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The anisotropic propagation of acoustic phonons in a single crystal of Ge at low temperatures is examined both
experimentally and theoretically. We have devised a general heat-pulse imaging method which reveals the angular
distribution of energy flux emitted from an incoherent point source of ballistic phonons. The resulting images
contain remarkably complex two-dimensional variations in the phonon flux. The larger features of the flux patterns

agree with previous numerical calculations of phonon focusing. Using only continuum elasticity theory and the
known elastic constants for Ge, we find that the sharp features in the ballistic phonon image are explained by
mathematical infinites in the phonon flux. Useful physical insights into the origin of these flux patterns are gained by
graphically plotting (a) the locus of singularities on the constant-frequency k-space surfaces and (b) the
corresponding group-velocity surfaces. For a cubic crystal only two parameters (the ratio of elastic constants
C l 1 C12.C44}completely determine the flux pattern.

I. INTRODUCTION

The propagation of long-wavelength phonons in
a crystalline solid is characterized by anisotropic
velocities due to the direction-dependent elasticity
of the medium. Measurements of sound velocities
along several crystal directions are used to de-
termine the elastic constants of a crystal accu-
rately, as given by the fourth-rank elasticity
tensor t.",.~, . Velocities of elastic waves can be
determined to better than 10 'k accuracy using
radio-frequency pulse-echo techniques. Even
in a highly symmetric cubic crystal such as Ge,
anisotropy in the sound velocity is significant
(-3(Pc). On the other hand, the thermal conduc-
tivity of a crystal is usually represented by a
second-rank tensor, which for a crystal of cubic
symmetry implies isotropic propagation of heat.
The apparent discrepancy arises because the
theory of thermal conductivity involves diffusion
of high-energy acoustic phonons with mean free
paths much shorter than the crystal length.

However, if one introduces a localized pulse
of high-energy acoustic phonons ( a heat pulse)
into an otherwise cold crystal, such phonons may
travel ballistically over macroscopic distances,
displaying anisotropies directly associated with
the elastic tensor. Unlike the coherent plane waves
produced at rf frequencies by a quartz transducer,
a heat pulse consists of incoherently generated
phonons with roughly a Planck energy distribution
characterized by the heater temperature. ' For
a typical. heat pulse with T =10 K, the maximum
in the Planck distribution occurs at a frequency
u = 2.8&sT/g = 600 GHz. Still, for Ge this is over an
order of magnitude smaller than the Debye fre-
quency, justifying the long-wavelength assump-
tion. The heat-pulse method, originally demon-

strated in crystals by R. J. von Gutfeld and
A. H. Nethercot, ' generally utilizes a resistive
film to produce the heat pulse and a fast super-
conducting bolometer to detect the slight temper-
ature rise when the ballistic phonons arrive at
the opposite face of the crystal. The time-of-
flight of these phonons across a crystal of known
dimension is well explained by the sound velocities
determined by rf means.

Shortly after these initial experiments it was
observed that, in addition to the sound velocity,
the phonon energy flux is dependent on the propa. —

gation direction. Taylor, Maris, and Elbaum"
explained this "phonon-focus'ing" effect as a con-
sequence of the noncollinearity of phase and
group velocities. They presented statistical cal-
culations of the angular-dependent flux enhance-
ment which roughly explained their data. More
detailed calculations by Rosch and leis' and
later by others' have predicted the heat flux
emanating from a point source for a number of
crystals with various symmetries.

The basic physics of phonon focusing is illus-
trated in Fig. 1 (Ref. 7). For an elastically ari-
isotropic medium, a constant-frequency surface
in k space is nonspherical, implying an anisotrop-
ic phase velocity, ~/k. This k-space surface is
also called the "slowness surface. " Figure
1(a) is an actual slice of the constant &(k)
surface in the (001) plane for germanium, as
calculated for a slow TA (STA) phonon mode in

the next section. For a given wave vector k
terminating on this surface, the energy flux is
parallel to the group velocity, V =9+(k)/sk, which
is normal to the surface. Thus, an isotropic
distribution of k vectors, such as that emanating
from an ideal point heat source, transforms into
a distinctly anisotropic .distribution of group ve-
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FIG. 1. (a) Intersection of a constant-frequency sur-
face with the (001.) plane for the slow TA mode in Ge.
The shape of this surface, also known as the slowness
surface, is independent of co for linear dispersion
co=v(6~ Pgk, appropriate to the long-wavelength limit.
The group velocities are normal to the surface and in
general are not collinear with k. (b) Plot of the group
velocities corresponding to the k vectors in (a). The re-
sulting group-velocity surface contains folds, e.g., at
Vq. Two equal "solid-angle" sections along different V
directions are shown in the left side of the diagram. A

mapping of these two real-space sections into k space is
shown in the left half of Fig. 1(a). The upper AQ~ maps
into a single smaller DQ~, implying a "defocusing" of
phonon flux Q & 1). The AQ~ which crosses three
branches of the V surface maps into three different k
directions and the flux enhancement along this group-
velocity direction is large.

locities, as illustrated in the figure. Phonon
energy is concentrated, or "focused, " along V
directions for which the curvature of the constant-
frequency surface is small.

The calculations of Maris' and of Bosch and
Weis' consisted of determining the ratio of the
k-space solid angle &O~ to the corresponding V-
space solid angle ~0~ for a finite grid of real-
space (V-space) directions. That is, assuming
an isotropic distribution of k vectors, they de-
termined the angular density of corresponding
V vectors T. he enhancement factor A=- ~AA/
&Qv~ is proportional to the phonon energy
flux and is equal to. unity for an isotropic medium.
The physical idea is contained in the left half of
Figs. 1(a) and. 1(b). Figure 1(b) is a plot of the
slow TA group velocities in the (001) plane of
Ge. A constant real-space solid angle &0~ sub-
tended by a detector corresponds to one or more
k-space solid angles &Q„differing in magnitude
and location. Phonon energy emanating from a
heated Point source in the crystal is concentrated
along directions where' is large. These high-
intensity directions are.not in general along crys-
tal symmetry axes, but are determined by the
ratios of elastic constants.

The theoretical results of Rosch and Weis dis-
played remarkably complex phonon focusing
patterns for all crystals considered, with im.-
mense variation in phonon intensity within a given
phonon mode. Indeed, as these authors noted,
there are directions along which the enhancement
factor is mathematically infinite (yet integrable),
even for crystals with a nearly isotropic elastic
tensor (e.g. , sapphire). An example of a point
where& diverges in.Ge is labeled by the vector
k, in Fig. 1. At this point there is an inflection
in the curvature of the constant-~ surface.

Sharp features in the phonon flux in Ge were
experimentally observed by Hensel and Dynes, '
who were using heat pulses to study the absorption
of phonons by electron-hole droplets. They intro-
duced the heat pulse at the crystal surface via a
pulsed laser. By rotating their crystal about a
symmetry direction, they were able to continuously
vary the propagation direction to the detector. In
later papers" " they reported comparisons of
their one-dimensional scaris with results calcu-
lated from a modified version of Maris' computer
program. They found a good semiquantitative
agreement.

In this paper we describe in detail a general
new experimental method which provides a new
approach to the phenomenon of phonon focusing.
The method, which we call ballistic phonon imag-
ing, produces a two-dimensional map of the phonon
intensities emanating from a point source in the
crystal. One result is a precise map of the pho-
non flux singularities. The resulting photographs
contain details of the intensity structures which
exceed those in previous calculations. Figure



G. A. NORTHH, OP AND J. P. %OLFE

/r//
r /r

/
/

g

R0o-

/
~e /

J
rr /

/

I

-0.4 0.0 0.2 0.4

2(a) shows the first experimental determination
of the phonon focusing pattern in a crystal. ""
The larger features of this data verify the theo-
retical predictions of Bosch and Weis. ' Bright
regions are points of high phonon flux arriving
at a (100) face of a Ge crystal. In effect,"the
phonon source is at the center of this pattern on
the opposite face.

To explain the origin of these complex intensity
patterns we have devised a somewhat different ap-
proach to the theoretical problem, which lends
some further physical insights into the source of

FIG. 2. (a) Ballistic phonon image for Ge. Bright re-
gions indicate high phonon flux impinging on the (001)
face/of the crystal. This image represents a scan of 48'
in propagation direction from left to right, with the [001]
direction at the center of the pattern. The reader may
find it useful to imagine a point source of phonons at the
center of the pattern on the opposing face of the crystal
(Ref. 14). (b) Calculated 1ines of mathematically infinite
phonon flux for the xy scan in the image above. The solid
lines are for the slow TA phonons and dashed lines are
for fast TA phonons. The FTA singularity lines actually
continue to the center. The axes are related to the prop-
agation angles (&v 4v) by th r I ti n ~= tanevs n(@v
—&,/4) and 8= tan0v cos(Pv-7l/4) obtained from Fig. 4(a).

the singularities. We calculate the complete locus
of points on the slowness surface for which the
enhancement factor & diverges. These singular-
ities are lines which separate regions of positive
and negative Gaussian curvature of the slowness
surface. The link between these singularity lines
and the rea. l-space flux patterns is made by plot-
ting the actual group-velocity surfaces. The
locus of all points V from the origin define a
group-velocity surface which is much more com-
plex than the slowness surface, as is simply
illustrated in Fig. 1(b), The group-velocity sur-
faces contain folds" (e.g. , at V, ) which correspond
to zero curvature of the slowness surface (e.g. ,
at k, ). These folds define the real-space directions
of the singularities and are found to form bound-
aries between strong and weak focusing directions.
Figure 2(b) shows the expected singularities in

phonon flux for the experimental geometry, as
explained in Sec. V.

One advantage of this approach is that the an-
isotropic propagation of the phonons is character-
ized by a pattern of well defined and measurable
structure. Indeed, the structure of this pattern
contains all of the necessary information to de-
termine the ratios of elastic constants. The ex-
perimental method also gives a detailed map of
the relative phonon intensities. However, the
calculation of & as a function of propagation angle
meets with several difficulties. The enhancement
A is an analytic function in k, but k is not readily
obtainable for a given V; indeed, there may be
several different k directions producing the same
V direction. Contributions from all such branches
must be added to obtain a total enhancement. Fur-
thermore, for comparison with experiment, & must
be integrated over the detector area; thus, peak
intensities (especially near infinities in A) will
depend on detector shape and size." Finally,
neither the actual angular k-space distribution
of phonons nor the angular dependence of their
attenuation are known. Ultimately, comparison
of the experimental intensities with theory may
determine these factors. However, none of these
factors directly affect the geometrical focusing
pattern.

In the past, heat-pulse experiments have been
used to investigate, many phenomena, such as
the onset of diffusive propagation, " scattering
at boundaries, Kapitza resistance, scattering due
to impurities '8 "and phonon absorption by elec
tron-hole liquid. " Most of this work exploited
temporal analysis of heat-pulse intensity. The
quantitative imaging method demonstrated in. our
experiment is a powerful extension of this tech-
nique and should provide a general tool for in-
vestigation in such areas.
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Two other experimental efforts directly con-
cerned with the phonon focusing patterns in crys-
tals have appeared concurrently with our work.
Eisenmenger" has produced remarkable two-di-
mensional patterns of the phonon focusing effect
in Ge and Si using the fountain effect of super-
fluid He. Taborek and Goodstein~ "have cal-
culated the theoretical phonon flux singularities
for sapphire, discussed the application of catas-
trophe theory to singularities, and uncovered ef-
fects of phonon focusing on crystal-liquid-He
boundary reflections.

II. THEORY OF PHONON FOCUSING

The phenomenon of phonon focusing is based on
classical elasticity theory, assumingwavelengths
long enough to ignore dispersion (X»a„with a,
the lattice constant). The medium is modeled as
continuous but anisotropic. The problem of elas-
tic wave propagation in an anistropic medium has
been treated in detail by a number of workers, ~
with recent treatises given by Musgrave" and by
Federov. '8

The propagation equation for elastic waves in
a solid begins with a generalized statement of
Hookes Law. The stress o,~

is related to the
strain el by the linear relation

+jj ggl me lm v

with c,-» the elastic tensor of the solid. For a
crystal of cubic symmetry, just three independent
parameters define the nonzero elements of the
elastic tensor: c,.«, ———C», c«&&

—=C», and c,&,
.
&

=—C44, with iw j and subscripts denoting axes along
the edges of the cube. At a position vector x
=(x„x„x,) =(x,y, e) in the solid, a displacement
of the atoms from their equilibrium position is
denoted by u(x) = (u„,u~, u, ). The strain associated
with this displacement is defined by e,„=e /uB x

The acceleration u of a small-volume element
is proportional to the stress gradient, and for
a crystal of density p the wave equation is given

by

(2)

In this paper, summation is assumed over re-
peated indices. The plane-wave solution for dis-
placement is u =me"' "",where e is the polar-
ization vector, k is the wave vector, and ~ is
the angular frequency of the wave. Substitution
of this solution into Eq. (2) yields an eigenvalue
equation:

(c)» k~k„pro'5(,)a,-=0. (8)

Defining the wave normal n =k/l kl and the phase
v«oc'ty v =~/lkl and di»ding by p lk I' Eq (8)

det(D), —v'5), ) =0.

This is a cubic equation in v', with three roots
corresponding to a longitudinal and two trans-
verse phonon modes. For each root, v, there
is a polarization vector &, where a =—0, 1,2.
For a given k vector, the three polarization vec-
tors e mill be mutually orthogonal; however, in

general none will be parallel or normal to k. %e
identify n = 0 with the predominantly longitudinal
mode (LA) and n =1,2 with the slow (STA) and

fast (FTA) transverse modes, respectively.
The energy flux for an elastic wave is parallel

to the group velocity. By vector differentiation
of Eq. (5), we obtain

(6)

Bv~ ~ 8v
V = =l v -n ln+

Bk ( Bn] Bn
'

We have found that the derivative Bv/en is ob-
tained most simply by implicit differentiation of
Eq. (6), as described in the Appendix.

The direction of energy flux (8», Q~) is obtained
from the group-velocity components, which in

turn depend on (8„,Q»). This k-space to V-space
transformation may be expressed as

cos8v =f(cos8» Q»)

y ~ =g(cos8», y») (8)

where the functions f and g are determined from
the components of V above. Equations (8) are
a mapping of one two-dimensional space (8», Q»)
into another two-dimensional space (8„,Q„).The
ratio of the product of differentials in these two

spa, ces is the Jacobian of the functions f and g:

dQ„=d(cos8„)dg„=Jd(cos8»)dg» =JdQ»,

with

J =—det

Bf Bf
Bcos8» Bp»

Bcos8» Bf»

(10)

becomes

(&,, -v'6„)c,=0,

with D, , =(1/p)c, ».n&n„ the Christoffel tensor. "
The nondispersive nature of this formulation is
now clear. 8.nc &„depends only on the direction
of k, the phase velocity v for a given direction
n is independent of

l
k

l
. For a given wave-vector

direction, k =(k, 8», Q»), the frequency of the wave
is

& =v(8» 4»)k.

The phase velocity v(8„$»)can be obtained by
solving the characteristic equation of (4):
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This last result provides the desired link be-
tween the mathematical formalism and the phonon
intensities. The enhancement factor A. is simply
related to the Jacobian by

The geometrical interpretation of the Jacobian
J' is that J=ff~k~'cosg, where K is the Gaussian
curvature of the slowness surface and f is the
angle between k and V. The Gaussian or total
curvature is the product of the two extremal
curvatures (inverse radii) of an elemental surface.
If either or both of the extremal curvatures vanish,
J and & will vanish. Of course, J as defined in
Eqs. (8)-(10) is more fundamental to our present
studies than K The Jacobian is dimensionless
and directly related to the physical enhancement
factor A by Eq. (11).

In principle the problem is now solved. One
can calculate this enhancement at all angles for
compar ison to experiment. This is accomplished
by a computer program which, given the density
p, the elastic constants c,.&, , the k-vector direc-
tion (8„&f&~),an.d the mode index n, calculates
U, .IV, 8„,Pv, and J. This program is used

to create the k- and V-space surfaces of Sec. V,
and will be published separately. The primary
difficulty in obtaining the real-space enhancement
is that J', as expressed in Eq. (10), is a function
of (8„,Q„),whereas energy propagation is observed
along the corresponding (8», Pv). This requires
inverting the mapping of Eq. (8), which must be
done point-by-point. In fact this inverse mapping
is generally not unique; there are cases where
one (8„,Qv) results from several different (8„$„),
as illustrated in Fig. 1.

We have discovered that a calculation of the
directions (8„$„)where J =0, corresponding to
mathematically infinite enhancement, provides
both a useful insight into the physics and a quan-
titative means of analyzing the ballistic phonon
patterns. The condition J=0 defines a locus of
points on the slowne ss sur face which separate
regions of positive and negative Gaussian curva-
ture. This will be discussed in detail for Ge in
Sec. V. Once these singularity lines are deter-
mined by a simple root-finding routine, the as-
sociated real-space directions (8~, Q~) for intense
focusing can be found. As we will, see for the TA
modes in Ge, the J =0 patterns explain all the
detailed structure in the ballistic phonon image.

III. EXPERIMENTAL METHODS

The heat-pulse method has been described in
detail in an early review article by von Gutfeld. "
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FIG. 3. Measured electrical resistance of an Al thin-
film bolometer as the temperature is lowered through
the superconducting transition. In a heat-pulse experi-
ment, the temperature of the crystal and bolometer is
biased at a point where dR/dT is a maximum, as indi-
cated by the arrow, by regulating the pressure of the
helium bath. Inset: Diagram of the Al fBm geometry
which produces a bolometer with very small sensitive
area and hence high solid-angle resolution.

Typically, a heat pulse is produced by passing
a short (0.1-1 p s) pulee of current through a
resistive heater (e.g. , a constantan film) evap-
orated onto the crystal surface. This heater
radiates phonons with roughly a Planck energy
distribution. At low temperatures these phonons
traverse the sample ballistically and are detected
as a small temperature rise in a bolometer. The
bolometer consists of a strip of superconductor
evaporated onto the crystal face opposite the
heater. The crystal is cooled to the transition
temperature of this superconducting bolometer.
Depending on film thickness and material, a tran-
sition from near zero to about 100 0 resistance
occurs over a small temperature range, providing
a sensitive detector of minute temperature
changes. Since the thermal heat capacity of this
film is very small, the bolometer is capable of
sensing heat pulses with a time resolution of l0-
100 ns.

The present experiments differ from previous
approaches in several respects. First, in order
to achieve high solid-angle resolution, it was
necessary to fabricate a bolometer with very
small dimensions. Figure 3 shows the structure
of a 220 &&180 p,m granular-aluminum bolom-
eter and its resistance in the supercondueting
transition region. A mask consisting of a slit
and six microscopically positioned copper wires
(diameter 12 pm) produced this pattern. The
thickness of the film was typically 300 A. For
optimal sensitivity and linearity an operating
temperature near the maximum slope in R(T) was
chosen. The temperature was accurately control-
led by regulating the vapor pressure of the 4He

bath in which the sample was immersed. For a
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FIG. 5. Schematic diagram of the experimental appa-
ratus in the heat-pulse imaging experiment. The LSI-11
computer controls the raster scanning of the pulsed
laser beam via a two-axis mirror deflection system.
The laser is typically pulsed (via a Q switch) at a repe-
tition rate of 2 kHz. The time-resolved output from the
boxcar averager is accumulated by the computer in a
256 x 256 array. This array of phonon intensities may be
stored in the disk or displayed on a storage oscillo-
scope.

FIG. 4. Schematic of the experiment showing a laser-
produced heat pulse and bolometer geometry for detec-
tion of ballistic phonons. Angles (0~, P~) define the prop-
agation direction of the phonon flux striking the detector.
(b) Bolometer signal showing the arrival of various pho-
nons for the [110l propagation direction. A typical box-
car gate for the imaging experiment is shown.

typical crystal with 1 cm' dimensions, the bolo-
meter subtended about 1' angular resolution from
a point source on the opposite face.

Second, the heat pulse, produced by pulsed
laser beam, was accurately and automatically
scanned in two dimensions across the surface of
the crystal. The technique of xy scanning the heat
source with respect to a single fixed detector is
equivalent to having a large array of identical
detectors. The laser was a Q-switched Nd:YA16
(X=1.06 pm) with a typical peak power of 10W
and pulse width of 200 ns. The xy scanning was
accomplished by rotation of two deflection mirrors
via precision galvanometers. " The beam was
focused to a 100-p m spot size on the crystal sur-
face. Similar heat-pulse signals were obtained
whether the excitation surface was metallized or
not. The absorption length of 1.06-p m-wavelength
light in Ge is about 1 p m and acoustic phonons
are generated as a product of the rapid thermal-
ization of photoexcited carriers.

Figure 4(a) is a drawing of the heat-pulse ex-
periment showing the crystal symmetry axes
pertinent to Fig. 2 and defining the propagation
direction of the detected phonons. A signal-aver-
aged trace of the ballistic phonon signals arriving
at the detector for one particular (8~, Q~) is shown
in Fig. 4(b). The negative-going pulse at t =0
marks the time of the laser pulse and is due to
a photocurrent shunting the bolometer. The ar-

rival time of the three phonon modes depends on
their respective group velocities. A boxcar aver-
ager may be used to sample the signal at various
times after the laser pulse. The boxcar produces
an output voltage proportional to the integrated
signal within a preset time window or gate. The
time gate shown in Fig. 4(b) results in an output
voltage proportional to the sum of the integrated
TA phonon intensities, but one insensitive to the
LA signal. As the laser beam is translated across
the crystal face, the arrival times of the phonons
will vary by approximately 30%%. In the experiment
of Fig. 2 the broad gate in Fig. 4(b) was chosen
to sample the time-integrated TA phonon signal for
a wide range of propagation directions (+24' left
to right from the center). A storage oscilloscope
is raster scanned synchronously with the laser
beam, and the intensity of the cathode-ray tube
(CRT) is modulated by the boxcar output, which
produces bright regions where there are intense
phonon signals. Figure 2 is a photograph of the
oscilloscope face.

Because of the immense amount of information
contained in a single image, an LSI-11 micro-
computer system is employed to digitally store
the phonon intensities in a 256 x 256 element ar-
ray. In fact, the computer is also used to ac-
curately control the raster scanning of the laser
beam. This is accomplished by deflecting the
galvanometer -driven mirrors with digital-to-
analog converters. An overall schematic of the
experimental arrangement is shown in Fig. 5. In
the initial setup and alignment, a complete image
is recorded in real time on the storage oscillo-
scope in about a minute using 20 Hz horizontal and
0.01 Hz vertical scanning rates.

The computer plays a central role in both the
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(a)

FIG. 6. Pseudo-3D hidden-line representation of the
image in Fig. 2(a). The four peaks near the center
represent the corners of the outer square. Both the STA
ramps and the FTA ridges are apparent.

O.P.

O. I-

acquisition and the analysis of the data. It permits
signal averaging of the ballistic phonon image
over an extended period of time. The image in
Fig. 2 was an average over 10 min; however, a
complete image could be recorded in less than
a minute with some sacrifice in the signal-to-
noise ratio. The image is stored on a floppy-
disk medium with 12-bit intensity resolution, per-
mitting 8 ima. ges to be stored on a single disk.
The digitally stored data contains a remarkable
amount of quantitative information which can be
easily accessed and analyzed with the computer.
One useful application, shown in Fig. 6, is a
hidden-line pseudo-three -dimensional repr esenta-
tion of the image in Fig. 2, showing the relative
TA phonon intensities in Ge on a linear scale.

In order to obtain a high-resolution mapping
of the intricate TA phonon focusing pattern about
the [001]axis, a longer sample of Ge with dimen-
sions 1.5 ~ 1.5 && 2.7 cm' was employed. This
sample was cut with all (100] faces from a crys-
tal" of ultrapure Ge and afforded a threefold
increase in temporal and spatial resolution. With
the bolometer dimensions stated above, the angu-
lar resolution was 0.4 of arc. The resulting
images, shown in the next section, allowed a
more detailed comparison with the theory.

IV. EXPERIMENTAL RESULTS

The ballistic phonon image shown in Fig. 2(a)
and quantitatively represented in Fig. 6 contains
the major features of phonon focusing for the TA
phonon modes in germanium. All of the local
maxima in intensity correspond to integrabl. e J =0
singularities in the phonon flux, as seen from
Fig. 2(b). The measured peak height, of course,
depends upon the solid angle subtended by the de-
tector. These local maxima define boundaries be-
tween higher and lower flux enhancement, giving

R 0.0-

-0 I-

-0.2 -0.2 -O. I 0.0
S'

O. I 0.2

(c)

FIG. 7. (a) Magnified view of the TA phonon focusing
structure near the [001]axis. The improved angular
resolution and detail in the image results from the long-
er phonon path length in this crystal. The inner square
and associated detailed structure is clearly visible in
this photograph. '(b) Calculated J= 0 lines for the same
range of propagation directions as the above image.
Solid lines are STA and dashed lines are FTA phonons.
The integers indicate the number of branches of the
group-velocity surface for the STA mode. The axes are
related to the propagation angles (0~, p~) by the rela-
tions 8' =-tano~ sing~ and S' =tan8&cosg~ from Fig.
4(a). (c) Contour map of the ballistic phonon image in
(a) defining curves of constant intensity.

rise to the STA "ramps" and FTA "ridges" radiat-
ing outward from the [001] symmetry axis. As
we wil. l see in Sec. V, each propagation direction
within the ramps or ridges corresponds to three
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distinct k-space directions, owing to folds in the
velocity surface. The bright central square with
sides +7.5 from the [001]axis has its origin in
the slow TA mode. A less intense inner square
can also be discerned in the photograph. Depend-
ing upon the propagation angle, each group-velocity
direction within the bright square may correspond
to 5, 7, 9, or 11 distinct k vectors, partly account-
ing for the large enhancement in this region. %'e
begin this section by describing experiments on
the long (2.7-cm) crystal, which allowed a detailed
look at the intricate structure near the [001]pro-
pagation direction.

A bal. listic phonon image for this crystal is
shown in Fig. 7(a). This photograph subtends a.

total of 30 of arc from left to right. The bright
square is rotated 45' with respect to the image of
Fig. 2(a), owing to the different crystal orienta-
tion. The theoretical J =0 pattern for this magni-
fication is shown in Fig. 7(b), using the previously
measured" elastic constants
C] y Cy2 C44 1 .0:0.38:0.52. The bright regions in
the experimental image are found to agree with the
theory, within the resolution of the bolometer.

Once the image is recorded in digital form, the
information can be probed and displayed in a' var-
iety of ways. The shape of the two-dimensional
intensity surface is exposed by constructing a con-
tour map of the digitally recorded image. Figure
7(c) displays constant intensity lines as borders

(a)

(b)

0;2 O. I 0.0 O. I 0.2
tan (e&)

FIG. 8. (a) Scan of the phonon Qux intensities in the
(011) plane, obtained from a digitaBy stored image sim-
ilar to Fig. 7(a). The small structure at the center
arises from singularities in the (100) and (010) planes.
These are detected due to the finite detector size. (b)
Calculation of the enhancement factor A =1/[J ) for the
same propagation directions as in (a).

between black and white regions. The black and
white regions define equal intervals in phonon in-
tensity; e.g. , 10 to 20 is black, 20 to 30 is white,
etc.

Another comparison with theory, shown in Fig.
8(a), is a diagonal scan across the image, along
the crystal [011]axis and through the center of
the square. " Figure 8(b) is the calculated en-
hancement factor, 4 =1/

I
J I, for this scan. This

involves an analytic calculation of A(8», P»),
summed over all branches for each (8„,Q»), with-
out averaging over a finite detector solid angle.
The peak heights of the singularities depend upon
the sampl. ing interval as the computer steps in
propagation direction. The experimental position
of the outer singularity at 7.5' from [001]agree
well with the theoretical value 7.4' based on the
above elastic constants. The inner box at 5.5 is
discernibly smaller than the predicted singulari-
ties at 5.7'. This small discrepancy is less than
the nominal bolometer resolution.

The time of flight for phonons to traverse the
crystal is L/V, where L =l cos8» is the phonon
path length for a crystal of length f and

V = IV(8», g») I
is the magnitude of the group velo-

city. Actually, for a given mode n and propagation
direction (8„,P») there may be several values of
P arising from different branches of the velocity
surface. For the above crystal with /=2. 7 cm,
the TA phonon times of fl.ights vary between 7 and
9 p,sec; the LA phonon times of flights fall in the
5 to 6 psec range. Since the width of the detected
heat pulses is limited only by the relatively short
laser pulse length (variable from 200 to 300 ns), it
is possible to resolve various features of a ballis-
tic phonon pattern by proper selection of the box-
car delay time and gate width. [See Fig. 4(a).]
For propagation exactly along [001] both STA and
FTA velocities are degenerate by symmetry.
However, this degeneracy is lifted for finite

(8», Q») and with a sufficiently high-time resolution
one can distinguish experimentally the PTA and
STA components in the image by their differing
times of flight.

An informative sequence of images has been ob-
tained by using a relatively narrow (300-ns) gate
width and a progression of delay times. The re-
sulting images are represented in Fig. 9 as
pseudo-three-dimensional graphs of the structure
near [001]. This is the same view as in Fig. 7(a).
As the detection gate is translated further in time
from the laser pulse, one can see relative changes
in (a) the four peaks at the corners of the outer
square, (b) the sides of the outer square, (c) the
intensity of the inner square, and (d) the STA
ramps and FTA ridges outside the square region.

As previously noted, the square pattern comes
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FIG. 10. (a) Phonon intensities obtained by scanning
the heat pulse across a (110) face and detecting with a
bolometer at the center of the opposing (110) face. (b)
Predicted J = 0 lines for the experimental geometry
above. STA lines are solid and FTA lines are dashed.
The scale at the bottom measures the propagation angle,
in degrees, from the [110]axis.

FIG. 9. Pseudo-3D representation of the phonon in-
tensities as a function of delay time after the laser
pulse. The scanning range is that of Fig. 7(a). Various
features in the phonon flux enhancement pattern are em-
phasized as different group velocities are sampled. (a)
7.6-ps delay, 200-ns gate width; (b) 7.75-ps delay,
300-ns width; (c) 8.15-ps delay, 300-ns width; (d) 8.55-ps
delay, 300-ns width.

from the STA mode. Yet the corners of the square
are the first features to appear in time, even be-
fore the FTA ridges. This implies that the STA
group velocities are actually larger in these direc-
tions than the FTA group velocities —a fact which
'is verified in the calculation of V. Qne might rea-
sonably question the use of the terms "fast" and
"slow"' at this point. " As we shall see in Sec. 7,

these terms more appropriately refer to the phase
velocities of the elastic wave. Except for the de-
generate symmetry points, the slowness surface
for the FTA mode always lies inside the slowness
surface of the STA mode.

At a slightly later time, Fig. 9(b), the FTA ridges
begin to appear and the inner structure is most
developed. In Fig. 9(c) the intensity of the square
has filled in, and there is a simultaneous loss of
fine structure. In the final image at a still later
time, the STA ramps become prominent. This
time sequence of the ballistic phonon pattern is in
qualitative agreement with theoretical calculations
of the group velocities of the TA phonons.

Up to this point we have discussed the ballistic
phonon pattern within about 25' of the [001j propa-
gation direction (Fig. 2). A more complete picture
may be obtained by choosing several different ex-
citation- detection geometries. The 1-cm' crystal
shown in Fig. 4(a) has four (110jfaces and two

(100}faces. A different range of propagation direc-
tions is obtained by depositing a bolometer on the
center of the (110) face and scanning the heat
pulse across the opposing face. The result is
shown in Fig. 10(a). The center of this pattern
corresponds to the [110]propagation direction.
The intense vertical strip is the FTA ridge. As
indicated in Fig. 2 and predicted by the calcula-
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(0) " [II03

FIG. 11. (a) Ballistic phonon image with laser beam
obliquely incident on three sample faces. The bolometer
is in the center of the back left {001)face. (b) Calculated
J= 0 singularities projected onto an equivalent cube.

FIG. 12. (a) Same as 11(a) except slightly different
orientation and with the bolometer in the center of the
back right (110) face. (b) Calculated J=0 singularities
projected onto an equivalent cube.

tions of Bosch and leis, ' these ridges lie in the
three (100}planes of the crystal. The J =0 sin-
gularities of the FTA mode are displaced between
0' at (100) and 2 at (110) from the (100j planes,
Also visible at the corners of this image are the
STA ramps. The calculated J=0 lines for this
experimental geometry are plotted in Fig. 10(b),
showing excellent agreement with theory.

Qf course, there is no particular reason why
the excitation beam must be normally incident to
a crystal face as in the experiments above. To
take advantage of this, we simply mounted the
1-cm' crystal at an oblique angle to the laser
beam, so that a maximum number of crystal faces
(three) could be excited within a single image. The
result was a global picture of the phonon focusing
effect in Ge. Using a wide time gate to encompass
the greater variation in phonon path length, we
obtained the photograph in Fig. 11(a). The bolo-
meter was located at the center of the face farth-
est from the viewer; the (001) face. By scanning
the laser beam over an area larger than the crys-

tal, a striking "three-dimensional" view of the
entire crystal resulted. A completely different
picture is obtained by using the bolometer located
on the center of the (110) face, as is shown in Fig.
12(a). The crystal was rotated slightly to better
expose the (110) face. In fact, both bolometers
were operational during the same experimental
run, and the two different patterns could be ob-
tained by simply switching bolometer connections,
without adjusting crystal orientation or laser scan-
ning range. As in all of the ballistic phonon im-
ages, the reader may find it useful to view the
fixed bolometer as the point source of phonons.
The bright regions then correspond to high phonon
intensities striking the other crystal faces.

A direct comparison of these images with theory
is made by projecting the J=0 singularities onto
the appropriate crystal surfaces shown in Figs.
11(b) and 12(b). These computer plots are drawn
in perspective. The data and theory clearly show
the FTA ridges in the (100) planes as well as the
joining of the STA ramps near the (ill) axes. This
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three-cusp structure near (111), especially prom-
inent in Fig. 12(a), will be discussed in detail
in Sec. V.

The ballistic phonon imaging method will likely
be useful in another important area —reflection
of phonons from boundaries. For a crystal im-
mersed in liquid helium, the transmission of
phonons across the liquid-solid interface is known
to be much higher than expected from simple
acoustic mismatch theory. This anomalously low
thermal boundary resistance, first observed by
Kapitza, has been a topic of much interest and con-
troversy. ' ' Using the imaging method it is pos-
sible to make an absolute measurement of the re-
'flection coefficient for phonons in a heat pulse. In

Fig. 12(a) one can observe a sharp but dimmer
structure not predicted by Fig. 12(b). These extra
lines are due to phonons specularly reflected from
other crystal faces. This reflection pattern may
be somewhat enhanced by using longer boxcar de-
lay times corresponding to the longer reflected
path lengths. The specular reflection of J =0
singularities from the top surface of the cube onto
the other surfaces is shown in Fig. 13. Many of
these features can be detected in the image. By
scanning across the image along the arrow marked
$ in Fig. 13, a comparison was made between the
intensity of direct and reflected phonons. For this
mode (STA) and propagation direction (8~, Q»; 8», P„)
=('12.4, 29.0; 71.6, 10.3), we found a reflection

/g
// II

// I i

// ( I

//
''/

FIG. 13. Calculation of the specular reflection of
singularity lines from top surface of the sample, as
viewed in Fig. 12(a). The inset shows "real and virtual
sources" (Hef. 14) and corresponding phonon paths as
viewed along the [001l direction. The scan for deter-
mining the phonon reflection coefficient was taken along
S.

FIG. 14. Continuation of the time series in Fig. 9 to
a later time, 8.95 ps. The new structure in the center
is due to FTA ridge phonons reflected from the sides of
the crystal which have a 14/„greater path length than
i=2.7 cm.

coefficient 8, =0.20+0.08. Using this method it
should be possible to make a systematic study of
B for various phonon modes and angles of inci-
dence.

The fact that the reflected phonon signal may be
selectively enhanced by choosing a longer boxcar
delay interval was especially apparent in the long
Qe crystal. By continuing the time sequence of
Fig. 9, we obtained the image traced in Fig. 14.
At this longer delay time, a small square hump
in the center of the pattern appeared, arising from
FTA ridge phonons which were reflected from the
side faces of the crystal.

V. THEORETICAL INTERPRETATION

In this section the mathematical developments
in Sec. II and the Appendix are used to calculate
and plot three-dimensional representations of the
constant-frequency and group-velocity surfaces.
From these two basic surfaces, the detailed or-
igin of the phonon focusing patterns is exposed.
The present discussion will be restricted to Ge,
with known elastic constants
C„:C„:C«. .1.0:0.38:0.52; however, we have
performed similar calculations on other cubic cry-
stals which indicate that phonons in Ge exhibit
the principal topological behaviors found in other
crystals. In fact, catastrophe theory limits the
types of singularities possible. For this two-
dimensional case only two types, fold and cusp,
are possible. "

The constant-f requency k- space surf ace for the
STA mode in Ge is shown in Fig. 15(a). Plotted
are lines of constant 8~ (latitude) and constant &f&,

(longitude), restricted to the first octant of wave-
vector space. The radial distance from the ori-
gin to the surface is 0 = ~/v(8„&f&,). From this
expression it is clear why the surface is called
the "slowness surface. "

The group-velocity surface, or wave surface,
shown in Fig. 15(b) is constructed from Fig.
15(a) by transforming this k-space grid of lines
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FIG. 15. (a) Slowness surface for the STA mode in
Ge. The heavy line s are J= 0 singularities, and the J& 0
regions are shaded. (b) Group-velocity surface for STA
mode in Ge.

into their (8„,Pv) directions at a radial distance
~V~. In general this surface may be folded, as in
Fig. 15(b), such that along some directions there
is more than one layer, or branch, to the sur-
face. Each additional fold brings two additional
branches along a given (8v, Pv). Figure 15(b)
provides a good rough overview of the focusing
effect. A large grid density and number of
branches on the group-velocity surface implies
a large enhancement in that direction. If the
constant-frequency surface has a well defined
normal everywhere, then the group-velocity sur-
face will be continuous and at any (8v, Q„)the
total number of branches will be odd. For trans-
verse modes in Ge, however, there are sym-
metry directions, (ill], along which the normal
to the constant-co surface is undefined. The cor-
responding group-velocity surfaces have as-
sociated discontinuities. This phenomenon,
known as conical refraction, will be discussed
shortly.

The locus of points defined by J(8„$„)= 0 were
found by a root-finding technique and plotted on
the constant-frequency surface in Fig. 15(a).
These lines separate regions of differing Gaus-

v
I
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II ~ ~l
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rr

FIG. 16. (a) Symmetry-reduced segment of the STA
slowness surface in Fig. 15{a)looking nearly along the
s axis. (b) Section of the group-velocity surface from
Fig. 15(b) corresponding to the k-space segment in Fig.
16(a). Folds in this surface define the J= 0 singularities
in real space. The dashed lines show the position of
singularity lines for the seven other symmetry-equiva-
lent sections.

sian curvature. The shaded region has riegative
Jacobian corresponding to a saddle-type curva-
ture. This region separates the large convex

-areas centered about (110) from the small concave
areas near (100), both of which have positive
Jacobian. When transformed into 0 space these
J=O lines are found to fall on the folds of the
group-velocity surface. An example of this in
Fig. 15(b) is the ramp structure extending from
the [001]to the [111]axis. To see the origin of
this structure, follow a k-space lattice line with
8~=40' from $„=0'to 90 . The resulting P„in-
creases monotonically to beyond 45, but then
reverses when the first J=O line is crossed,
forming a fold. As the k vector traverses the
shaded region of Fig. 15(a), the group velocity
undergoes a retrograde motion and Q» decreases.
When the second J=O line is reached, P„again
increases forming another fold. For angles in
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V space between the folds there are three brari-
ches, or sheets, to the wave surface (see Fig. 18).

The enhancement of phonon flux A = 1j J ~, is
mathematically infinite on a fold. As the phonon
propagation direction (8», Q») is scanned across
a fold, the number of branches either increases
or decreases by two, and there are different
phonon flux enhancements on either side of the
fold. Thus these singularity lines separate
regions of high and low intensity as was observed
in the ballistic phonon images. The asymmetry
around these singularities can easily be seen in
Fig. 8(b).

Figure 16 is a close-up of the STA surfaces as
viewed along the [001]axis in Fig. 15. The grid
covers 0 «8~ 30 and 0 «e„«45 . This range
of Q» is the minimum required for a complete
symmetry-reduced description about the [001]
axis. Figure 16(b) is the section of the group-
velocity surface corresponding to this k-space
grid. The points marked A and 8 are in sym-
metry planes and do not transform out of those
planes. The J=0 line from A to C in Fig. 16(b)
forms part of the outer square and ramps in Fig.
V(b). The singularity line from the [001]axis
to point B likewise forms the inner square. As
one follows the J=O singularity in k space from
the [001] direction to point 8 the group velocity
traces a cusped 45' vee pattern. The cusp cor-
responds to a point on the 4= 0 line where the
direction of zero principal curvature of the slow-
ness surface lies along the J=0 line. The
cusped vee's are seen to comprise the inner
square and diagonals observed in the experimen-
tal image. Other symmetry-equivalent J= 0
lines are shown as dashed lines in the figure.
Due to the complex folding of the velocity sur-
face near the [001], the STA mode has up to 11
branches. In contrast to this, the FTA mode has
at most three, and the LA only one. The actual
number or branches in each region for the STA
mode is shown in Fig. V(b).

The cusped-vee structure described near the
[001]direction also occurs near the [111]direc-
tion in the STA mode. The calculated real-space
J=0 lines centered about the [111J are shown in
Fig. 1V(a). This pattern is the termination of
three of the ramp structures emanating from the
[100J, [010), and [001]directions. Figure 1V(b)
is a section of the STA group-velocity surface
for k vectors between three and seven degrees
from the [111]axis in k space. In this case the
k-space grid is centered about the [111]axis and
includes only lines extending radially from the
[111]. This figure shows the complex topolo-
gical structure of the cusp region. The cusp cor-
responds to the termination of two folds in the

(a

-30 -20' -lO 0' lO' 20' 30'
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FIG. 17. (a) Real-space singularity lines for the STA
mode projected onto the (111)plane. The [111]propaga-
tion direction is at the center. The scale at the bottom
measures the propagation angle, in degrees, from the
[111]axis. The integers are the number of STA branch-
es. The FTA mode has one branch outside the dashed
circle and none inside. (b) Section of the STA group-
velocity surface for k vectors between 3' and 7' from the
[111]axis, with the outer edge corresponding to k vec-
tors 3' away from the I111]. The dashed lines show the
continuation of the fold singularities which form the
ramp structure in Fig. 15(b).

group-velocity surface.
The sign of the Jacobian has another interest-

ing geometrical interpretation, illustrated in
Fig. 18. If one generates an infinitesimal clock-
wise circle on the slowness surface, the cor-
responding locus of V vectors will be clockwise

FIG. 18. Magnified section of the folded group-velocity
surface (ramp structure) of Fig. 15(b). The sense of
rotation on the surface is directly related to the sign of
J as discussed in the text.
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fOOI] kz la.rities in the phonon flux. The group-velocity
surface has no discontinuities and one branch
everywhere. The enhancement factor rangeges
rom A=0.21 for V II [100]and A=1.5 for [110],

to A=2.5 for [111]. These numbers agree with
the calculation by Maris
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FIG. 21. (a) Slowness surface for LA mode in Ge.
The surface is entirely convex. (b) Group-velocity sur-
face for the LA mode in Ge, showing greatest grid den-
sity and hence greatest enhancement along the f111l di-
rection.

Thehe group velocities corresponding to Fig. 20(a)
are shown in Fig. 20(b). The diamonds mark the
intersection of the FTA and STA group-velocity
surfaces, corresponding to k~~ [111]. fn three
dimensions this intersection forms the dashed
circle in Figs. 15(b) and 19(b). Within this circle
the STA mode has 2, 4, or 6 branches and the
FTA has 0 branches, as shown in Fig. 17(a).
Considered individually the FTA and STA group-
velocity surfaces are discontinuous at this cir-
cular boundary, but, considered together they
form a continuous surface. The conical refrac-
tion effect at k [[ [111)produces no observable
effect in flux enhancement in our ballistic phonon
images for two reasons. First, no correspond-
ing discontinuities in the phonon flux are pre-
dieted, and second, the large curvature in the
slowness surface near [111]produces a defocusing
of phonon energy. '

For completeness we show the slowness and
group-velocity surfaces of the LA phonon mode
in Fig. 21. While these phonons are noticeabl
enhanced near (ill}, as indicated by the denser
grid structure in Fig. 21(b), there are no singu-

VI. CONCLUDING REM.ARKS

The present work offers a new geometric vis-
ualization of ballistic phonon propagation in
crystals. The experimental imaging method pro-
vides an efficient and quantitative means for
characterizing the anisotropic energy flux eman-
ating from a point source of heat. The large ang-
ular variations in heat flux observed for Ge rep-
resent typical behavior for most crystals, cubic
or not. Theoretically, the fold and cusp singula, r-
ities studied here are a natural consequence of the
two-dimensional transformation from k space to
i.eal space, involving the fourth-rank elasticity
tensor. The mathematical origins of these sing-
ularities are readily traced to a vanishin f th
o al (Gaussian) curvature of the slowness surface

which creates folds and cusps in the groups-
velocity surface. These geometrizations of the
phonon focusing in Ge give useful insights into the
complex flux patterns which were discovered by
the heat-pulse imaging method. By concentrat-
ing on the structure of the singularity patterns, a
quantitative comparison with theory has been
made which is quite independent of the exact de-
tector shape.

Looking toward future applications, we expect
that two-dimensional heat-pulse scanning will
find use in the study of phonon scattering from
interfaces, and possibly from defects, impuri-
ties, and free carriers. In cases where laser-
scanning is not convenient, a knowledge of the
anisotropic flux pattern in a given material is
important for optimization of the generator-de-
tector geometry. When scanning is possible,
the imaging method converts the inherent aniso-
tropies in phonon flux from a complex annoyance
into a quantitative tool. As an example the
steps in phonon intensity produced by scanning
across the fold in a group-velocity surface can .

be used to measure the absolute ref lectivity of
terahertz phonons from an interface. Attempts
in the past to study phonon reflection using mult-
iple detectors have met with difficulties due to
sharp anisotropies in flux. Along another line,
there is a growing interest in the propagation
of short-wavelength acoustic phonons. It would
be interesting and informative to observe changes
in the structure of the phonon flux pattern for
phonons produced high on the dispersion curve.
The topology of the v(k) =constant surface should
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change radically for these high frequencies.
Recent experiments on several materials
have demonstrated that very short-wavelength
acoustic phonons created by thermal pulse or
photoexcitation can travel macroscopic distances
before down-converting. The ability accurately
and continuously to time- and space-resolve phon-

ons in a heat pulse opens a wide range of new ex-
perimental possibilities.

- In principle, one can obtain the desired deriv-
atives by brute-force differentiation of Eg, (A3),
but considering that Q, R, and S are polynomials
in the n„this is a very tedious method. In part-
icular the cosine and inverse cosine functions pro-
duce trigonometric functions throughout the form-
ulation via chain-rule differentiation, making it
susceptible to numerical difficulties. An alter-
native is to differentiate Eg. (A2) implicitly. One

finds
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APPENDIX: PHASE-VELOCITY DERIVATIVES
' BY IMPLICIT DIFFERENTIATION

8X
8n

in which y= 3X'+2QX+R, and

BQ p BR BSX + X+
Bnl Bnl Bnl
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The phonon-focusing calculation requires a de-
termination of the first and second derivatives of
the phase velocity with respect to the wave nor-
mal n=k/~k~. In order to determine the deri-
ivatives Bv/Bn, and B v/Bn, Bn&, we introduce a
method employing implicit differentiation. The
characteristic equation foi the eigenvalue v is

det(D„-v'5„)=0 (Al)

with D„=(1/p)c,&, n&n„. Defining v =—X, this
equation may be rewritten as

X3+Qx + RX+ S=0,

where Q, R, and S are polynomials in the given

c,&,
's and n. The solutions for the three real

roots are

Given the differential relation dX= 2v dv, these
equations give analytic expressions for the der-
ivatives of the phase velocity required in Eq.
(7). In component form,

V, =/v-n —
/n, +Bv) Bv

'8n, ) ' 8n,
'

The Zacobian in Eq. (10) further involves the
derivatives of the group velocity:

(A6)

which makes use of B2v/Bn, sn& determined above.
Specifically, the Jacobian may be calculated
from the derivatives

X =F
where

I' =20'a/3cos(q+ —',v&), o'=0, 1, 2,

g= —', cos '[(-&/2)/(a'/27)' '],

(A3)
Bf 1(BV. V BV

8n; 'V (8n, V 8n,

(v'„+v'„),
(AB)

a= gQ -R,
B = -Q3- 3QR+ S.

27

and the chain rules, Bf/B cosB=(Bf/Bn,.)(sn, /
B cos8), etc. This mathematical formulation is
not specific to any particular crystal symmetry.
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