
PH Y SICA L RE VIE% B VOLUME 22, NUMBER 12 15 DECEMBER I 980

Conduction-band structure of a ferromagnetic semiconductor
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We use the s fmode-l to investigate the energy spectrum, the spectral weights, and the lifetimes of the electronic

quasiparticles in a ferromagnetic semiconductor. Starting from two-pole Gaussian Ansa'tze for a complete set of
relevant spectral densities and fitting free parameters by exactly calculable spectral moments of these functions, we

find a result which reproduces all exactly solvable limiting cases of the s fmodel-. It is shown that the conduction
band splits into several quasiparticle subbands as a consequence of the s fexchan-ge interaction between conduction
electrons and localized magnetic moments. This splitting takes place in principle for all temperatures, i.e, , it is not at
all due to the onset of ferromagnetism. The spectacular red shifts of the optical absorption edge, observed for EuO,
EuS, and EuSe, are almost qualitatively explained by a broadening of the lowest t subband with decreasing
temperature.

I. INTRODUCTION

It is well known that typical magnetic semicon-
ductors, as for instance EuO, EuS, CdCr, S„and
HgCr Sea„rae well described by the so-called s f-
(or d f, ors-d) -model. ' ' In spite of its very sim-
ple nature exact solutions are possible only for
some limiting cases. ' The great variety of
interesting experiments performed on magnetic
semiconductors, however, has challenged a
lot of authors to find physically reasonable appro-
aches to the s-f problem using, for instance, per-
turbation theory, "canonical transformations, '"
Green's-function decoupling, "moment techni-
ques, " ' and coherent potential approximation
(CPA) treatments. " "

For the time being, one of the most exciting
problems is the temperature behavior of the con-
duction-band structure. The striking red shift of
the optical absorption edge in cooling below T„
first observed for the electronic 4f- 5dtze transi-
tion in the Eu chalcogenides by Busch and
Wachter, "has found a reasonable explanation by
the early perturbation treatment of Rys et al. '
First-order-perturbation theory gives as a result
that below 7, the conduction band of a ferromag-
netic semiconductor is split into two spin-polarized
subbands, the energetic distance of which should be
proportional to the magnetization of the system,
i.e., should increase with decreasing temperature.
The corresponding shift of the lower edge of the
stable 0 subband might then cause the observed
red shift. On the other hand, several attempts have
been made to exploit this band splitting for con-
structing a perfect spin filter by use of a EuS-
coated tungsten tip. "" The result was a remark-
ably high degree of spin polarization, being, how-

ever, far away from the expected 100%. Similar
depolarization effects have been reported by Meier
et al."for Gd-doped EuO.

These experiments clearly indicate that a spin-
polarized splitting of the conduction band must be
questioned. One of us proposed therefore a more
complex quasiparticle multiband model, "which has
successfully been applied to the above-mentioned
spin-filter experiment. " One of the main state-
ments of this model is that the conduction band
splits because of the s finterac-tion into various
quasiparticle subbands, which in general consist
of mixed-spin states preventing the electron spin
from being totally polarized. The splitting persists
in the paramagnetic region T &T„ too. Similar
conclusions can be drawn from the {PA calcula-
ions "'"

The simplest approach to electronic quasipar-
ticles in the s-f model presented in Ref. 13 is
based on a 6-function Ansat~ for the one-electron
spectral density, which leads to correct results in
both the atomic and the strong coupling limit. Such
an approximation neglects, however, quasiparticle
damping (finite lifetimes). So, it may be argued
that the derived quasi-particle multiband structure
can be only a pecularity of the experimentally unin-
teresting strong coupling regime. The multiple
splitting of the conduction band could indeed become
meaningless for moderate coupling constants if the
quasiparticle decay were too quick.

It is therefore the aim of this paper to investigate
the electronic quasiparticle spectrum of a ferro-
magnetic semiconductor by taking explicitly into
account damping effects and finite lifetimes. It will
turn out that the oversimplified first-order-per-
turbation theory picture that the conduction band
splits into two spin-polarized subbands, must be
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replaced by an essentially more complicated quasi-
particle multiband picture similar to that proposed
in Ref. 13. The finite lifetimes of the quasipartic-
les take care of the fact that for certain values of
the system parameters some of the various quasi-
particle subbands may be unobsex vable. That
leads, for instance, to an interesting difference in
the quasiparticle structure of the conduction band
even for such similar materials as EuO and EuS.

In the next section we shortly remind the reader
of the s-f model, thereby fixing the notation. In
Sec. III we develop the spectral density method for
the s-f Hamiltonian (see also Ref. 23). The results
are discussed in Sec. IV.

a, = e(k)ap, ag, ,
ka

and H, describes the Coulomb interaction

(2 I)

H =—1
C

where

v(q) a a, ,a, ,ak-q~ V+q~' Vo' ka '
k,X', q; a, a'

(2 2)

4n e'
v(a)= „. (2.3)

a-„, (a-„,) is the creation (annihilation) operator of
an electron with spin a and wave vector k. e(k) are
the energies of the free Bloch band (width W); e is
the electron charge and K the dielectric constant.

The other subsystem consists of strongly local-
ized magnetic moments originating from the elec-
trons of any inner, partially filled atomic shell,
which are coupled according to Hund's rule to de-
fine the spin operators S, = (S,', S"„S';)acting on the
lattice site R, . This subsystem is responsible for
the magnetism of these materials and is most ef-
fectively described by the Heisenberg model

Hg = — J.)Sq ~ S-, (2.4)

where J,&
are the exchange integrals. In the case

of Eu chalcogenides these localized magnetic mo-
ments are built up by the seven electrons of the
half filled 4f shell of the Eu" ion (S = +).

II. s-f MODEL

Typical magnetic semiconductors, as for in-
stance the Eu chalcogenides, have successfully
been described within the framework of the s-f
model. ' ' This model attributes the characteristic
properties of these substances to a certain spin-
spin interaction between two well-defined electronic
subsystems. The first is made up by quasifree
conduction electrons. H, is their operator of kine-
tic energy

Both subsystems are coupled by an intra-atomic
exchange interaction H,z

Hg = —
2~ Q e [Sg(agtag qt —aflak q &)

' %, q
+ f

+ S,"aq i', qi + S, apiary, qi],
(2.5)

where g denotes the corresponding s fco-upling
constant and S& =S& +iS&.

The full s fmo-del is defined by the sum of the
above-introduced partial operators

(2.6)H =H, +H, +H~+H,~.
4

The many-body problem formulated by this Hamil-
tonian is far from being solved exactly —approxi-
mate solutions are unavoidable.

When treating ferromagnetic semiconductors one
has to distinguish between two rather different
subjects. The first is that of an empty conduction
band, the usual situation for an undoped pure semi-
conductor at low temperatures, which shall be the
subject of this paper. Strictly speaking, we inves-
tigate here the energy spectrum of a single elec-
tron being excited into an otherwise empty conduc-
tion band. In our case the operator H, (2.2) be-
comes therefore meaningless.

The other case is that of a partially filled conduc-
tion band, which can be achieved by doping with
proper impurities [for example, Gd in EuO (Ref.
22)]. Drastic changes in the physical properties of
magnetic semiconductors caused by such a doping
belong to the most interesting aspects of this field,
but are beyond the scope of the present paper.

One of the main difficulties of the s fproblem-
comes from the Heisenberg term H& (2.4). On the
other hand, however, for the substances of real
interest the experiment' tells us that typical ex-
change constants J,&

are smaller by some orders
of magnitude than typical coupling constants g and

typical Bloch bandwidths W. For EuO, e.g. , one
can assume: g=0.2 eV, ~=2 eV, J&, & 10 ' eV.
This allows us to find the electronic spectrum of
the s fHamiltonian (2-.6) in two steps. First, we
calculate the correlation functions (S,'S& ) and
(S', S&) from the Heisenberg Hamiltonian, using the
constant coupling approximation (CCA). It means
they are calculated from the effective two-spin
Hamiltonian with the exchange interaction between
the two spins treated exactly and all the other in-
teractions being replaced by the effective fields,
proportional to magnetization (S*)." This approx-
imation allows us to describe properly the short-
range order present in the spin subsystem, which
is especially important in the region around T, .
The correlation functions (S,'S& ) and (S', Sf) as well
as the magnetization (S*) are treated next as pa-
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rameters for the electronic problem described by
the s-f Hamiltonian (2.6) with Hz=-0. Sometimes it
is argued that such a neglect of H& supresses all
dependences of the electronic energies on spin-
correlation functions as (S,+S& & and {S',. Sf). This is
of course not true, because these terms appear as
a consequence of the s-f interaction part H,& (2.5)
even if JIf -=0, and only then are they of importance
(since g»J;.&).

According to the above arguments we actually
work with the following model Hamiltonian

H =H, +H,~ (2.7)

instead of (2.6). Even with the above simplifica-
tions the s-f problem is not exactly solvable.

III. SPECTRAL DENSITY APPROACH

Our approximation is based on the method of
spectral moments~'"'" which is generally valid
for any value of typical model parameters, such as
here, temperature T, s-f coupling constant g, and
localized spin S. This is certainly an advantage
over most of the other approximate procedures.

We start with the on-electron spectral density
Ai, (v), which is defined as

Hl n& =E„ln), (nlm& =6.„. (3.2)

Then it is easy to find the so-called Lehmann rep-
resentation of the spectral density Ai, (u) by in-
serting the complete set of eigenfunctions

l n) be-
tween the two time-dependent operators in Eq.
(3.1).

Ag ((u)= —Q l(nlag, lm&l'
1

n, m

x~e ss~{1+e ~)5(~ —{E .-E„)).
(3.3)

Z is the partition function and P = (AsT)
The matrix element (nl ag l m) in (3.3) is unequal

zero only if the state l n) contains one electron
more than the state lm). l(nlay lm&l is then the
probability for the excited state

(3.4)

&~(t-t&) 1Aq, ((u) = — d(t —t')e'"i' '~ ([ag, (t), a-„,(t')],) .
~ OO

(3 1)

[ ~ ~ ], denotes the anticommutator and ( ~ ~ ~ ) the
thermodynamic average. The time-dependent
Fermi operators a-„,(t) and ag, (t') are written in
their Heisenberg representation.

We assume that the s-f Hamiltonian K (2.7) pos-
sesses a complete and orthonormal system of
eigenstates l n) with the eigenenergies E„

to overlap with the eigenstate
l n). The energy dif-

ferences in the arguments of the 6 functi. on in Eq.
(3.3) are just the one-electron excitation energies
E, (k) needed to transfer an additional (k, o) elec-
tron into the system. Finally, we can write in-
stead (3.3)

AT (&) =E p~o(k) ~{~-E;.(k)), (3.5)

S+ 1+a (S') S -g (S'&
1 ' ~2& 2g 1

+1 if 0. =4
z

-1 if g=k

(3 6)

(3.9)

For general cases the excited state l g, (k)) in
(3.4) will not be an eigenstate of H, pqssibly pos-
sessing an infinite number of nonvanishing coef-
ficients c'~ (k). With (3.4) in (3.3) we expect then
Ag, (&u) to be a continuous function of up. Coming
from the atomic limit and also from the strong
coupling limit [g»c (k) for all k],' we have how-
ever to assume two pronounced peaks in the Ai„(&u)
function, the positions and weights of which are to
be identified with respective energies and dampings
(finite lifetimes) of the two quasiparticles. Ele-
mentary many-body theory brings up a Lorentzian
shape for the quasiparticle peaks, ""i.e., near the
two maxima, (i = 1, 2) the spectral density A~, (v)
should behave as follows":

( )
1 V, (k)I {k,E, (k))
v [~-E,.(k)]'+[V"(R)I.{%,E,.(R))]' '

(3.10)

where I, is the imaginary part of the electronic
self-energy Z (k, e)

I~ (k, (o) = lm Z ~ (k, &u), (3.11)

v,'i(k) =
l

1 —. Rez (k, (u)
(k)

(3.12)

The Lorentzaian shape of Az (&u) is however re-
stricted to a small vicinity of the actual peak and
holds not at all over the whole u region, as other-
wise the spectral moments Mz", (A), belonging to

where p„(k) are positive weight factors with the
physical meaning of probability quantities. In a
few special cases the sum in (3.5) consists of a
finite number of terms only. So, we find for the
atomic limit (AL) [e(k) = T, =O for all k] of the s-f
system a two-pole function"

A""((u) =P„5((u -E„)+P, 5((u -E„), (3.6)

Eii =Ea =-2gS E2i =E2 =+zg(S+1), (3 7)
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would diverge for a,ll orders ~~ 2. We therefore
approach the spectral density by Gaussian instead
of Lorentzian curvesMk, (A. ) = Jt d(u&a"Ak, ((u)

where the term in the first set of parentheses on
the right-hand side represents (r -P) commutators
and the second set encloses P commutators. r and

P are integers with 0 &P & ~. The use of these mo-
ments is, however, limited by appearance of cer-
tain correlation functions, which cannot be expres-
sed self-consistently by Ak, (&u). From (3.15) it is
clear that such difficulties will arise for the high-
er-order moments.

We can avoid these complications by introducing
suitable "higher" spectral densities. Similarly to
the procedure proposed in Ref. 26 for the Hubbard
model, we find such "higher" functions by inspect-
ing the equation of motion

1
[R —E(k)] Gk (&) =

2
—

2 gz&, [24(+)+z, Ek (&u)]

(3.16)

(3.21)

1 5„(k) ( [~ —Z, ,(k)] 'C ka(+) Q [ (Q)]
z/2 e p

~ (k)

(3.22)

We see that the introduction of such a higher spec-
tral density brings along only two new unknown pa-
rameters, while there are generally at least three
moments of this function, defined quite analogously
to Eq. (3.15), which can be determined exactly
without the above-mentioned self-consistency prob-
lem.

By calculating a sufficient number of A. , B, and
C moments we get a closed system of equtions to
be solved self-consistently. For the reader who is
interested in mathematical details we present a
concrete calculation in the Appendix.

of the one-electron Green's function Gk, (&u), which
is connected with Ak, (~) by the relation

Ak, ((u) = ——ImGk, ((u+i0 ) . (3.17)

We denote with Bg,(&u) the higher spectral density
which belongs to the static spin function I"k,(e)

ik (R~-R&) ((Sg&
~

+t )) (3 16)

(3.13)
I

o.;.(k) h [&u —Z„(k)]'l
ka & ~ [ g)) ~y2 exp

~

—
(-) (3.14)

This is the main Ansatz of our procedure in which the quasiparticle energies Z, ,(k), their spectral weights
o „(k), and the corresponding damping factors y, ,(k) are at first unknown parameters. We fix them by
fitting the Ansatz (3.14) to the spectral moments M~"~(A) (3.13), which can be calculated independently of
the function Ak, (&u)

Mk. (A)=([([ [[ag., H], H], . . . , al-), ([H, . . . , [a, [H, a;.] ] ~ ] )],), (3.15)

cause otherwise the above equation of motion (3.16)
could not be fulfilled. This means that for the cor-
responding spectral densities BT„(&u) [for I'-k, (~)]
and Cf;, (&u) [for Ek (e)] such Ansiitze must be
chosen which differ from the Ansatz in (3. 14) only
by the spectral weights:

1 P;, (k) ( [(u —Z„(k)]'
[, "(T)) ~ '~ ~; „."k)

and with C k, (e) the spectral density following
from the spin-flip Green's function Eg,(cu),

S; if g=4

5, ifo =0
(3.20)

This latter function is especially interesting as its
poles correspond just to those one-electron excita-
tions which are connected with a simultaneous spin
exchange between the excited electron and the lo-
calized spin system.

An important feature of the poles of "higher"
Green's functions (3.16) and (3.19) is that all must
necessarily appear among the poles of Gg (&u), be-

E- ((dk)= —pe'k' ~ R~'((8 'a, ~oy, )), (3 19)
i,)

where

IV. DISCUSSION OF THE RESULTS

A. Quasiparticle spectrum and red shift of the optical
absorption edge

Let us discuss first the energy spectrum of the
quasiparticles which is displayed in Fig. 1 for a
set of parameters probably realistic for EuS:

g=0.2 eV, S=&, W=1 eV, fcc lattice. (4.1)

The lower (l) and upper (u) edges of the various
quasiparticle subbands are plotted as functions of
the reduced temperature T/T, . We see that the
conduction band of a ferromagnetic semiconductor
splits for each spin direction g into two quasipar-
ticle subbands. It i.s important to stress, however,
that the spin index (0 or 0) of the quasiparticle en-
ergies denotes the spin of the electron before its



6188 W. NOI TING AND A. M. OI ES

E
(eV)

T
I I I I I

Q5-I
~ ~

)
~ tao ~ et 1 Ii ~ g

I I I I I I

I & I I
A ~ ~ ~ ~ ' ~ ~ I

I I I I

j I I

I I I I

I I I I

I I I I

Q -, I I I I~ NI+

T T
I

I

I I

-Q5-I
~ I I I'~ ~ ~g

"7"
I

I

I

I

I I

I I

I I

T
I

I

I

I

I

~ I~ ~

-i.0-

I

0.5

EU
FU

I ~ I I I

I

I I I I I

I I I

I I I I I

I

4 I I I

(~E)I
El

1f

E
E2f

I

I I I

I I I

I I I

I I I

I I I

I I I

I I

I I I

I I

I I I

I i I

I

I

I I

I I

I I

I I

I

I I

I

I I

I

'~I

E
E2t

I

).0
T I Tc

E

I I I

I I I

I I I

I

I I I

I

I I

I I

I

I I I

I I I

I I

I I I

I

I

I I

I I

I

I

1.5

I

I

I I

I I

I I

I I

I

I

I

I

I I

I

I. I

I-
I I

I I

I

I I

I I

I I

I I

1 I

2.0

FIG. 1. Lower ($) and upper (g, ) edges of the quasi-
particle subbands as functions of the reduced tempera-
ture T/T~; pa'rameters from Eq. (4.1); solid lines for
t subbands and broken lines for & subbands.

excitation into such a quasiparticle subband; after
the excitation the spin is generally uncertain.
These subbands do not at all consist of pure spin
states, but rather of complicated mixed-spin
states. To understand this let us inspect a special
case of the atomic limit" taking for simplicity S= ~

for the localized moment. Then the following tran-
sitions are possible for a 0 electron (0e ):

~C;0) '&'-& ~i;O),

a~i;~)+ p~&;&),
[t;0)

(4.2)

(4 3)

(4 4)

The arrow before the semicolon symbolizes the
localized moment (f spin), the entry behind the
spin of the electron. Equation (4.2), for example,
describes a process where a 0-spin electron en-
ters a lattice site with a localized 0 spin and no
further electron. In the final state the electron spin
and f spin are parallel. A spin-flip cannot happen.
The final state is therefore a pure spin state. If
the 0 electron, however, jumps onto a place with a
localized 0 spin, the final state has to be a mixed-
spin state, because electron and localized moment
can exchange their spins due to the s finteractio-n
(2.5). It is easy to derive that there are two such
mixed-spin states. Since we have taken H&

=—0, the
first and the third transitions are degenerated (-—,'gS),
while the second needs the energy +—,'g(S+I), in
accordance with the atomic limit result (3. 6)
for the one-electron spectral. density.

The lower quasiparticle subbands in Fig. 1 are
built up by states of the first and third kind [(4.2)
and (4.4)]; the upper, by states according to (4.3).
So we can expect for T = 0 only pure spin states (in
the lower 0 subband), because then the localized
spin system is completely aligned, i.e., the initial
state

~
0;0) of (4.3) and (4.4), respectively, does

not occur, and the corresponding transitions can-
not be realized.

At this stage we have to point out a possible
shortcoming of our procedure. We have taken in
(3.14) a two-pole Ansats for the central. function
Ak, (&u). This is surely correct in the atomic limit
(3.6) because of the mentioned degeneration of the
transitions (4.2) and (4.4). This degeneration may
however be removed in the finite bandwidth case,
so that a three-pole Ansgtz might be more justified.
But both quasiparticle subbands, corresponding to
(4.2) and (4.4), will strongly overlap. For the sake
of mathematical simplicity we therefore started
with the two-pole Ansaiz (3. 14).

Figure l shows that the splitting of the conduction
band caused by the s-f interaction takes place for
all temperatures and not at all only in the ferro-
magnetic region, as predicted by the perturbation
theory. " For T &T, 0 and 0 subbands of course
coincide. The temperature dependence of the vari-
ous quasiparticle subbands manifests itself first of
all in bandwidth modifications, especially below 7, .
Above T, this temperature dependence is weak and
caused by short-range order in the f subsystem,
expressed by the correlation function (S, S,). The
sharp kink at T, is only a consequence of the ap-
plied CCA" and should disappear in a more accur-
ate treatment.

It should be stressed that the result for the tem-
perature dependence of the quasiparticle energies
presented in Fig. 1 is quite different from the
widely spread opinion that the conduction band of a
ferromagnetic semiconductor splits below T, into
two spin-polarized subbands. The splitting seems
to be much more complex and does not at all lead
to a complete polarization of the electron spin.

The experimentally observed red shift of the op-
tical absorption edge for a suitable electronic
transition into the conduction band is explained in
our theory by a broadening of a lower 0 subband
with decreasing temperature. The actual total
shift of the lower edge of the conduction band is de-
termined, among others, also by the "free" Bloch
bandwidth W. This explains why the Eu chalco-
genides EuO, EuS, and EuSe show such different
red shifts' in spite of the fact that they all have the
same lattice structure, the same f-spin value S = —,',
and almost the same s-fcoupling constantg = 0. 2 eV,
which characterizes a purely intra, -atomic in-
teraction of the Eu" ion. These compounds differ,
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FIG. 2. Total shift of the lower conduction-band edge
between room temperature and T = 0 K (red shift rs)
versus WRT, the conduction bandwidth at room tempera-
ture. Indicated are the experimental data for EuO, EuS,
and EuSe after Wachter (Ref. 6): rs (EuO)=0.255 eV, rs
(EuS) = 0.18 eV, rs (EuSe) = 0.13 eV. Parameters: fcc
lattice, $=2, g=0.2 eV.

however, by their W values.
In Fig. 2 the total shift of the lower conduction-

band edge between room temperature and T =0 K is
plotted as a function of WRT, the width of thy total
conduction band at room temperature. The mea-
sured red shifts of the Eu chalcogenides' belong to
the following values of W„T:

W»(Euo) = 2.31 eV; W» (EuS) = 1.40 eV;

WRY(EuSe) = 1.15 eV.
(4.5)

The agreement with the values for the experiment-
ally observed 5dt, ~ conduction bandwidth reported
by Wachter' is very good. The numbers given in
(4.5) are also in qualitative agreement with the
band-structure calculations of Cho."

B. Spectral weights; finite lifetimes

Up to this point we have discussed only the quasi-
particle spectrum, and nothing has beeri said about
spectral weights and finite lifetimes. It may hap-
pen that one of the various subbands disappears for
certain temperature 7 or bandwidth W values, be-
cause the corresponding spectral weight is zero or
too small, or the damping is too big, i.e., the life-
time is too short.

Figure 3 shows the temperature dependence of
the spectral weights n;, (k) for k values which be-
long to the upper u and lower l band edges, re-
spectively. The temper ature dependence is essen-
tially strong in the ferromagnetic region (long-

0
0.5

I

1.5 2.0

FIG. 3. Temperature dependence of the spectral
weights of the various subband edges from Fig. 1 (g,
upper edge, l, lower edge, 1, high-energy subband, 2,
low-energy subband; solid lines for t subbands, broken
lines for h subbands); parameters from Eq. (4.1).

range order) while it remains weak only above T,
(due to the spin-spin correlation function ( S, ~ S,),
which reflects the short-range correlations). As
already mentioned, the spin-spin correlation func-
tion of the localized spin subsystem must be treated
in our, procedure as input parameter, which has
been determined by the CGA." That'explains the
unphysical kink at 7, .

The high-energy 0 subband disappears at T =0
because of vanishing spectral weight a, i(k; T = 0)=0.
This result is exact since in the ferromagnetic
saturation an 0 electron has its spin parallel to the
completely aligned localized spin system, and there
cannot be any spin exchange. The 0 electron there-
fore moves as a quasifree particle throughout the
lattice. The corresponding quasiparticle band is
just the free Bloch band, only shifted by an unim-
portant constant term -2 gS. The 0 spectrum is of
course more complicated because a 0 electron has,
even at 7 =0, a possibility to create a magnon in
the localized spin system, thereby flipping its own
spin. The weights of both 0 subbands are unequal
zero. This special case (T =0) is discussed in
more detail in Ref. 23. It has been shown also that
all the exact results known for the ferromagnetic-
ally saturated system' are fulfilled by our spectral
density approach.

Another interesting result, indicated by Fig. 3,
is that all spectral weights have finite values for
g&7, . The characteristic splitting of the conduc-
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tion band is therefore not at all restricted to the
ferromagnetic region but persists for T &T„ too.

The spectral weight curves in Fig. 3 hold for the
special set of parameters of Eq. (4.1). Generally,
the n;, (k) are strongly influenced by four variables

o.; (k) = o, ; (c (k), S, W, T), (4.6)

the Bloch energy c(k), the Localized spin S, the
width W of the Hloch band, and the temperature T.

Figure 4 shows for two different temperatures,
T =0.8T, and T=T„ the dependence of o„(k) on
the bandwidth 8', where k is chosen according to
the lower edges of the quasiparticle subbands. For
the 4 spectrum the low-energy subband is always
stronger weighted than the high-energy one (o,t
& n, i), and with increasing temperature o.» be-
comes a bit larger and o» smaller (see also Fig.
3). The importance of the higher 0 subband de-
creases monotonically with increasing Bloch band-
width R'. Because of n» =1—+» the weight of the
lower 0 subband increases on the same scale. The
0 weights show an interesting intersection for T

For small widths S" the high-energy spectral
weight o, &

is larger than the low-energy one (o.,&).
The point of intersection is temperature dependent,
lying for T =0 at 8'=0.8 eV,"and for T =0.8T, at
W=0.46 eV (Fig 4). F. or TET, the weights do not
cross, i.e., o.,~&a„ for all 8'.

From the measured red shifts' (see Fig. 1) we
can derive the following Bloch bandwidth for the Eu
chalcogenides: W(EuO) =2.0 eV, W(EuS) =0.9 eV,
and W(EuSe) =0.55 eV. While for EuO the low-en-
ergy 0 weight ~,&

is for all temperatures larger
than the high-energy 0 weight o.,&, the opposite is
true for EuS and EuSe for low enough tempera-
tures. This should experimentally be observable
in the temperature behavior of the density of
states.

As indicated in Eq. (4.6), the k dependence of the
spectral weights is, strictly speaking, only indi-
rect through the Bloch energies e(k). As presented
in Fig. 5, the weights are strongly dependent on
e(k). The ones of the low-energy subbands de-
crease, when c(k) increases from the lower to the
upper edge of the Bloch band. The opposite is then
true for the weights of the high-energy subbands,
which are largest at the upper edge. Note that the
curves in Fig. 4 (W dependence) are plotted only
for the lower edges, which underestimate the im-
portance of the high-energy quasiparticle sub-
bands. For W = 1.0 eV I= W(EuS)j we find at T
= 0.8T„according to Fig. 5 Q]) 0 055) &yJ 0 275
at the lower edge, but at the upper edge ~«=0.28,
a,&

=0.815. So, the intersection of the oI» (k) and

a,~ (k) curves, for example, is shifted to substan-
tially higher W values, if k is taken from the upper
edge.

1.0

(a)

0.5

'0

).0

I

i.0 2.0
W (eV}

3.0

(b)

0 I

i.0
W (eV)

I

2.0 3.0

FIG. 4. Spectral weights &;,(k) for the lower edges of
the quasiparticle subbands as functions of the Bloch band-
width Wfor two different temperatures; (a)T = 0.8 T,
(b) T =T; 1 corresponds to the high-energy 2, to the
low-energy subbands; parameters as in Fig. 2.

1.0 10

Y40

0.5 10

0 I

0.75 05 0.25
c (eV)

I

0
10

0.25

FIG. 5. Spectral weights n; and damping factors y;,
as functions of the Bloch energy & at temperature
T= 0.8 T, . Parameters are taken from Eq. (4.1); left
scale for n;, right scale for p; .

To summarize, we present in Table I the general
behavior of the various quasiparticle weights as
functions of the typical parameters: T, W, c(k), S.
The S dependence is discussed in the next section.
For T = 0 we have shown in Ref. 23 that for S-~
(classical limit) the lower 4 subband will disap-
pear, reproducing the "old" two-band picture.

Let us discuss now the quasiparticle dampings
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TABLE I. General behavior of the spectral weights
and lifetimes of the low- (2) and high- (1) energy quasi-
'particles as functions of some typical parameters.

& means an increase and & a decrease of the weight
(lifetime) with increasing parameter.

)0

W

T (&T(j

a), a), a2, a~, v), x) f 72f
)0'

Ipa
0

I

).0
I

2.0 W (eV} 30

y„(k), which correspond to finite lifetimes z„- y, ,'. Figure 6 shows the temperature dependence
of y„'s. We see that y,~-0 for T-0, and the
corresponding quasiparticle is stable in the ferro-
magnetic saturation [Y,t(T =0) =~]. y, i is finite for
T =0, but the spectral weight a,&(T =0,) is zero, so
that we have at T = 0 only one 0 subband with sta-
tionary quasiparticle. That is, of course, the al-
ready discussed simple exact result. The quasi-
particles of the lower 0 subband are always less
damped than those of the higher 0 subband. The
trend is not so clear for 0 subbands. For S'= 1
eV, as in Fig. 6, we still find for all tempera-
tures y, && y» (i.e. , v,~&r, &) This c. an however
be changed for smaller W (see Fig. 7) or for
smaller spin value S. At T = 0 y» is larger than

y» for all bandwidths W' if S=-,', and for W&0.9
eV if S=+.'

Approaching the atomic limit (W- 0) all quasi-
particles become stable particles irrespective of
S, T, and g. For finite bandwidths W one has to
take into consideration their strong dependences on
the Bloch energies c(k), too Figur. e 5 shows that
all we have just said about the dampings of 4 quasi-

io

)0%

)Q
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)po
0

I

).Q
I

2.0 W (eV} 3.0

2.0/
jw

5

Azt {ai}

2.5-
II
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If0- I I

-).0 -0.5
I I

0 0.5 e
(eV)

rr

FIG. 7. Damping factors p@{k)versus Bloch bandwidth
W for two different temperatures: (a) T = 0.8T~, (b)
T =T,. k is taken from the lower edges of the various
subbands, other parameters from Eq. (4.l).

10

W ~V»

2.5—

A„{{io}

-0.5 0.5 ra

r
10'

0
I

1.0
T/Tc

2.0 2'
(eV)

FIG. 6. Temperatuie dependence of the damping fac-
tors y& {k). k is taken from the lower edges of the var-
ious quasiparticle subbands. The other parameters are
from Eq. (4.1).

FIG. 8. Spectral densities A.g,(u), 0 = t, h, at tempera-
ture 1' = 0.81' as functions of ~ for various values of
the Bloch bandwidth S', parameters: g=0.2 eV, S=+2,
fcc lattice, k from the lower band edge.
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FIG. 11. The same as in Fig. 8 but for S=a and T =T~.
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FIG. 9. The same as in Fig. 8 but for $=2.

particles at the lower edges is quite in contrast to
the situation at the upper edges (compare also
Figs. 8 and 13). y, &

and y, i increase with increas-
ing e(k), while y, i and y, ~

both decrease.
Combining all these results, we notice that the

tiuasiparticle lifetimes v;, (k) [-y, ,'(k)] depend,
analogously as the spectral weights (4.6), on four
essential parameters

v;, (k) =v;, (e(k), S, W, T). (4 7)

band, while a k electron must only be able to emit
a magnon, which is, however, always possible.

C. Quasiparticle structure of the spectral density

All the facts which we have derived and discussed
in the two preceding sections for the quasiparticle
energies E, ,(k), their spectral weights o.„(k), and

their dampings y&, (k) determine the general shape
of the one-electron spectral density Az (&u) (3.14).
Figures 8 to 12 show a few typical examples.

In the atomic limit (W =0) our procedure repro-
duces the exact two-pole function (3.6) for both
spin directions and all temperatures T c 0. For
finite bandwidths we observe a distinct quasipar-
ticle structure of the spectral density, where for
T=0.8T, (S=—', in Fig. 8, S= —,

' in Fig. 9) the lower-
edge quasiparticles of the upper 0 subband are to

The general trends are summarized in Table I.
For all parameters we find that 7',»7, & for T &T„
because the 0 quasiparticle suffers less spin scat-
tering than the 0 quasiparticle in the partially
aligned localized spin system. On the other hand,
it is always 7y) ~ 7y$ for T'&T, . This becomes
clear with (4.3), because an 0 electron needs a
spin deviation (magnon) in the localized spin sys-
tem to create a quasiparticle of the higher sub-
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Ak (~)

5

2.5-

-oe'

/1.
0

„/
/W
(ev)

2.5—

0.5 1.0 1.5 td

/' (ev)
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I I I

-1.0 -0.5 0'.5

Ak~ (ej
I

„/
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[05 l.0 I.S (d

(ev}

FIG. 10. - The same as in Fig. 8 but for T =T~.
FIG. 12. The same as in Fig. 8, but for a k value from

the upper edge of the Bloch band.
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be seen only for a very small W. These of the
lower 0 subband have essentially longer lifetimes.
The quasiparticles of the upper 0 band gain in im-
portance with increasing temperature (Figs. 10 and
11) and with increasing Bloch energy e(k) (Fig. 12).
In the 4 spectrum the quasiparticles of the upper
subband are at first more stable than those of the
lower subband, if W and T are small enough. This
changes with increasing temperature and increas-
ing bandwidth. 4 quasiparticles of the higher sub-
band are the better defined the higher the f spin S.
The opposite is true for the 0 quasiparticles of the
lower subband, which completely disappear for
$~ 00

1.0-

(og )

:~.0 Pi,

V. CONCLUSIONS

We have presented in this paper an approach to
the quasiparticle spectrum of the s fmo-del for a
ferromagnetic semiconductor which takes explicitly
into account quasiparticle damping by a Gaussian
Ansatz for the one:electron spectral. density. The
credibility of this approach is strongly supported
by the exactly solvable limiting cases of the s-f
model, ' which are correctly reproduced without
exception.

A further control for more general cases can be
drawn from the second spectral moment of the
higher spectral density B-„,(io), defined in Eq.
(3.21), which has not been used in the actual deriv-
ation of our results. The relative error ~ in this
moment (A29) is surprisingly never larger than
1.0%, as seen in Fig. 13.

The energies, spectral weights, and dampings of
the sf quasiparticles are shown to depend strongly
on four parameters, namely, the ratio W/g of
Bloch bandwidth W to s-f coupling constant g, the
spin S of the localized magnetic moments, the tem-
perature T, and the Bloch energy e(k). As a con-
sequence of the s fexchange -interaction, the con-
duction band of a ferromagnetic semiconductor
splits into several quasiparticle subbands, which

are characterized by different spectral weights and

different lifetimes. The splitting is independent of
the onset of ferromagnetism in contrast to the
statements of previous methods. The temperature
dependence of the quasiparticle subbands manifests
itself first of all in modifications of the widths of
various subbands. The increasing width of the
lowest 0 subband leads to the famous red shift of
the optical absorption edge. The red shifts that we

have calculated are in satisfactory agreement with

the experimental data. Thus, in spite of a great
deal of simplification, the theory presented here
should at least qualitatively describe the conduc-
tion-band structure in ferromagnetic semiconduc-
tors.

FIG. 13. Relative error b,g, . (A29) in the second
moment of the static spin spectral density Bp~(~) (3.21)
as a function of T/T~ for various bandwidths W. Param
eters: 8 =$, g= 0.2 ev, k from the lower band edge of
the Bloch band; solid lines for 0 = t, broken lines for
0=1.

APPENDIX

We perform in this Appendix a concrete evalua-
tion of the general spectral density approach pre-
sented in Sec. III. The following abbreviations will
be used:

m = (S'),
m'

D,~=S -z m,

Do=D2+ D

y,'= (s;. s,. ),
ft, = ((s')') =s'+ D,.-&, ,

So = Ao+ yo =S + D,
+0 (S-os~0)

z, = (s;.s;),
S, =g, +y, ,

for sc lattice

c,=( ~« for bcc lattice

for fcc lattice,

vit;, =e(k) --,'gz, m.

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(AV)

(A8)

(A9)

(A10)

(A11)

(A12)

(Ai3)

(A14)

(Air)

On applying Eq. (3.15) we get the following spectral
moments of the spectral density Az, (u):

Mk (A) =1,(0)

MP(A) = iit;. ,

M( (A) = tip, + ,'g'D, , —
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„,(A) = r]]„+—,'g e(k)(2D, -m'+S„)+ 8 g'[(S+1)D„-z,mD),

„,(A) = ii k, + —,
' g'c (k) [3D, + 2(S„-m ')] + —,

' g'c, w '(S„-m ')

+ 8 g'e(k) [S(S+1)(1—4z m) —z,m(1 —4m') + So, +2S„]
+ ~~8 g'(S(S+1)[S(S+1)—2z, m]+ S„-m'),

(A16)

(A17)

+ «g~[S(S+1)m —z, R,] . (A2O)

For the moments of the spin-flip spectral density
Ct; (]d) (3.22), we get finally

Mg. (C) =O,
(x)

Mt o(&) = zg yo-

M]„(~)= 'g'y;--zg~(k-)(y;+ y, )

With the Ansatz (3. 14) inserted into (3. 13) we
find the following equivalent expressions for the
A moments (A13)-(A17):

(A21)

(A22)

(A23)

W is the width of the unperturbed Bloch band. The
magnetization m= (S'), as well as the correlation
functions /0 p] Ry of the localized spin system are
taken as input parameters, predetermined by the
cluster approximation of Ref. 25.

The moments of the spectral density Bk, (&u)

(3.21) obey the following relations:

(A18)

Mg, (B) = m z (k) ——,
' gz, R, , (A19)

Mg, (B)= me'(k) --', gz e(k)(R, + R,)

3g'y, (&) = o, ,(k) E, ,(k),
=1

(A25)

j (A)=Q u; (k) E]]( k+]-'y, (k)], (A26)

K;.(A]=g a, .(k)]E,'..(k)+ -,'y, .(k)E,.(i)], (AW)

Kk (A) = u, (k)[E, (k)+3y; (k)E,' (k)+ —'y; (k)] .
= 1

(A28)

Similar expressions hold for the 8 and t." moments.
We have only to replace the spectral weights o;,(k)
by P„(k) and 5„(k), respectively.

We have used the A moments and the C moments
to determine the energies E, (k), the spectral
weights a.&, (k), and the dampings y;, (k) presented
in Sec. IV. The remaining B moments may be

' then used as an accuracy test of our procedure.
Thus we define the relative error gk, of the second
B moment when calculated with the model spectral
density

sing. (A) = ~,.(T),
=1

(A24)

(2) (2)
SKk, (B) —Mk (B)

M1~ (B)kg
(A29)
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