4 3pz2&2 + 3&47Pe 4 At

U'"2 =4M~ [z]M [3&2z-5z ]+3M~ [x]MO [5' -y x]+3M~ [y]MO [5yz —v y]
U~ (2,2) 3M) &2) [3z2 &2]M&2) [3g2 &2] 24M& 2 [xz]M&2) b(g 7 24M&(2) [yg]M(2) [yzPa At Pe At

+ 3 Mi(2) [P y2]M&2) [&2 y2] + 6MJ(2) f~y]M(2) [~y]At Pq

U~ ~0'6) i Mi~o) M&6) [231z6 315g4y2 + 105z2y4 5~6]Pc 6 At

U' ~ 5'=-2M' [z]M [ssg —7pz r +15gr ]+1-M" 'tx]M"'[2lz x-14z xr +x2 ]At 2 Pe 4 At

+L5M~ [y]M 5)[21g y —14g yx +ye ]
4 Pe

UJ 2,4) i5MS 2) [3z2 ~2]M(4) [35z4 3pz2&2 + 3&4] 30M&(2) [ z]M(4) [7g3~ 3gzy
8

3PM/(2& lyz ]M [7g y 3yzr2] + 1 5MJ
(2& [xg y2]M(5& f7z2 (2g y2) r2 (xz y2)]

+ 15M~~ [~y]M [Vz ~y gyp ]

U" ~ '=-10M"3)[5z3-3zr ]M'3 [5z -3zx2]+-M& [5z x xr ]M [5z x-xx ]Pa Pc 4

+-M'( [5g y yr ]M-e [Sz y-y ]r-45M' [gx -zy IM fzx -zy 1
4 At

—lspMj' [xyz]M& Ixyz] + 5 M~"' [x —sxy']M"' Ix'- sxy']Pc 4 At

+ 'M''2& [y'-sx'y]M'2&[y' Sx'y]
4

(]&t)
~ U&0, 0&&-1~(1&

+— U( &et) & l i~(&+1+i)
Q

2
k=0 g =0
(0, i )0 (p, o)

and, from formulas (20) and (22), obtain Ur("
explicitly:

(25)

nuc wherever it appears.
As can be appreciated from Table I, all ex-

pressions are easy to implement into a computer
program since they correspond to one-electron
integrals only. The number of such integrals
grows as the second power of the basis length,
~, and is proportional to the number of inter-
acting cells (in the short-range sense), 2K +1,
as well as to the number of (k, l) couples in-
cluded in the multipole expansion. As a conse-
quence, the computing time required for in-
cluding the long-range corrections is negligible
with respect to the main part of an LCAO-CO
calculation which involves the numerous two-
electron multicenter integrals.

Another nicety of the bipolar decomposition
is to provide a simple and direct understanding
of the condition for the repeating unit cells of
the polymer to be electrically neutral. To illu-
strate this point, let us factor out the first term
(k=t =0) of E(l. (17),

Large parentheses contain precisely the total
nuclear charge (-g„Z„)and the number of elec-
trons (2n0=2 g,g„Q D„',S„',) per unit cell. Note
that n„"' multiplies Ur0'0' in E(l. (25) and it in-
cludes the Riemann zeta function &(1) which rap-
idly increases to infinity. To keep Cr(f&[) finite
or physical, one must add a constraint which
forces the value in large parentheses to vanish
identically (zero net charge in the unit cells).
This corresponds to the well-known fact that
isolated and charged infinite chains cannot exist.
To consider charged polymers it is necessary
to introduce complementary (opposite) charges
such as counterions, chains bearing opposite
electrical charges, etc. In such an event, how-
ever, a three-dimensional organization will be
important to take into account and additional
constraints3' as to the dipole and second-moment
tensors will be necessary.

III. BIPOLAR EXPANSION FOR GAUSSIAN
LOBES AND APPLICATIONS

Up to this point no special attention has been
paid as to the type of basis functions, and the
expressions as well as conclusions of the pre-
ceding section are generally valid. However-,
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when making a specific choice it is useful to take
advantage of the favorable features of the basis
set.

From the investigations as to the most appro-
priate and convenient sets of basis functions, it
turns out thatvarious directions have been chosen
according to preassigned criteria among which
the labor associated with the evaluation of a huge
number of electron-repulsion integrals. is often
determining. For that reason, Gaussian-type
functions were soon preferred as the most popular
functions because all integrals are expressed in
closed form. The choice can be specialized fur-
ther by considering 1s floating spherical Gaussians
(Gaussian lobes) only since their analytical expres-
sions are very simple. This direction has proven
to be valuable with respect to the ability of predict-
ing properties of interest with satisfactory ac-
curacy, provided enough flexibility is returned
in the basis by expanding contracted functions,
y~(r), into predetermined linear combinations of

Is Gaussian-type orbitals (GTO's) which can
assume positions other than nuclear centers:

4) p

lt j~(r) =g g,~G,(r —A~ -jaz()).
a 1

(27)

In E(I. (27), ~~ is the number of Is GTO's used to
represent y&(r), which can be of s,p, d, . . . , —

type. 33 G,(r —A~-jaz, ), a primitive spherical
Gaussian function, is given by

G,(r —A~ —jazo)

3/4
exp[ —u, ~(r —A~ —jazp) ]

(29)
The exponent n,~ and the center of the Gaussian
A~, can be optimized variationally.

In this section, we show how for Gaussian
lobe functions the moment integrals simplify and
we report on actual calculations on two infinite
chains: (LiH)„and (CH, -CH~)„.

A. Simplification of moment integrals

In the case of Gaussian lobes the matrix elements M~,
'"'

tB)P

M~~ ' ' =(X~(r) ~r "PB (cos8)e' ~x',(r)) =g g,~g, gG,(r —A~) ~r'PB (cos8)ei™~G,(r -B,—jazo)), (29)
a

can be cast in a surprisingly simple form containing the overlap integral, S,b, multiplied by a
function of the powers of the components, (X„),(Y„), (ZjB) of Gj„ the center of the charge distribution
G,(r —A~) GB(r —B,—jazp):

(G,(r —A~) (r"P„e' ~GB(r —B, jazo)) =S'„—
~

G'„~'P, '(cos8', „)e' (30)

where ~G,', ~, 8j„, and (t)j, are the spherical coordinates of the vector G'„. This compactness contrasts
with the widely used expression of moment integrals taken individually between two 1s GTO's:

(G,(r —A )(r'p, ' 'ax' (G,(r —B, -jaz, )) G, Y G, x, x'j z' G,')
O, l8, 7

with C~ » being a constant:

3/4 ~ 3/4
(G,(r —Ax)(x j z" (G,(r —B, -jazz})=( '

.
" exP(- " " (Ax —B,-jaz, )')

&ap+ &uq

(31)

j=AB2

(32)

( v) corresponds to the largest even value such that (v) & v.
Formula (30) is much more effective than formula (32) where a number of terms cancel each other

but need to be computed, thus producing undesirable additional computation time. A formal proof of



22 MULTIPOLE EXPANSION IN TIGHT-BINDING HARTREE-. . . , 6261

(30) can be obtained in a simple way by using the modified regular spherical harmonics'4 defined as

'Hp=(4]]') [(Bi+1)(l+m)!(l —m)!] '~ 2r'Yp(8, (t)) =X),»r'P, (cos8)e' a, (33)

with ~m
~

~ l and S, WO as a constant. Let us now consider two Is Gaussian functions G, and G~» whose
product yields another Is Gaussian function centered at G'„(X„,Y„,Z!»)~~:

G,(r —A)G, (r -B —jazo) =D exp —(c(, + n, )(r —G'„) (34)

where
A ()/, + (B +jaz() )(»»

)
[a~

)
/// (a~

)
///

b D =exp — ' [A —B+jaz ]n~+Qb &a+ o'»
(35)

Now the matrix element &G, !r'P, e™jG,&
is

&G. [t'P, '8' '
~G'& =&]'.&G. yP ~G»& =»]'. J" exP(-(o. +»)(r-G' )') &«')d'.

I

Upon changing the variable r into r =r-6'„, we get

(a[~)((/)[a') =// f »p[ —(/, +// )[r[ ] 3,"(r+a,', ) ar .

At this point we use a helpful identity satisfied by the modified regular solid spherical harmonics, 34

namely,

(36)

(37)

'jj] (r+Gl») =ZZ&» (r)!f]-» (Gl»)
Q=p m'

with max (-k, —I + k + m) & e ~ min(k, l —k + m). Inserting (38) into (37) leads to

(38)

&G pJa( ])r~G»& =DQQ "jpm (Ga») [(3k+1)(k+ /)](k ) /]$]/2

+ ) ~+0e ' a b)" z' dz Y&6, Y& 8, sin8 d&d
p

(39)

In the preceding equation we have expressed
according to (33) and expressed the unity as

(4w)'~2 Y00(8, $). Integrations over 8 and Q reduce
to '5pp'5 p which finally leads to

&G. ~~, (r) ~Gl& =~!,~;(G!,), (40)

where only the center of charge 6'„appears as
the argument of Q, which is multiplied by the
overlap integral. Thus after some simple mani-,
pulations one ends with

&G, ]x"P "(cos8)e™(G,&

=8!»~G', »
['P» (cos&a'»)e' a» . (41)

B. Results on {LiH)„and {CH2-CH2)„chains: Discussion

In response to interrogations raised by exper-
imentalists trying to understand at an atomic
level the physical and chemical properties of
low-dimensional compounds, ab initio calcula-
tions on model systems tend to multiply. Un-
fortunately, the computational proficiency is
not comparable to the one reached in atomic and
molecular studies. In a recent paper, Karpfen
illustrated very well how equilibrium distances

and one-electron energies of model chains
change with respect to the basis used. These
findings match similar conclusions previously
obtained in atomic and molecular studies. Al-
though a systematic search has yet to be made,
it is reasonable to expect that computed proper-
ties of polymeric compounds with specific basis
sets (minimal, extended, etc. ) have generally
the same weaknesses as their molecular counter-
parts.

There is one point at least which is not com-
pletely mastered or appreciated; it originates
from the extended nature of the system, namely,
the number of interacting neighbors one has to
take into account to make certain that the model
has been consistently solved and that nothing
significant has been dropped. The model as-
sumes an infinite number of interacting cells
which usually leads to slowly convergent lattice
sums. In principle, . a finite but sufficient num-
ber of terms can very well yield accurate re-
sults but, as far as we know, there is no cri-
terion which enables one to define a P~io~i this
number while achieving a satisfactory compro-
mise between the computing cost and the quality
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of the results. One has very often the unpleasant
experience of finding after a calculation that the
included number of neighbors was either too
small or could have been reduced.

In this part we want to analyze occurrences of
long-range effects (the number of neighbors)
either as a result of the basis-set type or as a
true effect and the warning it gives for the prac-
tice of quantum-mechanical calculations on ex-
tended systems. The two test cases we have
chosen to this aim are the ionic lithium hydride
chain (LiH)„and polyethylene (CH2-CH2)„, which
is typically covalent and nonpolar. All calcula-
tions reported herein and using the bipolar ex-
pansion have been performed with the k-summa-
tion index limited to 7 in Eqs. (23) and (24). The
neglect of bielectronic integrals has been made
on the basis of a threshold of 10 '.

2. (Lt'H)„. This system models an ionic chain,
a character known for generating long-range
effects. The main reason for this somewhat
artificiaL case is twofold: First the calculations
are relatively easy to perform and second, it
is one of the cases Karpfen36 selected to carry out
extensive numerical investigations on basis-sets
effects and to which we want to compare our data
where long-range effects have been included. As
in Ref. 36 we consider the geometry where the two
distances between atoms are equal.

As a preliminary we illustrate in Table II how

the long-range Coulomb corrections, Qr"(N),
defined in Eq. (24) modify the total energy value
in the case of a strict floating spherical Gaussian-
type orbital (FSGO) basis set. The center, A~,
of the Gaussian describing the Li-H bond has been
located at 0.3395 a.u. towards the hydrogen atom.
One notices a rather slow convergence of ROAN)

with respect to N, the number of neighboring
cells, and it takes about 200 neighbors to achieve
an accuracy of five decimal places. ' The same
result is readily obtained when introducing the
long-range corrections which also indicate that
beyond K=2 the contributions originate from the

Coulomb field of the neighboring and remote
cells. The individual contributions of the latters
are small but their sum amounts to a significant
correction. Compared to the direct evaluation,
tedious and expensive, the bipolar expansion
combined with the Riemann zeta function lends
an accurate value with not much effort.

We now turn to the more sophisticated basis
sets used by Karpfen which we have used exactly
to compare his results to ours. We have carefully
checked the molecular systems in which our sets
of programs yielded the same charges, total and
one-electron energies, etc. , at the same level of
accuracy as the one reported in Ref. 36. We have
considered two basis sets denoted by A and 8,
respectively, in Table III. Basis set A is Huzinaga's
8s, 4s/5s, 3s basis for Li and H (Refs. 37 and 38):
S primitive Gaussians contracted into 5 functions
(the first one containing 4 Gaussians and the others
1 Gaussian) for describing the 1s and 2s Li shells
and 4 primitive Gaussians contracted into 3 func-
tions for the 1s H shell. In basis set &, one po-
larization function is added on each atom whose
exponent is 0.5 a.u. ' for Li and 0.2 a.u. ' for H.
Table III lists the equilibrium geometry, Mui-
liken population of the H atom, the total energy
per unit cell, and the bandwidth of the 2o. band;
these results were calculated with and without
the iong-range corrections and all values are
in a.u.

From the data listed in Table III, one can make
the following comments. First, the results, in-
cluding long-range and using %=2, are essentially
the same as those of %=3. This indicates that
beyond N = 2 the remaining interactions are Cou-
lombic and the exchange and kinetic ones can be
neglected for N outside the range I-2, +2]. lt
remains to devise practical expressions for esti-
mating a Priori the error when dropping these
kinetic and exchange contributions outside [ N, -
+N]. For Gaussian-type orbitals, one way is to
consider the magnitude of the overlap integrals
which enter as multiplicative terms in the various

TABLE II. Evolution of the total energy &z(N) per unit cell of an infinite lithium hydride
chain upon inclusion of the QT (N) corrections, Kq. (24). ~~(N) is defined as &z(N) = E z(N)
+ Qy 3 ~ 5 a ~r (N ) and Er (N) is the total energy per unit cell with no correc tion. Units in
a.u.

@0 g)

-6.608 326 0
.-6.614 036 0
-6.615736 5
-6.616454 0
-6.6168214

-6.617 573 3
-6.617 574 0
-6.617 574 0
-6.617 574 1
-6.617 574 1

-6.617 577 3
-6.617 574 2
-6.617 574 1
-6.617 574.1
-6.617 574 1

-6.617 574 7
-6.617 574 1
-6.617 574 1
-6.617 574 1
-6.617 574 1

rz, &
H=3.2381 a.u. , &L&=1.9815 a.u. , z, &

H= 0.1677 a.u.
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+Li H

Basis set &
without long range (n= 0)

3.262
3.253
3.248
3,245
3 .243

1.801
1.833
1.845
1.852
1.856

-8.032 228
-8.033 735
-8.034 486
-8.034 896
-8.035 136

0.020 01
0.018 52
0.017 63
0.017 35
0.017 22

with long range (n=7)

TABLE IH. Equlibirium distance, Mulliken population
on the hydrogen, total energy per unit cell, and 2o. band-
width for an equidistant infinite lithium hydride chain.
Influence of long-range corrections on the results. Units
in a.u.

TABLE IV. Evaluation of the total energy, Ez (4), per
unit cell of an infinite chain of polyethylene upon inclu-
sion of the 8~'(4) corrections. Units in a.u.

E~(4)

&&(4)

85&(4)

Ep(4)

FSGO ~

-32.979 304 7

-33.002 164 8

-33.002 202 2

-33.002 202 6

Molecular fragmerts

-33.3161873

-33.316 1836

-33.316 1832

-33.316 1834

Basis parameters: &~~c =9.3064 (a.u.), nc c
=0.36294 (a.u.), nc „=0.345 (a.u.)

Molecular fragments parameters: 0.&~c
——9.3039

(a.u.) ~ G. c-c =0.35749 (a u ) 0. c- H =0 35749 (a.u.) ',
r/R =0.5.

3.239
3.239

1.866
1.865

-8.035 792
-8.035 791

0.016 8
0.016 8

Basis set B
without long range {n=0)

3.194
3.191
3.190
3.188
3.187

1.735
1.767
1.781
1.787
1.792

-8.039 707
-8.040 752
-8.041 335
-8.041 667
-8.041 868

0.005 51
0.004 89
0.004 80

with long range (n=7)

3.184
3.184

1.802
1.802

-8.042 414
-8.042 415

0.004 71
0.004 78

integral expressions. This is of practical impor-
tance since it prevents the user from considering
either too many interactions within the expensive-
scheme where all contributions (kinetic+ex-
change+ Coulomb) are simultaneously processed
or not enough. Second, when the long-range con-
tributions are not included and even for N =6 in
bot;h A and 8 basis sets, the quantities reported
in Table III are not yet stabilized within an accu-
racy of three decimal places. For example, the
equilibrium distance in basis set A changes by
0.004 a.u. when going from N =6 to infinity; it
illustrates how it could be misleading to extra-
polate from the first few terms because they show
little variations. This is done forgetting the slow
but nevertheless effective building-up process of
lattice sums into significant contributions. . In the
case we analyze (N=6), the differences are not
dramatic enough to alter the conclusions drawn
in Ref. 36, but there could be systems where the
effects will be more pronounced. In fact, the Li-
H case is so simple that it was possible to con-
sider interactions up to N = 6; however, in routine
works on more common polymers, this will be
just prohibitive. If we make then the same com-
parison as above with N =2, a normal nu&ber in

actual calculations, the changes in equilibrium
distance and total energy per unit cell upon in-
cluding the long-range effects are 0.023 a.u. and
1.6 kcal mol ', respectively (basis A); the ~„
changes by 19/z, these differences become non-
negligible. There is a third observation, which
concerns the striking differences in speed of con-
vergence of &'r(N) in the FSGO basis compared
to more extended basis sets (A and I3). The dis-
cussion is made in comparison with the results
on (CH, -CH, )„.

2. (CHq-CHq)„. It is generally accepted that
long-range effects are essentially important in
polar systems. There are situations where non-
polar systems exhibit a behavior resembling long-
range effects. This is the case of polyethylene
computed with FSGO basis for which, unlike the
usual atomic functions, the floating spherical
Gaussians are located on bonds to simulate the
Lewis structure. The reason for using the FSGO
basis" is the low computing cost it requires to
yield results (bond lengths, angles, conformers'
stability, etc. ) of an acceptable quality provided
one is careful enough in using the numbers and one
is aware of its major weaknesses. In the case of
extended systems, where the computing effort is
generally more important, this seems a promising
approach for semiquantitative investigations. "'"
However, in practice one finds unexpected con-
vergence problems with respect to the number of
neighbors even in favorable cases like polyethylene.
Table IV contains total energies, Er(4), per unit
cell of polyethylene computed with the FSGO basis
and with the molecular fragment approach of
Christoffersen. " The parameters used are re-
produced at the bottom of Table IV according to
the notation introduced in Fig. 1. While the FSGO
basis causes trouble, the molecular fragment basis
exhibits no convergence problem for usual atomic
functions centered on the nuclei. Figure 1 helps



6264 DELHALLE, PIELA, BREDAS, AN D ANDRE

H
H

H

C-C

C

eral programs designed for routine works. A

cheap alternative is the use of the multipole ex-
pansion" or of any other technique" for handling
lattice sums in closed forms.

From these two methodological examples we
hope some light has been shed onto the so-called
long- range problem. Its manifestations through
corrections will depend upon the way the sum-
mations ot' terms have been carried out (cellwise
as in most programs or atomwise"), on the choice
of the repeating pattern, " and on the basis set

.used. In any case, it is sensible, in routine cal-
culations, to include the long-range corrections
in a systematic way since they wi11 prevent, at
low cost, the user either from considering more
terms than actually needed in the expensive part
of the calculations or simply from making serious
mistakes.

IV. SYNOPSIS

H (bI

in interpreting this peculiar effect. In the case of
the FSGO basis the C-C 1s Gaussian functions in
each cell are located at the middle of the C-C
bonds so that the resultant center of electron
charges does not coincide with the center of nu-
clear charge, destroying (since the summation is
made over cells' indices) the electrostatic inter-
actions' balance which is only restored after in-
cluding many neighbors. This is easily verified
by considering a basis set of comparable quality
but which remedies to the lack of symmetry in
the unit cell, as is the case with the molecular
fragment dispiayed in Fig, 1(b). Of course, this
long-range type of effect is artificial, but never-
theless it can be faced in applications using bases
which do not lead, withinthe unit cell, to a
matching of the positive and negative centers of-
charges. The poor convergence of the LiH FSGO
total energies has a similar origin: The basis is
so limited that functions have to be located on
bonds to obtain an energy minimum, and this. in-
duces an excess of polarity. Now, as pointed out
by Harris, ' a different description of the charge
distribution along the chain can be made so as to
decrease the number of terms to stabilize the en-
ergy. This is very system dependent, however,
and less straightforward to implement into gen-

FIG. 1. Comparison of the FSGO basis sets deeribing
polyethylene. (a) Frost's basis set, (b} Christoffersen's
basis set (r/A =0.5).

At the beginning of this work we tried to demon-
strate the importance quantum calculations on
polymers will have in view of modern developments
in polymer synthesis and in spectroscopic tech-
niques. To perform reliable calculations there
are points that should be solved first: influence
of basis sets on the quality of the results and the
size of the linear cluster required to reproduce
accurately the properties of the infinite model.
In the course of reviewing the LCAO-SCF-CO
equations we have pointed out how to work actually
on an infinite chain by recognizing the Coulombic
nature of the interactions beyond a given number of
neighbors. The bipolar expansion technique, fa-
miliar to chemists, was analyzed in the polymer
context and shown to be a good candidate for
summing to infinity these electrostatic inter-
actions, thus making more attainable calculations
on compounds of interest. A table of expressions,
ready for programming, was also supplied. In
the last part we specialized to floating spherical
functions and discussed two manifestations of
long-range effects. In the case of the infinite
lithium hydride chain we pointed out the danger
of extrapolating values from cluster-type results
while for polyethylene, a nonpolar system, a type
of long-range behavior was identified and inter-
preted. In all of the cases, the multipole expan-
sion proved. to be successful; it has also the
definite advantage of being cheap to use and
straightforward to implement. A more general
conclusion mould be that if an infinite and isolated
chain of repeating structures is a good model for
stereoregular polymers, it is also important
for the sake of consistency to respect the definition
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and achieve calculations accordingly. Under this
condition ground-state properties of polymers
will be computed safely, and a broad spectrum of
fundamental investigations will be opened to the
quantum chemistry of polymers. Moreover, con-
sidering the importance Coulomb interactions
have in those chains, one should estimate the ef-
fects of three-dimensional long-rangeness and

try to elaborate methods which will take into ac-
count the specific nature of polymers as opposed
to three-dimensional materials. This work is now
in progress in our group.
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APPENDIX: DEDUCTION OF UI~")
pe

In Table I we have listed working formulas expressed in Cartesian coordinates to evaluate the inter-
action terms Up", ". For the sake of illustration and to help the reader become familiar with the method,
we provide hereafter a detailed deduction of a simple but nontrivial term: Up,"".First we reorganize
the original equation (19) into a form which leads to the U»j,

""terms directly as they are displayed in
Table I:

s
U''k' '=240 M'"' 'M'k' '+2 ~(m)[Re(Mj(, m)) Re(M(», 83))+1m(M)((, 83))im(M&, m))]

Pa k~ l Pe 0g l pe pe
m=1

The relationships ~p~('™=Mp~," ' and I'~' ' =M' ' ' enable us to write

Uj(k ))IIO M j&) 0)[x y z]M(k 0) [x y z]po ltkl pe

(Al)

when

g)mf ~j(l m) ~(y m) ~j(l, -m) ~ ~ ~(k m) ~ y
m=1

(A2)

M'" ~)[x y z] =Re(M"'"')=(X»~r'P, ' '(cos9) cos(mp)~Xj&,

M»j&,' "'[x,y, z] =- Im(Mj»,"'"))=(X» ~r 'P', (cos8) sin(mp)
~

X', &,

+N

M" '[x, y, z].=-Re(M'»'"')= —QZ„r„'Pk '(cos9„)cosmic„+2 g g gD„',(X„~~ Pk (cos8)cosm&t)~X, &,
g l=-N r s

+N

M"' '[x, y, z] =-Im(M" ') = —g Z„r„P» (cos8„)sinmQ„+2 g g gD„', (X,, ~r'P„(c s8o) sinm(t) ~Xj'&.
tC r s

With this preliminary let us now turn to the particular example we have selected, Up,"".In this case
we have s(k, l)=s(3, 1)=1, A', , =-(4!2)/(2!1!)= 8, A,')=A, ', =(4!2)/(4!2!)=1,and

Mj,""=(X ~rP, (cos8) ~Xj) =(X (r cos8~Xj) =—Mj,""[z],
Re(Mj,"")=&X, )&P', (cos8) cos0 )X,'& =&X,)x (X', &

-=M'„"'"[x],

Im(Mj»,"")= (X» (
rP,'(cos9) sin/

) X,&
= (X» )y ) X, &

=—M'„" "[y],

M" "=—QZ„r„'P,(cos8„)+2gpg D„',( X~r' P( cos9)~X,')
g l r s

r3 r3
= —PZ„—"(5cos'8„—3coss„)+2+QQD,', X, 2

(5cos'8 —3coss) X',)Q l r s
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Ile(M" ")= —p Z„r „'P',(cos8„)cos&t)„+2 ggg D'„, (y,. ~

x' P', ( cos 8) cos(t)
~

y', )
g l' r s

r3
= —Q Z„" sin8„(5 cos'8„—1)cos(t)„+2 QQQ D„', (X„~ z r ' sin8(5 cos'8 —1) cos(t)

~ X,')
Q l r s

g Z„(5z„'x„—x„r„)+2g ggD,', (X,
~

(5z'x —xr') ~),')) —= —,'I""()z'x —xr '],
8 l r s

Im(M&'"') -=-'M&' "[5z'y y~'1.

The final expression will then be

U)(31)8M/(10)[z]M(3I 0)[5z33z+2]+2MJ(lp 1)[x]M(3t&)[5z2xx+2]+2M&(&))[y]M ~ 1)[5z2yy+2](A4)
Pe Pe PQ PQ

If we drop the m index for the components of the electric moments and proceed further in simplifying the
expression (A4) we find the form given in Table I, i.e. ,

U',""= 4M'"' [z]M")[3zx ' —5z'] + 3M'"'[x]M")[5z'x —xr'] + 3M'" '[y]M'"[5z'y -yr'] . (A5)

In the case of Gaussian lobe functions (X~ and )t)), the effort for obtaining U~~&~' "will just amount to intro-
ducing the indicated powers of x„,x„,y„, z„ for nuclei and ~C~~, ~, X~„ I'~„Z~~, for orbitals according to the
expression given between brackets (as demonstrated in Sec. III of the work). Note also that M~&') is iden-
tically S~„ the traditional overlap integral.
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