PHYSICAL REVIEW B

VOLUME 22, NUMBER 12

15 DECEMBER 1980

Impurity-band density of states in heavily doped semiconductors: A variational calculation

V. Sa-yakanit
Physics Department, Faculty of Science, Chulalongkorn University, Bangkok 5, Thailand

H. R. Glyde
Physics Department, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada
(Received 20 June 1980)

The impurity-band density of states p,(E) for electrons in the field of dense, random attractive impurities is
calculated in the tail region using an analytic expression derived previously by one of us (V.S.). The analytic
expression contains a single free parameter that fixes the curvature of the trial harmonic well which models the
Gaussian random potential seen by the electrons. This parameter is determined here by implementing the rigorous
variational principle derived by Lloyd and Best. The resulting density of states is significantly larger than that
obtained by Halperin and Lax, although the Halperin and Lax values can be reproduced if the free parameter is
determined as in their theory by minimizing the exponent in p,(E). The present p (E) crosses the Kane value at
higher E. A simple interpolation scheme is proposed to determine p (E) for all energies E; use the present tail p (E)
from low E up to where it crosses the Kane value and thereafter use p **™(E).

I. INTRODUCTION
A. The model

The impurity-band density of states p(E) avail-
able to electrons in a solid containing a high con-
centration of randomly distributed, attractive im-
purity centers remains a problem of continuing
importance in semiconductor technology.! Models
of this system usually begin with electrons in a
pure solid having a conduction band of energy lying
above and separated from a valence band by an en-
ergy gap. The attractive centers introduce impur-
ity states of energy E lying in the gap just below
the bottom of the conduction band. At high concen-
tration (many centers lying within the wave func-
tion of a single electron which can extend over
several hundred angstroms) the impurity states
themselves form a band. This band joins onto the
conduction band and has a low-energy, exponential
tail reaching deep into the band gap.

The most complete calculation of p(E) in the low-
energy, deep-tail region of the impurity band re-
mains the optimal fluctuation results of Halperin
and Lax.? Their theory is the quantum counterpart
of the original semiclassical theory of Kane.>'*
Quantum effects were included by adding the zero-
point energy to the electron states (kinetic energy
of localization), which raises the electron-state
energies and reduces p(E) at small E below the
semiclassical value obtained by Kane. The exten-
sive and wide-ranging work in this field has re-
cently been exhaustively reviewed"®"® and we refer
the reader to these reviews for full references.
Here we focus only on the density of states.

Wolff® and more recently Hwang'® and Casey and

22

Stern'! have shown that in the presence of impuri-
ties the interelectron interaction can be incorp-
orated into a single electron effective mass m*
plus a rigid shift of the bands, provided the elec-
trons are regarded as moving in a screened Cou-
lomb potential due to the impurities. Hence for
parabolic bands we may model the impurity sys-
tem by considering a single free electron of mass
m* in the presence of N impurities in volume Q
(density N=N/Q). The corresponding Hamiltonian
is

iR Y
= *+Zv(r-—Ri). (1)
2m i=1
Here
o(F )= éeje-m‘r-fu 2)
€& | -R|

is the screened potential due to an impurity of
charge Z having screening length @™ and located
at point R. The ¢, is the dielectric constant and
the R, are randomly distributed throughout the
solid. If the correlations in the potential beyond
the mean

[ o - )= E, (3)
and the quadratic

[ aftoE - )o@ - F)=wE -5 (4)
are neglected, this model is an example of a sin-
gle particle moving in a Gaussian random poten-
tial'? (higher correlations in the potential neg-
lected). For the example of the screened Coulomb

interaction (2) in (4),
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NW (F =)= e 01, (5)

where £,=21Z%¢*N/(Q¢}) has dimensions of energy
squared and measures the magnitude of the vari-
ance or fluctuation in the random potential about
the mean E,.

B. The variational principle

In this paper we evaluate numerically the im-
purity band p(E) throughout the deep-tail region
for a single electron in a Gaussian random poten-
tial (5). This is done by implementing the varia-
tional principle derived by Lloyd and Best'® which
states that the optimum p(E) should maximize the
function

P(E)= f j dE’ f j‘dE”p(E”). (6)

For p(E) we use the analytic expression derived
earlier® (referred to here as I)by oneof us (V.S.),
which is valid in the deep tail region. This p(E)
contains one variational parameter to be deter-
mined by (6). We compare the p(E) determined by
this rigorous principle (denoted case 1) with the
approximate p(E) determined by maximizing p(E)
itself (denoted case 2) and by minimizing the ex-
ponent in the exponential portion of p(E) (denoted
case 3). We find that the p(E) obtained by maxi-
mizing P(E) and p(E) differ little but that the p(E)
obtained by minimizing the exponent only differs
substantially from the first two for random poten-
tials having large fluctuations (large ;). Halperin
and Lax® considered the last case only and in this
case our p(E) agrees well numerically with Hal-
perin and Lax.

C. The density of states

In I the random potential having variance W (¥
—~T’) seen by the electron is modeled by a single,
nonlocal harmonic potential. The curvature zw?.
of the model harmonic potential is the free param-
eter which must be determined at each E by one of
the variational principles referred to above. This
procedure follows in spirit the minimum counting
method of Halperin and Lax who determined at
each E the single best ground-state wave function
which most often represented the possible wave

o
f dv/(v_V:)a(ur’z)e-b(v’.t)/ze’
v

6223

functions of the electrons in the random system.
Abrams and Edwards'® earlier suggested using a
harmonic well.. This corresponds, in the Halperin
and Lax theory, to choosing Gaussian ground-state
wave functions.

The full expression for p(E) valid at all E ob-
tained in I is lengthy and requires numerical inte-
gration. However, in the limit of low E (E ~ —x)
in the impurity-band-tail region, where only the
ground states of the electrons need be included,
o(E) simplifies to an analytic expression. This
may be written in the same form as introduced by
Halperin and Lax as

B =2 expl 1 BB o), 0
Q
where _

A(E)=(QE)a(v,z),

B(E)= E%b(v,2). (8)

Here E,=7°Q%/ 2m* is the energy associated with
the impurity potential and all energies are ex-
pressed in units of E,. For example, v=(E, - E)/
E, is the electron energy measured away from
the mean potential £, in units of E, and z=(2E,/
7w)'/? is a convenient reduced variational param-
eter, replacing w. In the harmonic model the
kinetic (zero-point) energy of electron localiza-
tion is just 27w and in reduced units is 7= (3)rw/
E,=3z"% Finally, the analytic expressions for
the “universal,” dimensionless functions a(y, z)
and b(v, z) obtained in I are

alv,z)=(T+ u)3/2/[81n/72G exp(z—;-)DfS(z)], (9)

blv,2)= (T4 )7 [ Fem (S )0o),  (10)

where D,(z) is the parabolic cylinder function,'¢

The subscript 1 on p,(E) means that the first-
order cumulant correction for the difference be-
tween W and the harmonic model has been eval-
uated exactly. Higher-order cumulants which
correspond approximately to the higher-order
corrections considered by Halperin and Lax'’
have been ignored.

The variational equation to determine z ob-
tained from maximizing P(E) is, in reduced
units,

% {[zlf;éz)) '% (Tfu'

+2)] 252 (55 -

2z78
(T+ v'))}=o (11)
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The equation for z obtained from maximizing p,(E)
itself corresponds to setting the term in curly
brackets in (11) equal to zero, i.e.,

{75 -5 ()]

b(v,2) (D_(2) 227\ _
~Tar (Dﬂw>‘uwu)}‘°'“”

The equation for z obtained from minimizing the
exponent B(E) in p,(E) corresponds to setting the
term in the last large parentheses in (12) equal
to zero, i.e.,

D-4(Z) 2273 _
<——D_3(z) T u)>_ 0. (13)

The expression (7), plus one of the three equa-
tions (11), (12), or (13) for z, completely deter-
mines the density of states in the band-tail re-
gion. The p,(E) evaluated for the three methods
of determining z are shown in Figs. 6-9 for val-
ues of the reduced fluctuation parameter ¢/= EQ/
E%=50, 5, 0.5, and 0.05.

In Sec. II the origin of p,(E) is outlined. The
variational equations (11)-(13) for z are derived
in Sec. III. The numerical results for z, a(y, z),
b(v,2), and the density of states are presented in
Sec. IV. A summary and conclusion are given in
Sec. V. The corrections to (7) for excited-state
contributions to p,(E) are discussed in the Appen-
dix.

II. THE DENSITY OF STATES
The density of states per unit volume

p(E)=2 3 O(E - E,) (14)

can be expressed in terms of the propagator for
a single electron moving in the field of N impuri-
ties as

1 .
,)(E)=;;?Refo dt e F/h (0,0, ), (15)

J
e o) o)

X exp [—% (Eo - B)t — 5 Eoﬁf

where

jlx,9)= [y+ (sm— sin——22 w(t %) / wt)]

In (21) the term in the square brackets is G,(0,0,1)
while the exponential term is the first cumulant
correction, aside from egift/n,

where G(T,,T,, ) is the retarded propagator in the
coordinate representation [(i#) times the usual re-
tarded Green’s function] averaged over all im-
purity positions, assumed randomly distributed.
This propagator is expressed in I as a Feynman
path integrall®:8- 26

G(E,, Ty, t)= [ D(EENMS, (16)

where for a Gaussian random potential the action
is

= ftd'r <—72£* ‘??(T) —E0+§iﬁ—ﬁ£t dr'w(¥(r) —f(r'))) .

0

(17)

E,and W are given by (3) and (4), respectively.
In I the full action S in (17) is approximated by a
nonlocal harmonic model or “trial” action®

So= ]O-t d“'(%*‘?z(‘r) —Eo—%; jo‘t dr' |£(7) = ¥(r") |2>
(18)

for which the diagonal part of G in (16) can be
evaluated exactly. This constitutes the zero-or-
der approximation G, to G. Equation (16) can also
be rearranged in terms of G, and S, as

-G, <exp< )(s so)> (19)

where (), is the average with respect to the trial
action S;,. By keeping only the first-order cum-
ulant in (19) we obtain the first-order approxima-
tion to G,

G,= G, exp(% s -s>(,> . (20)

The diagonal part of G, may also be evaluated ex-
actly and, when substituted mto (15), gives the
density of states of

e 3
dxf dy ye 9*j(x,y)/ 2+ = (—-—-wt cot _ 1)] (21)
A 2\ 2%

r
To obtain the limit of p,(E) valid in the tail re-

gion of the impurity band we first take the ¢ -«
limit of the integrand in (21). This means only

the ground states,'® the lowest-energy states, will
be retained in p,(E). The integrals in (21) can then
be evaluated exactly and, in reduced units, the
result is
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8 a(V,Z)

Q
Pl 2= T 5y, 2778
xe-b(u.:)/u'DB/z((b(g;z))llz). 22)

In the limit of large b(p,z)/t’ the asymptotic ex-
pression for the parabolic cylinder function is

D,(x)=e"‘2/‘*x"<1-3£32lﬁfi+---). (23)

If we neglect the term in x"2 in (23) we obtain Eq.
(7) for pl(V’Z)) ie.,
Q° ' :
P;_(V,Z)=E_,'2' alv,z)e® v/ %, (7)
oé
The corrections to(7’) for the neglected terms in
(23) and for excited-state contributions at higher
E are discussed in Sec. IVC and the Appendix.

We may also obtain the semiclassical (SC) limit
of p,(E) from the full p,(E) in (21). This is ob-
tained by letting #- 0 in the integrand of (21),
which corresponds to retaining only high-electron-
energy states in p,(E). The integrals in (21) can
again be performed, giving

*3/2
pi%(E)= 7Z1r2h’3 55/46'(E'E0)2/4e°D-3/ 2 (E\(/’_é—f>,
(24)
which is the result derived by Kane.® In the limit
|E = E,| - this becomes

m*3/2 £q (E-Ep)?

—— 28 o-(B-Ep©/ 2

4733 (EO_E)g/ge Q,
sc - E-E
p$e(E) = 0« -1 (25a
1 VE (25a)

*3/2 _
m '———E—Eo, E E°>>1

ﬁﬂzha _‘/’—g;—Q- ‘ (25b)
Here (25a) is Kane’s well known band tail p,(E)
while (25b) is the free-electron or parabolic-band
value valid for positive E - E, only. Note that (24)
is independent of the variational parameter. This
is because at £~ 0 only the free particle G, sur-
vives in (21) and the semiclassical p,(E) is inde-
pendent of the harmonic model action selected
here. It is for this reason that (24) agrees exactly
with Kane’s density of states.

III. THE VARIATIONAL EQUATIONS

In this section we develop the equations (11),
(12), and (13), which are needed to determine the
variational parameter z based on (1) the Lloyd-
Best!® variational principle, (2) maximizing
p.(E), and (3) minimizing the exponent B(E) in
p.(E), respectively.

A. The Lloyd-Best variational principle: Case 1

Lloyd and Best'® showed that the density of
states p,(E) at energy E should maximize the
pressure

E E’
P(E,2)= f dE’ f dE" p(E", 2) (26)

of a hypothetical free-fermion system. This may
be used here to determine the free parameter z
in a band-tail expression for p(E,z), since values
of p(E”,z) up to energy E only are needed. To
simplify (26) we do an integration by parts

L o)
™ - (27)

.
PE,2)=F [ dE"(E",2)
and use p(—«,z)=0 to write (27) as
E
P(E,z)= f (E - E\p(E', 2)dE" . (28)

In terms of the reduced energy v=(E, —E)/Eq,
this is

P(V,Z)=—E2fn (V—V')D(V’,Z)du,- (29)

On substituting (7’) for p(v’,z) in (29) and maximiz-
ing P(y,z) with respect to z [dP(v,2)/dz=0], we
obtain the variational equation (11) for z.

B. Maximizing p, (E): Case 2

1t is more convenient to maximize lnp,(v, 2).
Employing(7’) this requires

dlnp,(v,z) _dlng __1_ db _ 0 (30)
dz T odz 2t dz ’

On differentiating the logarithm of (9) and using

the recursion relation for parabolic cylinder func-

tions,¢
de(Z) _

dz 32D,(2) + pD,.,(2) , (31)

the first term in (30) is

dlna(v, z) _‘ D_y(z) _E __‘2:3__1
Tz ‘G(D-s(z) 1 (T+v z)‘ @2

Similarly, differentiating (10) and using (31), the
second term in (30) is

db(v,z) _ D_(z) _227°
B2 - sot0, (345 - 7o) #3)

Substituting (32) and (33) into (30) gives the vari-
ational equation (12) to determine z in this case.

C. Minimizing the exponent b(v,z): Case 3

‘The variational equation in this case is now ob-
tained trivially by setting (33) equal to zero,
which gives Eq. (13).
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IV. NUMERICAL RESULTS

In this section we present numerical solutions
for the reduced variational parameters z=(2Ey/

7w)'/? and numerical values for the density of im-

purity-band states p,(E) for a single-spin state.
A. The variational parameter

The values of z, obtained by (1) solving (11),

which corresponds to maximizing P(E), (2) solving

(12), which corresponds to maximizing p,(E), and
(3) solving (13), which corresponds to minimizing
the exponent B(E) in p,(E), are shown in Fig. 1.
The z values are shown as a function of the re-
duced energy v=(E, - E)/E, for four different
values of the reduced parameter

g Lo _BTm*?z%eN

= S e
E% h—‘leon ’

(34)

which measures the magnitude of the fluctuation
in the random potential.

We note first that in the most approximate case
(3), z is independent of £’. Next, from Fig. 1 we
see that in the limit y>>1 all three cases give the
same values for z. In fact, it is possible to show

@ N

VARIATIONAL PARAMETER
»

162 16' 10° 10" 102
REDUCED ENERGY U= (E,-E)/Eq

FIG. 1. Variational parameter z as a function of re-
duced energy v= (EO—E)/EQ, determined from (1) the
Lloyd-Best variational principle, Eq. (11), (2) maxi-
mizing py(E), Eq. (12), and (3) minimizing the exponent
b(v,z) in py(E), Eq. (13). Four values of the parameter
£= 8rm* Z:'N

;% Q €

which sets the magnitude of fluctuation in the random
potential, are shown. Case 3 is independent of £’

in the limit y> 1 (with y > T) that the three equa-
tions (11), (12), and (13) for z become identical.
Physically, since E ,=7°Q*/2m*, the v=(E,~ E)/E
is proportional to the square of the impurity-po-
tential screening length Q™. Hence y>1 corre-
sponds either to a long-range impurity potential
or to energies E ~ —« lying in the very deep band-
tail region (or both). Clearly, large £’ also cor-
responds to a long-range impurity potential (&’
a« @™). Since for large &’ case (3) differs sub-
stantially from both (1) and (2), the three cases
are only strictly identical for E - —«. In sum-
mary, cases (1) and (2) remain essentially iden-
tical over the physically interesting range of v (0
< p < 20) except for small values of the fluctuation
parameter £’. However, case (3) gives substan-
tially different z values except in the limit E - —).
To display the role of the kinetic energy of elec-
tron localization T=%2"2= §(kw/E), we plot T/v
=37w/(E, - E) versus the reduced energy v in Fig.
2. From this figure we see that 7/y -0 for y>1
in all three cases as expected. When 7/y -0 the
kinetic (zero-point) energy is negligible and semi-
classical theory is applicable. This limit can be
reached physically only for a wide impurity po-
tential having a long screening length @™ (v Q72).

3.0 T T -
R
\ ! /0
=———14-0.05
| |
\
I
\\ ) L 4-05
\
20 A I -
| I\
W |
\! \ I
() \\ \\ | I 3/
\ =5
: \ \\ ‘ 2
=) \W |
-~ A\ 1
(o 3 \\\ l L,
1.0l , [2 §=50
\Y
A L1 N

| L
102 10" 10° 10" 102
D
FIG. 2. Ratio of the kinetic energy of electron locali-

zation T = 3%w/Eg=% 2° to the reduced energy v, T (v)/v,
as a function of v for 4 values of ¢. The z and T are
determined by the same three equations as noted in Fig. -
1. T(v)/v in case 3 is independent of £. The arrows
indicate the value of v below which the deep-tail approx-
imation in p;(E) ceases to be valid at each &. )



However, for y <1 the kinetic energy of localiza-
tion is most important and differs substantially in
the three cases. When P(E) and p,(E) are maxi-
mized, 7/y can be very large. However, if we
restrict ourselves to energies in the deep-tail re-
gion, where E, - E must remain reasonably large,
the ratio T/y will always remain finite. It is only
in the approximate case of minimizing B(E) con-
sidered by Halperin and Lax that T/p approaches
the special value of 3 for y<<1. It is not clear that
there is any meaning to this special value of 3.

B. The density of states

Having obtained the reduced variational param-
eter z for each y we can now calculate the univer-
sal, dimensionless functions a(v, z) and (v, z) ap-
pearing in the density of states p,(E) in (7). The
resulting a(v, z) and b(v, z) are plotted in Figs. 3
and 4, respectively. We note again that in case 3,
alv, z) and b(p, z) are independent of the fluctua-
tion parameters £’. Also, the a(v,z) and b(v, z)
differ somewhat in cases 1 and 2 but these differ-
ences tend to cancel when a(v, z) and b(yp,z) are
substituted in p,(E). The logarithmic exponent of
b(v, z) is displayed in Fig. 5.

To complete the calculation of the density of
states we include calculations of Kane’s semiclas-
sical limit impurity-band density of states and the
parabolic band value. As noted in Sec. Il and in I,

FIG. 3. Values of the dimensionless function a(v, z) of
Eq. (9) with z determined: (1) from Eq. (11), (2) from
Eq. (12), and (3) from Eq. (13).
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16> 10"

FIG. 4. Dimensionless function & (v, z) of Eq. (10) with
z determined as noted below Fig. 1.

20 L | T T L | T T

0.5

FIG. 5. Logarithmic derivative of the exponent (v)
in P‘(E).

n(v) = dlogb)/d logv) =2v/(T +v)

for four values of ¢ with z determined as noted below
Fig. 1. Case 3 corresponds to the Halperin and Lax
limit and is independent of £. The arrows indicate the
value of v below which the deep-tail approximations in
p1(E) ceases to be valid for each £. In the limit £—0
all three cases should reach n=3%.
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these can be obtained by retaining only the higher-
electron-energy states in our full expression (21)
for p,(E). Written in reduced units these are

m*3/2EY? 2 ar '
pic(v)=p‘f“e(v)=—.mai- (5 /2em?/% D-3/2<7%"> ’
(35)
*3/2p1/2
prroe) =" Ed " ToTH(<y), (36)

ﬁHZﬁS

where H(y) is the Heaviside step function. The re-
sulting densities of states p,(E) from (7), pXane
and pfe® are plotted in Figs. 6~9 for values of

=50, 5, 0.5, and 0.05.

We note first that the numerical values of p,(E)
in Figs. 6~9 obtained here for case 3 by minimiz-
ing B(E) agree with the numerical values calcu-
lated using the minimum counting method by Hal-
perin and Lax who also minimized B(E). This
provides an excellent point of contact with previ-
ous values of p,(E). This case shows an unphysi-
cal turn downward in p,(E) as p decreases to y~0
to 5, depending upon the value of ¢’. Cases 1 and
2, on the other hand, yield a p,(E) that continues
to rise as v decreases and p,(E) eventually inter-
sects the Kane semiclassical density of states.
Strictly, only case 1 has a foundation in princi-

T T T T

PRESENT
THEORY

e}
T

(D)

FREE PARTICLE

S
T

KANE
THEORY

HALPERIN AND LAX LIMIT2

6_'
T

§’=50

DENSITY OF STATES p
OO
T

O
T

L 1 1 1 -
-20 -10 (o] 10 20
D

FIG. 6. Density of states

3
pi(v,z)=—g-,-z a(v, z)e ~dW.0) /28

in units of (Q?‘/EQﬁ'z) for ¢'=8mm*2Z%e!N /Q%ne}=50. The
present theory is the band-tail value py(E), Eq. (7),

with the variational parameter z determined by (case 1)
the Lloyd-Best variational principle, Eq. (11), and by
(case 2) maximizing py(E), Eq. (12). Case 1 and case 2
are indistinguishable at £=50. The Halperin and Lax
limit is p4(E) in Eq. (7) with z determined by minimizing
the exponent in py(E) (case 3). The Kane and free par-
ticle values are Kane’s semiclassical result, (35) and
(36), respectively.

10 .
~ L PRESENT THEORY
3
Q:IO-' FREE PARTICLE
o I~ KANE |
= THEORY
&2

107+ HALPERIN AND ~
w
c i
>
':_I <3|
U) - o
4 ET
g ']
a

1 ! 1 1 1

30 20 0 20 40 60

* FIG. 7. As Fig. 6 for &'=5.

ple—the Lloyd-Best variational principle. How-
ever, since case 2, based on minimizing p,(E),
agrees well with case 1 it can be taken, by virtue
of this agreement, as an excellent approximation
to the Lloyd-Best variational principle.

The results in Figs. 6-9 suggest an interpolation
scheme for calculating the impurity-band density
of states at all energies. In the band-tail region
use p,(E) given by (7) with the variational param-
eter z determined from either of (11) or (12),
since they give effectively the same final p,(E).

* This p,(E) should be used until it crosses the

semiclassical Kane pXa2¢(E),. Thereafter, for
higher E use the p¥®¢(E). A similar matching of
densities of states has been proposed by Thouless
and Elzain,?® :

C. Corrections to pq(E)

The band tail p,(E) in (7) was obtained from (21)
in Sec. II and in I by retaining only the ground-
state contributions to the density of states and by

T T T T T T T

KANE THEORY

D)
S
T

FREE PARTICLE

X

PRESENT
THEORY

s,
£
T

HALPERIN AND LAX LIMIT-2

T

§=05

DENSITY OF STATES
)

-—I
)

C_1 1 1 1 1 1

-06 -04 -02 0 02 04 06

FIG. 8. As Fig. 6 for ¢=0.5.



using the asymptotic expression of the parabolic
cylinder function in (23). At high E some correc-

tion to p,(E) may be necessary. Inthe Appendix
|
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we estimate the leading correction to p,(E) from
excited states. Including this leading correction
and the leading correction in (23), we have

o e ooy () oulod () 52 @

where y2=b(v,2)/2&’. In (37) the correction 3/
(16y%) may be called the “deep-tail” correction
since it is the correction to the asymptotic limit
of the parabolic-cylinder function valid in the
deep-tail region. The second correction in (37)
involving T is the “excited-state” correction and
47/3 is, for example, the energy of the first ex-
cited state in units of E,. Clearly, for v> T,
where y? is large, the corrections to p,(v) are
negligible.

Halperin and Lax also evaluated a “deep-tail”
correction. In their theory they retained only the
leading term in a determinant in the deep-tail lim-
it. By evaluating the whole determinant they ob-
tained the “deep-tail” correction to be 3/2y%, a
factor of 8 larger than ours. This difference of
8 probably enters from their approximate evalua-
tion of the mean determinant appearing in their
theory (see Sec. 7D, Ref. 2). They then set the
limit of validity of p,(v) at y*= 3, at which point
they obtained a deep-tail correction of 3 or 50%.
We believe the correction should be only 2= 6.2%

at y?=3. Halperin and Lax also estimated that the -

excited-state contributions would be small for y?
> 3. Here we find that the excited-state contribu-
tions vanish for £’ -0 where T becomes large
(even at constant y?), so a validity limit of a fixed
value of y* may not be the most appropriate.
Since we wish to use p,(v) up to values of v
where it crosses the Kane-theory value, we eval-
uate the corrections to p,(v) in (37) at this energy.
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FIG. 9. As Fig. 6 for £'=0.05.

T
The value of y at which the present theory p,(v)
(cases 1 and 2) crosses p¥#¢(,) depends upon £’.
These v values, obtained by equating p,(v)
=pKaie(})) are shown in Fig. 10. For purposes of
comparing with Halperin and Lax, the ratios
b(v,2)/2¢' corresponding to these y values are
plotted in Fig. 11. This figure shows that the
point at which p,(v) crosses p¥=e(,) is, interest-
ingly enough, almost identical to the limit of val-
idity b(v,2)/2¢'=5 for p,(v) selected by Halperin
and Lax. Finally, in Fig. 12 the percentage cor-
rection to p,(E) at p,(v)= p¥**(}) is shown.

The leading correction to p,(E) due to excited
states shown in Fig. 12 is positive and increases
as ¢’ increases. Physically, large &’ corresponds
to a broad impurity potential (¢’ < @3). In this case
the excited states will lie only slightly above the
ground state and hence will be accessible and con-
tribute to p,(E) at low E. At £'=50, the excited
states still contribute less than 1% of p,(E).

The “deep-tail” correction [-3/(16y2)]-in (37)
from the leading term in (23) is negative and rela-
tively independent of £’. This dominates the ex-
cited-state correction for all £’ but does not ex-
ceed —-5% of p,(E)at £/=0.05. If greater accuracy
were required, the full parabolic-cylinder function
as in (22) could be retained to calculate p, (E).

Hence we conclude that the deep tail p,(v) in (7)
is correct to within 5% for v values up to p,(v)
= pKane(}) for 0.05 < ¢’ < 50,

FIG. 10. Value of v at which the present theory (case
1) py(v) in (7) crosses the Kane semiclassical pKame(y)
in (35), with z determined from (12).
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V. SUMMARY AND CONCLUSION

The central results of the present paper are
shown in Figs. 69 as the present theory electron
density of states in the impurity-band-tail re-
gion. This is obtained from Eq. (7) with the vari-
ational parameter z determined by solving (11) or
(12). For small ¢’ values the full Eq. (11), ob-
tained from the Lloyd-Best variational principle,
should be used to determine z.

The results in Figs. 6-9 suggest an interpolation
scheme for calculating the impurity-band density
of states in heavily doped semiconductors at all
energies. In the band-tail region use the present
theory p,(E) from the lowest energies up to the
point at which it crosses the semiclassical Kane
pXaae(E) given by (24) or (35). Thereafter, for
higher E use the pXae(E),

In future publications we plan to evaluate the
full p,(E) given by (21) to check the proposed inter-
polation scheme and to apply the present results
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FIG. 12. Leading corrections to p;(v) due to the ex-
cited states and due to the “deep-tail” approximation
[leading term in (23)] at py(v)=p¥2%(y), with z deter-
mined from (12).
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to calculation of band-tail parameters of heavily
doped semiconductors. Also, in the limit of
short-range potentials (@™ - 0) the correlation
function W in (4) and (5) reduces to a delta func-
tion (a white-noise potential). This limit has been
studied extensively using the N-component Gins-
burg-Landau model,**-3! and explicit expressions
for p(E) in the band-tail region have now been ob-
tained in three dimensions.?*% It would be inter-
esting to explore in detail the relation between the
present and the field-theoretic approaches.
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APPENDIX

In Sec. II, the impurity-band-tail limit p,(E) in
(7) was obtained from the full p,(E) in (21) by re-
taining only the ground-state contributions to p,(E)
in (21). This was achieved by taking the - limit
of the integrand in (21).  Here we estimate the
leading correction to (7) due to excited-state con-
tributions.

In taking the - limit in (21) we use the follow-
ing expansions:

wt 3"' 1 3p=(8/2)iwt ~iwt
(Zsin(;wt)) ~(iwt)e (1+3e7iwt), (A1)
;‘,Z ~3/2

; -3/2

j(x,y) <y+_2m*w>
3 13 ) 17 )-5/2
+-2-*<2m*w (y+2m*w
X (eriwry griwt=s) _ gmiat), (A2)

exp{3 [wtcot(3 wt) — 1]} =e®/Vivti(11 5 jwtemivt),
(A3)

These expansions hold for ¢#-« provided ¢ has
a small negative imaginary part'® (¢{=¢—ie). The
ground-state contribution to (21) is obtained by
retaining only the first term in each of the expan-
sions (A1), (A2), and (A3). At ¢t— = the leading
correction for the excited state comes from the
second term in (A3) since it is proportional to ¢.
[Strictly, the second term in (A2) is also propor-
tional to ¢ when substituted into (21) but it is also
proportional to £, which is small in the deep-tail
region, ]

On substituting the first term of each of (A1),
(A2), and (A3) in (20) we obtain
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1 3/2 . a3t i gQQtz o a2 7 -3/2
pl(E)=ﬁ Re j dt (2,” h—t) (zwt)3 exp[—;zwt _-ﬁ- (Eo —E)t - Zﬂzﬁ ‘{). dy ye Q y(y+2—'n*—w) ]. (A4)

The integration over y can be performed using the
expression

f dy ya-l(y+ a)-P#I/Ze"uy
4]
=27/ 20(p) ut/ 2e@ /2D, (V2ap), (A5)

where for the case above p=2, a=#/2m*w, and
w=@% This gives

f ( m* \'/2 3 Sth'i ¢
, 8224,
p(E) =5 Re i\ T t) (iwt)’e ,

(A6)
where
Vo % e*/4D_(z) (A7)
and
q=(%h'w+E0—E)/h'. (AS)

Finally, the integration over ¢ can be done using

O A
f.., diit)* e et = o 751 % «2/83203,2(«%3) ,

(A9)

which leads directly to (21) for the ground-state
value of p,(E), where b(v,z)/& = 3(¢/B)%

The first correction due to excited states is ob-
tained by keeping the 3 jwte i“* term in (A3) in
place of the unit term. The e ! factor can be
added to exp[-$iwt —(i/7)(E, - E)¢] in (A4) and
the y integration performed as before. In the ¢

I
integration we now have

. 22, VT . ’
:[dt(zt)slze“ "“=—25—/4-B"”2e°/852D5/2(T(-12—‘é)

in place of (A9). Hence the ratio of the leading
excited-state to ground-state contribution to
p,(E) is

_ 3w e-a?/ 882 D,, 2(4'/‘/73)
R= 2V 2B e-a?/882 Dalz(q/ﬁﬁ) (410)
and
pCor*(E)=p,(E)1+R). (A11)

4(q/B)? and defining

b(u,z) (T+47T/3+0v)?
(T+v)?

Again using b(y, 2)/¢'=

b"(v,2)/ &' = 3(q'/B)*=

(A12)

as well as going into the deep-tail limit, we have
__3wb’(y,2)°/*

2V2¢'Bb(v, 2)*/*

Note here that in (A12), 47/3 =/ w/E , is the first-
excited-state energy in reduced units. Expressed
in terms of T and y, we have

e-(l/zc')[b'(v,z)-b(v.z)] . (A13)

_ar (7T/3+u5/2 ,
(T+v) \ T+v

y 2§_( T (5T+3V
exp| =¥y 9\T+v T+vy ’

where y=b(v,2)/2¢'.
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