
PH YS ICAL RE VIE% B VOLUME 22, %UMBER 12 15 DECEMBER 1980

Impurity-band density of states in heavily doped semiconductors: A variational calculation
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The impurity-band density of states p, (E) for electrons in the field of dense, random attractive impurities is

calculated in the tail region using an analytic expression derived previously by one of us (V.S.). The analytic

expression contains a single free parameter that fixes the curvature of the trial harmonic well which models the

Gaussian random potential seen by the electrons. This parameter is determined here by implementing the rigorous

variational principle derived by Lloyd and Best. The resulting density of states is significantly larger than that

obtained by Halperin and Lax, although the Halperin and Lax values can be reproduced if the free parameter is

determined as in their theory by minimizing the exponent in p, (E). The present p, (E) crosses the Kane value at

higher E. A simple interpolation scheme is proposed to determine p(E) for all energies E; use the present tail p(E)
from low E up to where it crosses the Kane value and thereafter use p"'n'(E).

L INTRODUCTION

A. The model

The impurity-band density of states p(E) avail-
able to electrons in a solid containing a high con-
centration of randomly distributed, attractive im-
purity centers remains a problem of continuing
importance in semiconductor technology. '. Models
of this system usually begin with electrons in a
pure solid having a conduction band of energy lying
above and separated from a valence band by an en-
ergy gap. The attractive centers introduce impur-
ity states of energy E lying in the gap just below
the bottom of the conduction band. At high concen-
tration (many centers lying within the wave func-
tion of a single electron which can extend over
several hundred angstroms) the impurity states
themselves form a band. This band joins onto the
conduction band and has a low -energy, exponential
tail reaching deep into the band gap.

The most complete calculation of p(E) in the low-
energy, deep-tail region of the impurity band re-
mains the optimal fluctuation results of Halperin
and Lax. ' Their theory is the quantum counterpart
of the original semiclassical theory of Kane. '
Quantum effects were included by adding the zero-
point energy to the electron states (kinetic energy
of localization), which raises the electron-state
energies and reduces p(E) at small E below the
semiclassical value obtained by Kane. The exten-
sive and wide-ranging work in this field has re-
cently been exhaustively reviewed" ' and we refer
the reader to these reviews for full references.
Here we focus only on the density of states.

Wolff' and more recently Hwang' and Casey and

Here

ge2 e-Ql r-Rl
v(r —R) =-

lr —Ht
(2)

is the screened potential due to an impurity of
charge Z having screening length Q

' and located
at point A. The q, is the dielectric constant and,

the R, are randomly distributed throughout the
solid. If the correlations in the potential beyond
the mean

dRv(r —R) = Eo

and the quadratic

(4)

are neglected, this model is an example of a sin-
gle particle moving in a Gaussian random poten-
tial" (higher correlations in the potential neg-
lected). For the example of the screened Coulomb
interaction (2) in (4),

Stern" have shown that in the presence of impuri-
ties the interelectron interaction can be incorp-
orated into a single electron effective mass m*
plus a rigid shift of the bands, provided the elec-
trons are regarded as moving in a screened Cou-
lomb potential due to the impurities. Hence for
parabolic bands we may model the impurity sys-
tem by considering a single free electron of mass
m* in the presence of N impurities in volume 0
(density Ã= N/Q). The corresponding Hamiltonian
ls

h'v'
H= — ~+ v(r -R,.).2m*
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Frw(- --) = g (5)

B. The variational principle

In this paper we evaluate numerically the im-
purity band p(E) throughout the deep-tail region
for a single electron in a Gaussian random poten-
tial (5). This is done by implementing the varia-
tional principle derived by Lloyd and Best" which
states that the opti. mum p(E) should maximize the
function

where $o
——2zZ'e 1V/(Q&ob) has dimensions of energy

squared and measures the magnitude of the vari-
ance or fluctuation in the random potential about
the mean E,.

functions of the electrons in the random system.
Abrams and Edwards" earlier suggested using a
harmonic well. This corresponds, in the Halperin
and Lax theory, to choosing Gaussian ground-state
wave functions.

The full expression for p(E) valid at all E ob-
tained in I is lengthy and requires numerical inte-
gration. However, in the limit of low E (E- -«}
in the impurity-band-tail region, where only the
ground states of the electrons need be included,
p(E) simplifies to an analytic expression. This
may be written in the same form as introduced by
Halperin and Lax as

p, (E)=, exp[- —,'B(E)/g, ],A(E)
$o

+I
P(E) = dE' dE "p(E").

«OO «OO

(6) where

A(E) = (qE,)"(v,z),
For p(E) we use the analytic expression derived
earlier" (referred to here as I) by oneof us (V.S.),
which is valid in the deep tail region. This p(E)
contains one variational parameter to be deter-
mined by (6). We compare the p(E) determined by
this rigorous principle (denoted case 1) with the
approximate p(E) determined by maximizing p(E)
itself (denoted case 2) and by minimizing the ex-
ponent in the exponential portion of p(E) (denoted
case 3). We find that the p(E) obtained by maxi-
mizing P(E) and p(E) differ little but that the p(E)
obtained by minimizing the exponent only differs
substantially from the first two for random poten-
tials having large fluctuations (large $o). Halperin
and. Lax' considered the last case only and in this
case our p(E) agrees well numerically with Hal-
perin and Lax.

C. The density of states

In I the random potential having variance W(r
—r') seen by the electron is modeled by a single,
nonlocal harmonic potential. The curvature &uP

of the model harmonic potential is the free param-
eter which must be determined at each E by one of
the variational principles referred to above. This
procedure follows in spirit the minimum counting
method of Halperin and Lax who determined at
each E the single best ground-state wave function
which most often represented the possible wave

(8)B(E)= Eob(v, z) .
Here Eo ——I'Qb/2m~ is the energy associated with
the impurity potential and all energies are ex-
pressed in units of Eo. For example, v=(ED —E)/
E is the electron energy measured away from
the mean potential E, in units of E and z= (2Eo/
if(v)'I ' is a convenient reduced variational param-
eter, replacing ~. In the harmonic model the
kinetic (zero-point) energy of electron localiza-
tion is just —,'K(d and in reduced units is T= (—,')if(d/
E= & z '. Finally, the analytic expressions for
the "universal, "dimensionless functions a(v, z)
and b(v, z) obtained in I are

a(v, z)=(T+ v)' // 87(v 2 z exp( —~D',(z), (9)

Iz2 )
b(v, z)=(T+ v)'v w/ 2v 2 exp~ 4 ~D,(z), (10)

where Db(z) is the parabolic cylinder function. "
The subscript 1 on p, (E) means that the first-

order cumulant correction for the difference be-
tween W and the harmonic model has been eval-
uated exactly. Higher-order cumulants which
correspond approximately to the higher-order
corrections considered by Halperin and Lax"
have been ignored.

The variational equation to determine z ob-
tained from maximizing P(E) is, in reduced
units,

2D„(z) 1 ( T ~, b(v', z) (D„(z) 2z-'
&~

D,(z) z &T+ v' J 2&' &D,(z) (T+ v'))
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(D~(z) 2z '
&D .(z) (T+ v)

(13)

The expression (7), plus one of the three equa-
tions (ll), (12), or (13) for z, completely deter-
mines the density of states in the band-tail re-
gion. The p, (E) evaluated for the three methods
of determining g are shown in Figs. 6-9 for val-
ues of the reduced fluctuation parameter $'= go/
E@=50, 5, 0.5, and O.Q5.

In Sec. II the origin of p, (E) is outlined. The
variational equations (li)-(13) for z are derived
in See. III The. numerical results for z, a(v, z),
b(v, z), and the density of states are presented in
Sec. IV. A summary and conclusion are given in
Sec. V. The corrections to (7) for excited-state
contributions to p, {E)are discussed in the Appen-
dix.

The equation for z obtained from maximizing p, (E}
itself corresponds to setting the term in curly
brackets in (11) equal to zero, i.e. ,

2D~(z) 1 T
D,(z) z T+ v )

b(v, z) D,(z) 2z '
2$' D,(z} (T+ v)

The equation for z obtained from minimizing the
exponent B(E}in p, (E) corresponds to setting the
term in the last large parentheses in (12) equal
to zero, i.e. ,

where G(r» r„t) is the retarded propagator in the
coordinate representation [(ik) times the usual re-
tarded Green's function] averaged over all im-
purity positions, assumed randomly distributed.
This propagator is expressed in I as a Feynman
path integral

G(r„r„t)=fG(r(v))e "V"'*, (16)

E, and W are given by {3)and (4), respectively.
In I the full action S in (I't) is approximated by a
nonlocal harmonic model or "trial" action"

Q ~ 2

S,= dv' —r'(v) —S, —— dv')r(v) —r(v') )')2 2t p

(18)

for which the diagona. l part of G in (16) can be
evaluated exactly. This constitutes the zero-or-
der approximation G, to G. Equation (16) can also
be rearranged in terms of G, and Sp as

G Qo exp — S —S, (19)

where for a Gaussian random potential the action
1S

m* t
S= dv —r'(v) —S, —N dv'W(r(v) —r(v'))) .

0 2 % 0

II. THE DENSITY OF STATES

The density of states per unit volume

p(E) = —„g6(E -E,)
1

(14)

can be expressed in terms of the propagator for
a single electron moving in the field of & impuri-
ties as

p(E)= —He dte' '~"G(0 0 t)
1

0

G, =G evvS —(S —S)„).h
(20)

The diagonal part of G, may also be evaluated ex-
actly a.nd, when substituted into (15), gives the
density of states of

where ( ), is the average with respect to the trial
action S,. By keeping only the first-order cum-
ulant in (19) we obtain the first-order approxima-
tion to G,

m*
p, (E)=—R dt . I (, )

xexp --(E,—E)t —,ho dz 4 ye ' "j(~ y)
' '+-

l
—'o —, (21)

where

N . (dx . (()(t —x)j(x, y) = y+ sin —sinm*~ 2 2

(dg ~
s ln—

2)
In (21) the term in the square brackets is G, (0, 0, t)
while the exponential term is the first cumulant
correction, aside from e'~'~".

To obta. in the limit of p, (E) va. lid in the tail re-
gion of the impurity band we first take the t- ~
limit of the integrand in (21). This means only
the ground states, "the lowest-energy states, will
be retained in p, (E). The integrals in (21) can then
be evaluated exactly and, in reduced units, the
result is
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q' a(v, z}
Pl( t ) E g

t3/4 h( )3/4

& (b( zeal ~/»
(22)

A. The Lloyd-Sestvariationalprinciple: Case 1

Lloyd and Best" showed that the density of
states p, (E) at energy E should maximize the
pressure

If we neglect the term in x ' in (23) we obtain Eq.
(7) for p, (v, z), i.e. ,

p(v z)= a(v z)e"""""'l t E (t3
Q

(7')

The corrections to(7') for the neglected terms in
(23) and for excited-state contributions at higher
E are discussed in Sec. IVC and the Appendix.

We may also obtain the semiclassical (SC) limit
of p, (E) from the full p,(E) in (21). This is ob-
tained by letting t- 0 in the integrand of (21),
which corresponds to retaining only high-electron-
energy states in p,(E}. The integrals in (21) can
again be performed, giving

(E —Esc(E) = gl/4 -(E-z(t) /44@D
i

0
P 1 4v3}f3 Q 3/ 3

(24)

which is the result derived by Kane. ' In the limit
~E —E,

~

-~ this becomes

In the limit of large b(v, z)/g' the asymptotic ex-
pression for the parabolic cylinder function is

D(z}=e ""z'Il-"" —+''' (.p(p 1)

g g'
P(E, z) = dE' dE"p(E", z)

M O0 ~00

(26)

P(z, z(= f (3 3')p(E', t(3—3'.
~00

(28)

In terms of the reduced energy v= (E,—E}/Eo,
trolls is

P(v, z)= E' Jl (v- v')p(v', z)dv' ~ (29)

On substituting(V') for p(v', z) in (29) and maximiz-
ing P(v, z) with respect to z (dP(v, z)ldz =0], we

obtain the variational equation (11) for z.

8. Maximizing p&(E): Case 2

It is more convenient to maximize lnp, (v, z).
Kmployjng(7') this requires

of a hypothetical free-fermion system. This may
be used here to determine the free parameter z
in a band-tail expression for p(E, z), since values
of p(E",z) up to energy E only are needed. To
simplify (26) we do an integration by parts

gt . g g
P(E, z) = E' dE"p(E",z) — p(E', z)dE'

~00 OO

(2V)
and use p(-~, z) = 0 to write (27} as

43/2
z (Z Z(t) /330-

4v'}33 (E, E}3/3
d lnp(v z) d lna 1 db

dz dz 2g' dz
(30)

p", (E) =(
v(o

' « -1 (25a)

m+ E —Eo
2 v3i33 (25b)

III, THE VARIATIGNAL EQUATIONS

In this section we develop the equations (11),
(12), and (13), which are needed to determine the
variational parameter z based on (1) the Lloyd-
Best" var iational principle, (2) maximizing

p,(E), and (3}minimizing the exponent E(E) in

p, (E), respectively.

Here (25a) is Kane's well known band tail p, (E)
while (25b) is the free-electron or parabolic-bang
value valid for positive E —E, only. Note that (24)
is independent of the variational parameter. This
is because at t-0 only the free particle C, sur-
vives in (21) and the semiclassical p,(E} is inde-
pendent of the harmonic model action selected
here It is for th. is reason that (24) agrees exactly
with Kane's density of states.

On differentiating the logarithm of (9) and ~sing
the recursion relation for parabolic cylinder func-
tions, "

dD3(z)—= ——,'zD, (z)+ pD, ,(z), (31)

C. Minimizing the exponent b(v, s): Case 3

The variational equation in this case is now ob-
tained trivially by setting (33) equal to zero,
which gives Eq. (13).

the first term in (30) is

d lna(v z) 6 D~(z)
D,(z) 4 (T+ v) z/

'

Simila, rly, differentiating (10) and using (S1), the

second term in (30) is

db(v, z)
)

D 4(z) 2z

dz " D.(z) (&+ v) &

'

Substj, tuting (32) and (33} into (30) gives the vari-
ationai equation (12) to determine z in this case.
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However, for p «1 the kinetic energy of localiza-

the three cases. When P(E) and p, (E) are maxi-
mized, T/v can be very large. However, if we
restrict ourselves to energies in the deep-tail re-
gion, w ereh E —E must remain reasonably large,
the ratio T/v will always remain finite. It is on y

th approximate case of minimizing B(E) con-in e ap
'd red b Halperin and I ax that T/ p appa roaches

t clear thatthe s ecial value of 3 for p «1. It is no c
there is any meaning to this special value of 3.
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using the asymptotic expression of the parabolic
cylinder function in (23). At high E some correc
tion to p, (E) may b'e necessary. In the Appendix

we estimate the leading correction to p, (E) from
excited states. Including this leading correction
and the leading correction in (23), we have

I

,8 ( 7' (5T+3 i---
( ) = ( ) (i 16y (T+v) ( T+v ) ' k + v) ( T+v j (37)

where y'= b(v, z)/2g'. In (37) the correction 3/
(16y') may be called the "deep-tail" correction
since it is the correction to the asymptotic limit
of the parabolic-cylinder function valid in the
deep-tail region. The second correction in (37)
involving T is the "excited-state" correction and
4T/3 is, for example, the energy of the first ex-
cited state in units of E@. Clearly, for p» T,
where y' is large, the corrections to p, (v) are
negligible.

Halperin and Lax also evaluated a "deep-tail"
correction. In their theory they retained only the
leading term in a determinant in the deep-tail lim-
it. By evaluating the whole determinant they ob-
tained the "deep-tail" correction to be 3/2y', a
factor of 8 larger than ours. This difference of
8 probably enters from their approximate evalua-
tion of the mean determinant appearing in their
theory (see Sec. 7D, Ref. 2). They then set the
limit of validity of p, (v) at y'~ 3, at which point
they obtained a deep-tail correction of —,

' or 50%.
We believe the correction should be only -"=6.2%

at y'= 3. Halperin and Lax also estimated that the
excited-state contributions would be small for y'
~ 3. Here we find that the excited-state contribu-
tions vanish for $'-0 where T becomes large
(even at constant y'}, so a validity limit of a fixed
value of y' may not be the most appropriate.

Since we wish to use p, (v) up to values of v

where it crosses the Kane-theory value, we eval-
uate the corrections to p, (v) in (37) at this energy.

I

The value of v at which the present theory p, (v)
(cases 1 and 2) crosses p" '(v) depends upon $'.
These v values, obtained by equating p, (v)
= p" '(v), are shown in Fig. 10. For purposes of
comparing with Halperin and Lax, the ratios
b(v, z)/2$' corresponding to these v values are
plotted in Fig. 11. This figure shows that the
point at which p, (v) crosses p" '(v) is, interest-
ingly enough, almost identical to the limit of val-
idity b(v, z)/2('=5 for p, (v) selected by Halperin
and Lax. Finally, in Fig. 12 the percentage cor-
rection to p, (E) at p, (v)= p" '(v) is shown.

The leading correction to p, (E) due to excited
states shown in Fig. 12 is positive and increases
as $' increases. Physically, large $' corresponds
to a broadimpurity potential ($' ~Q '). In this case
the excited states will lie only slightly above the
ground state and hence will be accessible and con-
tribute to p, (E) at low E. At $'= 50, the excited
states still contribute less than 1% of p, (E).

The "deep-tail" correction [-3/(16y'}] in (37)
from the leading term in (23) is negative and rela-
tively independent of ('. This dominates the ex-
cited-state correction for all $' but does not ex-
ceed -50/0 of p (E)at ]' =0.05. If greater accuracy
were required, the full parabolic-cylinder function
as in (22) could be retained to calculate p, (E).

Hence we conclude that the deep tail p, (v) in (7) .

is correct to within 5/o for v values up to p, (v}
= p" '(v) for 0.05 & (' & 50.
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FIG. 9. As Fig. 6 for $'=0.05.

FIG. 10. Value of v at which the present theory (case
1) p~(v) in (7) crosses the Kane semiclassical p ~(p)
in (35), with g determined from (12).
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to calculation of band-tail parameters of heavily
doped semiconductors. Also, in the limit of
short-range potentials (Q '- 0) the correlation
function W in (4) and (5) reduces to a delta func-
tion (a white-noise potential). This limit has been
studied extensively using the N-component Gins-
burg-Landau model, ""and explicit expressions
for p(E) in the band-tail region have now been ob-
tained in three dimensions. ""It would be inter-
esting to explore in detail the relation between the
present and the field-theoretic approaches.
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The central results of the present paper are
shown in Figs. 6-9 as the present theory electron
density of states in the impurity-band-tail re-
gion. This is obtained from E(I. (7) with the vari-
ati.onal parameter z determined by solving (11) or
(12). For small $' values the full E(I. (11},ob-
tained from the Lloyd-Best variational principle,
should be used to determine z.

The results in Figs. 6-9 suggest an interpolation
scheme for calculating the impurity-band density
of states in heavily doped semiconductors at all
energies. In the band-tail region use the present
theory p, (E) from the lowest energies up to the
point at which it crosses the semiclassical Kane
p*, ~'(E) given by (24) or (35). Thereafter, for
higher E use the p", ~'(E).

In future publications we plan to evaluate the
full p, (E) given by (21) to check the proposed inter-
polation scheme and to apply the present results

,(i o)f)3e-(3/2)iu)t(] ~ 3e-io&t)
2 sin( & (dt)

(A 1)

-3/ 2

j(x, y) "'=(v

2 2m*+ 2m*a

APPENDIX

In Sec. II, the impurity-band-tail limit p, (E) in

(I) was obtained from the full p, (E) in (21) by re-
taining only the ground-state contributions to p, (E)
in (21). This was achieved by taking the f-~ limit
of the integrand in (21). Here we estima, te the
leading correction to (7) due to excited-state con-
tributions.

In taking the f- ~ limit in (21) we use the follow-
ing expansions:

o&
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FIG. 12. Leading corrections to pg(p) due to the ex-
cited states and due to the "deep-tail" approximation
[leading term in (23)] at p~(p)= pK~(p), with g deter-
mined from (12).

&( (e (his+ e-i-(II (i-x) e (uli)- (A 2)

exp(-,' (&dt cot( —,
'

o)t) —1 j )= e" "'"'(I + —,
' i (dte '"') .

(A3)

These expansions hold for t- ~ provided t has
a small negative imaginary part" (t= t —i&). The
ground-state contribution to (21) is obtained by
retaining only the first term in each of the expan-
sions (Al), (A2), a,nd (A3). At f- ~ the leading
correction for the excited state comes from the
second term in (A3) since it is proportional to t.
[Strictly, the second term in (A2) is also propor-
tional to f when substituted into (21) but it is also
proportional to $, which is small in the deep-tail
region. ]

On substituting the first term of each of (Al),
(A2}, and (A3) in (20) we obtain
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]. " /pyg+ )/, f $ qf "
2 $ g )-3/2

p, (E)=—Re dt( „. ~

. (i(ot)'exp —'i(o-t -- (E, -E)t—, dyye (y+ 2
(A4)

The integration over y can be performed using the
expression

dy yP-&(y+ ~)-0+&/2z-vv
0

/ Np}p- /2e&+/ D ($2Qlp} (A5)

integration we now have

ef(ff) li / 2e-z & -~&'& . Pw /2e-&'/ Bz2D
~

q
-0 25/4 5/ 2 fear

kv~ P/

in place of (A9). Hence the ratio of the leading
excited-state to ground-state contribution to
p, (E} is

where for the case above p= 2, @=5/2m~&v, and
p= Q'. This gives +s/2(q /~2@

2&2P e-"«~' u, (q/WP)
(A10)

oo ( g )3/2
p, (E)=,—Re at] . , ( (i~f)'e

&2&ikt

where

p'= v'2/z ~2 e"/'D, (z)

and

(A6)

(AS)

and

p' "(E)= p (E)(l.f~).

Again using b(v, z)/g'= —,'(q/p)' and defining

i( )/ i y
( I/ )2 b(p~z) (T+ 4T/3+ v)=2 q = ]i, (T )2

(A11)

(A12)

q=(-,'h~+E, -E)/h. (AS)
as well. as going into the deep-tail limit, we have

Finally, the integration over t can be done using

df( )f&
/2 8& ia&--P 5/2e a /~8 D

"'&M2Pi '

(A9)

-u/24')tl'(u, s)-b(u, s&3 (A] 3)
2&2]'Pb( p, z)"'

Note here that in (A12), 4T/3 =h e/E is the first-
excited-state energy in reduced units. Expressed
in terms of T and p, we have

which leads directly to (21) for the ground-state
value of p, (E), where b(p, z)/g'= —,'(q/P}'.

The first correction due to excited states is ob-
tained by keeping the & irate '"' term in (AS) in
place of the unit term. The e '"' factor can be
added to exp[ &i&t —(i/-k)(EO —E)t] in (A4) and
the y integration performed as before. In the t

4T 'lT/3+ pl'/2

(T+ v) T+ v

, 8 T (5T+Sp&"'~ -y'9 T„(T,. )~

where y = b( p, z)/2$'.

(A14)
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