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Simple spinless mixed-valence model. I.Coherent-hybridization states versus virtual-bound
states
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We consider a model consisting of spinless localized 4f levels interacting with spinless extended 5d states via a
hybridization V and a local Coulomb repulsion U«. Using the renormalization-group technique we derive the
scaling laws of the system within the leading and next-leading logarithmic approximation. We obtain that if U«g V

the mixed-valence states are extended and coherent, while if U«&) V the valence fluctuations are mainly local and
incoherent.

I. INTRODUCTION

The electronic properties of mixed-valence sys-
tems are usually described by models assuming
localized atomicjike f states and extended band-
like d states. These two types of states are mixed
by a hybridization matrix element V and interact
via interband and intraband Coulomb forces U.
This class of models is known in the literature as
the two-band Hubbard model or the Anderson lat-
tice. The general Hamiltonian is the following:

+ V Q (f,,d„+d;,f, ,) +U~, Q f, ,f(g, , d,

—J g f', ,S„.f„dt;S, ,d;„ (1.1)
|l OO'

where d k is the creation operator for an extended
d state with momentum k and spin 0,

dt:=i(i '"g exp(-i k. R()dT, „
k

f, , is the creation operation for a localized elec-
tron at site i with spin v, N is the number of lat-
tice sites, and S, , 8, are spin- —,

' matrices.
The orbital degeneracy and the Coulomb repulsion
between the d electrons have been neglected here.

This model has been extensively discussed within
several approximation schemes as reviewed by
Robinson. ' The results, however, seem to depend
quantitatively and even qualitatively on the em-
ployed approximation procedure. ' " In order to
simplify the problem some special cases of this
Hamiltonian have been considered:

(a) Tlute Falicov and Kimball model'' corres-
ponds to Eq. (1.1) with V= J'=0. Under these con-
ditions the f electrons have no mobility and their
spatial configuration is conserved. For sufficiently
large U~„couplings discontinuous charge transi-
tions can be induced. The ground state is not .

spatially homogeneous; it shows magnetic as well
as charge short-range and long-range order. "
This case can be adapted to describe inhomogen-
eous mixed-valence compounds" (Sm,S„Eu,S,)
which are z-type semiconductors with a constant
average number of f electrons per rare-earth
ion, pgf = g.

(b) In the narrow band lim-it' the atomic corre-
lations are taken into account correctly, and per-
turbation is made with respect to the 5d-electron
hopping integral which is the small parameter.

The Hamiltonian, Eq. (1.1), shows two types of
excitations, mixed and coupled, in a complicated
way, charge transfer between the two bands and
spin-flips, e.g. , in the f level on one rare-earth
ion. The model is considerably simplified by sup-
pressing one type of excitation.

(c) The Kondo lattice" " is obtained by assum-
ing that the one-electron f states are far below the
Fermi level (e~ —E is large compared to V). Each
rare-earth ion has one f electron and is character-
ized by its spin, whereas charge fluctuations are
suppr essed.

(d) The spin fluctuations cannot be eliminated
by a special choice of parameters in Eq. (1.1), but

by considering a model of sPinless fexmions. "'"
Since most of the experiments probe the mixed-
valence state via the magnetic moment, this arti-
ficial model is not supposed to explain the actual
physical situation. This simple model, however,
still has the main characteristics of a mixed-
valence system, namely, the coexistence of two
ionic states with similar energies, as well as
some of its mathematical difficulties.

In this paper we discuss in more detail this lat-
ter case. From the interactions of the Hamiltonian,
Eq. (1.1), only Uz~ and V remain. Although neglect-
ing the spins represents a large simplification,
the problem still has the following technical com-
plications:

(1) Ii Uz~ is comparable to the bandwidth and V
is small, the difficulties are similar to those of
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the Hubbard model.
(2) For small U«and V the perturbation expan-

sion with respect to U« for physical quantities
(e.g. , the vertex function, the self-energies) shows
logarithmic infrared divergences similar to those
in the Kondo problem and the interacting one-di-
mensional Fermi gas.

(3) The question of whether the valence fluc-
tuations are extended and coherent, or local and
incoherent.

In order to understand the latter question it is
instructive to review briefly the Hartree-Fock
solutions by Khomskii and Kocharjan'4 and by
Leder"; the two approaches yielded quite differ-
ent results. Both considered all possible factor-
izations including excitonlike correlations between

f holes and d-band electrons:
t t

Ug, f fdjdj, - U«((f f)d„dt, , +(d-„d-„,)f f
—(djf)f'dk —(f'dj)djf),

(1.2)

where the latter two terms were included into an
effective hybridization. In one case' the enhance-
ment of the hybridization was considered as local
and incoherent among the rare-earth ions; i.e. ,
they act like independent resonance levels. This
picture yields discontinuous valence transitions
for sufficiently large U«. On the other hand, in
the case of extended valence fluctuations, " the
coherence of the states opens a gap around the
Fermi level and yields a large exciton condensa-
tion which smears possible discontinuities of nz
unless V is zero.

The rest of the paper is organized as follows.
In Sec. II we give a brief survey of the renormal-
ization-group technique, "and we define our model
and the functions we need for the renormalization.
In Sec. III we present the vertex renormalization
in leading logarithmic order for both the extended
and the local mixed-valence states. The detailed
calculation up to next-leading logarithmic order
follows in Secs. IV and V, respectively. A dis-
cussion of the results is given in Sec. VI.

In summary, we analyze the model for small U«
and V within the leading and next-leading logarith-
mic approximation. We can conclude that:

(1) If U««V the valence fluctuations are ex-
tended and coherent, and the Hartree-Foek approx-
imation of Leder' is valid. Only continuous
valence transitions are possible in this case.

(2) If Uq, » V the valence fluctuations are local
and incoherent, and the f levels act like indepen-
dent resonance levels. The problem of an isolated
f level (impurityproblem) is solved with more
detail in the following paper. Within this picture
discontinuous valence transitions occur if U« is

sufficiently large.
For an actual physical situation we expect U«/V

to be of the order of 10 to 10'—hence the local
approaches of Khomskii and Kocharjan'~ and Gon-
galvds da Silva and Falicov" are more appro-
priate descriptions of a mixed-valence compound
than the calculation by Leder. "

The experimental situation seems to agree with
this picture of independent and incoherent virtual-
bound states: The specific heat shows a Schottky
anomaly and a large low-temperature coefficient
y, C =yv'; the magnetic susceptibility is finite at
zero temperatures and gradually goes over to a
Curie-Weiss law when the temperature is raised;
the dynamical susceptibility, as measured by
inelastic neutron scattering, shows the q depen-
dence of the ionic form factors"; and the valence
transition may be continuous or discontinuous with
pressure and temperature.

II. SPINLESS MODEL AND THE RENORMALIZATION
GROUP

For spinless fermions the Hamiltonian, Eq. (1.1),
reduces to

& = 2 &adjdk+&Zf'( f~+ VE (f~«+defi)

+ ~ra Zf «f &
"~di (2.1)

A[&a/D ); U, V ] =@A[(~/D); U, V], (2.2)

where g is a real factor and is independent of the

This model still contains the essential physics of
the mixed-valence state. Beside the position of
the f level with respect to the Fermi energy, the
system is characterized by three energies, name-
ly, the bandwidth D, the hybridization V, and the
Coulomb repulsion' Uf g.

The basic idea of scaling is to construct an
effective Hamiltonian with a different band cutoff
D' which describes the same physics as the
original Hamiltonain. This can be achieved by
correcting the coupling parameters V and U«and
the energy E, which are now a function of D . In
other words, the scaling procedure is generated by
integrating out degrees of freedom at the band
edges and by obtaining in this way the renormal-
ized effective-energy parameters of the system.

There are several methods to derive the scaling
equations. In the present case the most convenient
is the renormalization group. As for other infra-
red divergent models the problem can be formula-
ted in terms of one dynamical variable. It is
assumed that Green's functions, vertices, and
other physical quantities obey a multiplicative
renormalization"; i.e. , for a quantity' we have
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=——(lnA[5; U (x; U, V), V (x; U, V)])g, (2.3)

can be derived, where x=ur/D. The initial condi-
tion for this Lie differential equation is

A[1' U, V] =1. (2.4)

The prescription of the renormalization group"
is now to calculate the perturbation expansion of
the quantity A with respect to U and V and to in-
sert this expression into the right-hand side of
Eq. (2.3). The Lie differential equation then ex-
tends the skeleton diagrams included in the per-
turbation series consistently to all orders in U

and V in the whole energy range.
%'e define the following dimensionless quan-

tities I", A, d„, and d&.

I'(&o; U, V) = UI'(u&/D; U, V), (2 6)

V'Jt(&u/D; U, V)

= f V(~/D; U, V)]'d~(&u/D; U, V)dz(&o/D; U, V), (2.6)

G~(v, k) =d~(u&/D; U, V)G, (u&, k), (2. '?)

G~((u, k) =dq((u/D; U, V)Gq(u), k), (2.8)

where 1" is the four-leg vertex function which,
in principle, is a function of three external ener-
gies and three momenta, G, and Qz are the d and

f particle propagators, and G,' and Gz are given by

G~=(ie —e„) ', Gfo=(i&@ —E) '.
V is the two-leg vertex function associated with
the hybridization and A is the derivative with re-
spect to 1nD/~~

~
of the response function ((d~ '~„.

f,d, ))„.. Equation (2.6) can be verified by compar-
ing the per turbation expans ion of A with that of
V'dzd~. More rigorous arguments for the validity
of this relation are given in the Appendix.

The above quantities f', d„d~, V/V, and P obey
multiplicative renor malization. This has been
checked by perturbation theory up to third order
in U and is shown more rigorously for some quan-
tities in the Appendix. The renormalization of the
hybridization vertex can be calculated either di-
rectly or through the correlation function ((d~f„
f, d&))~. We use the latter alternative.

The invariant couplings U and V are also as-
sumed to satisfy condition (2.2) and hence the Lie
differential Eq. (2.3). By requiring the invariance
of the system under the renormalization trans-

(2.9)

dynamical variable ~. As before, D is the changed
energy cutoff and U and V are the renormalized
invariant couplings (we drop the suffix fd from now

on). For any quantity obeying (2.2) a differential
equation of the form

—, lnA[x; U, V]
8

III. FIRST-ORDER RENORMALIZATION

Following the prescription of the renormaliza-
tion-group technique we calculate the first-order
corrections to 1" and A. It is easily seen that
d„and dz have only constant first-order correc-
tions which can be absorbed into the chemical
potential and a renormalization of E, respectively.

The first-order diagrams contributing to I' are
shown in Fig. 1. We assume that we have one
electron per site. Moreover, we add a small dis-
persion to the f-electron energy, which for the
sake of simplicity we take as proportional to the
d-electron dispersion e~.

Z„=Z, +6e„(~„[ D, [6(«1. (3.1)

If 5& 0 the f.particles are electronlike, while if
5& 0 they have hole character. If 5 =0 they are
completely localized.

FIG. 1. Second-order vertex diagrams. The dashed
lines represent f-electron propagators and the full
lines represent g-electron propagators.

formation (2.2), i.e. , U I'G, G& and (V /V)' V'G~Gz
are to be invariant, we obtain"

d, (D'/D; U, V) &,(D'/D; O, V) I (D'/D; U, V)
& (1;O', V ) d, (1;U, V') f'(1; O', V')

(2.10)

and

2 d~(D'/D;U, V) dg(D'/D; U, V) V(D/D; U,V)
~d (1;O', V') d&(1;O', V ) V(1;O', V')~

I

, it(D'/D;O, V) (2.11)
A(1;U', V')

These relations ensure the equivalence of the new

system and the original one. The perturbation ex-
pansion for U and V can now be obtained from that
of 1", d„, .d&, and A or V.

The validity of the assumption of multiplicative
renormalization has been checked by perturbation
theory for our model. In the Appendix we rederive
diagramatically the scaling equations for the four-
leg vertex in leading logarithmic order and for the
hybridization vertex and the correlation A in lead-
ing and next-leading logarithmic order. This can
be considered as a formal proof of multiplicative
renormalization within this logarithmic approxi-
mation. Comparing the results for A and V wehave
also a verification for the validity of Eq. (2.6) up
to the next-leading logarithmic order.
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Let us first discuss the dependence of the vertex
I' on the sign of 5 for F., =0 and return to the gen-
eral case later. '/he evaluation of the diagrams is
straightforward and we have

Integrating this equation using Eq. (3.5) we have

V' Ir' 2 Upy ', ' U'

1+ ~5i
=

I
1- ln(D/D') =—if 6 &0, (3.9)

I'=1 —2 sgn5ln[(1+ I6I)D/lcol],I+I6 I

(3.2)

V' (D '&~ .
V

if |)=0, (3.10)

U =U+2 sgn61n(D /D).1+ I6I
(3.3)

Inserting this expression into Eq. (2.3) we have

d»(D'/D) 1+ I6I
(3.4)

which when integrated with the condition U (D =D)
= U yields

U =U
I
1+ sgn6 ln(D/D )
( 2Upp

1+ f6I
(3.5)

This expression decreases when D' is reduced if
U6 is positive, i,e. , the f and d bands are weakly
coupled through U. If U5 is negative the invariant
coupling grows, and we have strongly coupled f
and d bands; in the case 5 =0, U' remains equal to
its bare value U.

Similarly, we calculate the invariant coupling
associated with V. The perturbation expansion for
the correlation ((d,f;;ftd,.))~ up to first order is
seen in Fig. 2. The correction vanishes if 5&0;
we have in genera)

A =1+ ' (1 —sgn~) ln[(1+ I6 l)D/l&o I).
2UpF
1+ I6I

(3.6).

The perturbation expansion for (V )' is obtained
via Eq. (2.11):

)v')' =)"() — ~ {)-s))n))) in)))'i))) I, ().7)
2UpF
1+ I6I

which when inserted into the right-hand side of
Eq. (2.3) yields

where sgn5 takes the values +1, -1, and 0, depen-
ding on whether it is positive, negative, or
zero, respectively. The perturbation expansion
for the invariant coupling U is obtained via Eq.
(2.10):

—=1 if 5&0.V
V

(3,11)

Hence, if 5&0, V remains equal to its bare
value V, while if 5 ~0 the hybridization is en-
hanced if U&0. The enhancement for 5 =0, how-
ever, is qualitatively different from that for 5& 0.

In conclusion, for repulsive U (&0) and an elec-
tronlike f band the system is weakly coupled. On
the other hand, a holelike or a dispersionless
f band is strongly coupled to the d-electron band.
Hence, the results depend qualitatively on the
sign of 5, the point 5= 0 being singular.

The Hamiltonian can be diagonalized for U =0;
for 5 =0 the hybridization opens a gap at the Fermi
level. The diagrams of Figs. 1 and 2 evaluated
with a small hybridization yield the same results
as for a holelike f band. Hence, in the case of a
dispersionless f band we have to take the limit
6-0- (f-hole band) in order to reproduce the
results for U=O, V-0. In general, we can say
that we have strong coupling if there is a hybrid,
ization gap and weak coupling if there is no gap in
the spectrum.

The scaling condition requires that only one
energy scale play a role in the problem. This is
the reason why we do not consider the part of
(2.1) bilinear in fermion operators as the unper-
turbed Hamiltonian and U as the only perturbation.
In this case the hybridization gap mould be the
second energy scale.

In summary, if we consider a coherent hybrid-
ization model, the diagrams are to be evaluated
in the limit 5-0—;on the other hand, for local
and incoherent valence fluctuations the case 5 =0
must be taken.

d»(D'/D) "" 1+I6I (3.8)
IV. RENORMALIZATION FOR EXTENDED

AND COHERENT STATES

With the above criterion for coherent hybridiza-
tion states and for an arbitrary Eo we obtain

U' = U/[1 —2UpF ln(D/D')], V 'U = VU'

I'I — =[I-2Up~»(D/l~l)l ', A —=I
I

—
I (4 2)

- /(d z
— QP - ((d )

B iDj

FIG. 2. Bare and first-order diagrams of the correla-
ti» &@)f] 'f ] &]» ~

The result is equivalent to summing up the most
singular contributions in the logarithmic approxi-
mation (see Appendix). The validity of the scaling
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V* = V+2Up&V*ln(D/V*), (4.4)

where we replaced D' by V*. The validity of the
Hartree-Fock approximation is, of course, re-
stricted to small U.

We proceed to evaluate the next-leading contri-
butions in the logarithmic approximation. The
self-energy graphs shown in Fig. 3 have to be con-
sidered for the cases

Z~ = —2(i(u —E,)U'p2~ ln(D/~(u () (4.5)

equations (4.1) is restricted to small values of
U'; otherwise, higher-order skeleton diagrams
have to be taken into account in Eqs. (3.4) and
(3.8). With (4.1}we can state, however, that the
system has no fixed point for small U (& 0}. This
result cannot be changed by higher-order contribu-
tions.

I.et us relate the leading-logarithmic-order
results to the Hartree-Fock approximation" for
extended states. From Eq. (3.4) we see that for
5& 0 the fixed point is given by U = ~, i.e. , we ob-
tain a characteristic energy of the Bardeen-
Cooper-Schrieffer (BCS) type:

(4.3)

The Hartree-Fock equation for the effective hy-
bridization, is obtained from Eq. (3.9), which can
be rewritten as

FIG. 4. Third-order vertex diagrams that contribute
in next-leading logarithmic approximation.

due to the Ward cancellation of the vertex and
self-energy diagrams.

In a similar way we obtain the corrections to
A by evaluating the diagrams of Fig. 5:

A = 1+4UpF»(D/l~ I) —4U'4 in(D/l~ I) (4.10)

Using Eq. (2.11) we see that the hybridization is
reduced with respect to Eq. (4.1) by the next-
leading logarithmic approximation

U 1 V U D
U 1 —2UpF ln(D/D') ' V U D

(4.11)

5o far we considered only local correlations.
Since the j electrons are very heavy the interac-
tions between different sites are mediated only by
the d electrons. There is no interaction among
sites in leading logarithmic order. The most im-
portant interaction (next-leading order) is of the
Ruderman-Kittel-Kasuya- Yosida (RKKY) type and
is shown in Fig. 6:

Z, = -2(i&a —e,)U'p~ 1n(D/(u& ~), (4 5) 3~(1 -n, )q, [Ur(~/D) j'r(2I,ft;,}j,'j;jJj, ,

where the diagrams were evaluated in the limit
5-0—. From (4.5) and (4.6) we obtain the pertur-
bation expansions for the factors df and d„:

dz =d~ = 1 —2U'p'F ln(D / (v () . (4.7)

I' =1+2'~ »(D/l~ I) +4UVF»(D/l~ I} (4 3)

As a consequence the invariant coupling U' is not
renormalized in next-leading order:

U' = U —2U'pF ln(D'/D), (4.9)

It is seen that df and d„decrease if ~v
~

is lowered.
In order to evaluate the next-leading corrections

to F we note that only diagrams with a closed
fermion loop yield a new contribution, which is not
contained in the renormalization of the diagrams
of Fig. 1. The diagrams are shown in Fig. 4,
and we have

(4.12)

where F(2k') is the space dependence of the
RKKY interaction.

We conclude that the leading-order results are
not essentially changed by.the next-leading logarith-
mic renormalization. They are valid for small U.
With growing U, correlations among the sites be-
come important. If these correlations are com-
parable or larger than the bare hybridization P,
the j states should no longer be considered as a

band. In this case fluctuations are larger than the
"j-band" dispersion and the k space is not a con-
venient basis to start a perturbation. Rather than
calculating the perturbation within an extended-state
picture, the j level should be treated as a localized

FIG. 3. Second-order self-energy diagrams.
FIG. 5. Second-order diagrams contributing to

((d;f;;f,d;))„.
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and the d-electron self-energy can be approxima-
ted by

Z~ = imU-p/n/(1 n/-) . (5.4)

FIG. 6. Diagram generating the R KEY interaction.

state. In other words, instead of using the pre-
scription of taking the limit 5- 0- as described in
Sec. III, we should consider the case 5=0. We
discuss the renormalization within the local picture
in Sec. V.

We would like to mention that by solving the
model at the leading-order fixed point we obtain
that the local correlations are dominant and that
the state of lowest energy has one electron per
site,

d~=1, d/ =1 —U'pF ln(D/(v ().

Only one diagram of Fig. 4 contributes to I' in
next-leading order

(5 5)

I' =1+U'pz' ln(D/(ur (), (5 5)

and due to the Ward cancellation of vertex and
self-energies we have

U =U, (5.7)

also in next-leading order. In the same way we
obtain

Hence Z, does not contribute to next-leading log-
arithmic renormalization and we have

(e2 + Vg2) N/2 -(Vgd + ef ) ~0) (4.13) A = I+2Upp ln(D/l~ I) —U'4»(D/l~ I) (5 3)

where ~0) is the vacuum state and N is the number
of sites. Its energy is given by Ne, where

[E (E2 + 4Vg2)l/2 ] (4. 14)

Here V* is defined by, Eq. (4.4). This is essen-
tially the model solved by Gongalves da Silva and
Falicov. " These single-site states are in addition
strongly correlated via the RKKY interaction
(4.12).

V. RENORMALIZATION WITHIN THE LOCAL
PICTURE

If we consider a model with strictly localized
f electrons, the results of the renormalization are
very different, as seen in Sec. III. We see from
Eqs. (3.2)-(3.5) that the two bubbles of Fig. 1 can-
cel each other for 5 =0. As a consequence the
invariant coupling U' remains equal to its bare
value in leading logarithmic order.

In the same way, we have from the diagrams of
Fig. 2 that for 5 =0 the function A takes the form

A(~/D) =(D/(~)) P~, (5.1)

Z, = (i~ —Z, )U'p-', in(D/~~ ~), (5 3)

and that V' is renormalized by a power of D/D
[see Eq. (3.10)]. In this case we obtain no BCS-
type pole, but in analogy to Eq. (4.4) we are able
to define an effective hybridization

V* = V(D/V*) "/'& or V* = V(D/V) /'F/ '+"~/

(5.2)

We now proceed to evaluate the next-leading
logarithmic corrections to the self-energies and
the vertex For the .f-electron self-energy we ob-
tain

such that Eqs. (3.10) and (5.2) are only slightly
modified: Up~ has to be replaced by Up~(I ——,'Up/, ).
Also Eq. (4.12) remains valid if I is replaced by
1.

The above results are qualitatively different
from those of Sec. IV. In the extended and coherent
mixed-valence picture the vertex has a pole which
determines an effective hybridization. This ap-
proach is certainly correct if the hybridization
gap is larger than the fluctuations in the system,
i.e. , if V»U. In this case U is a small param-
eter and the perturbation expansion converges. On
the other hand, in the local and incoherent mixed-
valence picture the f levels behave essentially like
independent impurities. The local picture is cer-
tainly more adequate if V«U, since in this case
the correlations among sites are larger than the
"f-band dispersion" and, as a consequence of the
strong dependence of Eqs. (3.2)—(3.11) on the sign
of 5, U can no longer be considered as a small
parameter. In the actual physical situation we ex-
pect to have U» V. We discuss the corresponding
impurity model in detail in the following paper.

VI. CONCLUSIONS

In this paper we considered a model with spinless
extended and localized electrons. Neglecting the
spins represents a large simplification of the
Anderson lattice, since the model now only involves
charge fluctuations, but it still contains the main
feature of valence instabilities, namely, the com-
petition between two atomic configurations with
similar energies.

The main problem we faced in this paper is the
question. whether the mixed-valence state is an
extended coherent-hy'iridization state or if the
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"valence fluctuations" of the rare-earth (RE) ions
are rather local and incoherent. In both cases,
the coherent and the local picture, the perturbation
expansion with respect to U shows logarithmic in-
frared divergences, ' the results, however, are very
different. The coherence of the states are trig-
gered by the hybridization V, whereas the inter-
action P induces fluctuations which tend to destroy.
the coherence.

In Sec. IV we discussed the case of extended
states. The coherence of the states is simulated
by a model with an f band of very heavy holes
(6& 0) and V considered as an external perturba-
tion. The invariant coupling P has a pole at
To =Dexp[-I/(2Up~)], in analogy to the BCS theory,
and at the fixed point we recover the self-consis-
tent Hartree-Pock equation for the effective
hybridization, Eq. (4.4). The next-leading logarith-
mic approximation yields intersite interactions of
the RKKY type among the f holes. The strength
of these intersite correlations is proportional to
pi2

In the framework of local and incoherent valence
fluctuations the f band has no dispersion (6 =0).
The renormalization procedure yields-an enhanced
hybridization V, w'hile the invariant coupling U

remains equal to its bare value U. The results of
the renormalization are similar to those of an
isolated f level. In nonleading logarithmic approxi-
mation intersite RKKY interactions are built up
with a strength proportional to O'. The lifetime
of the conduction electrons is considerably reduced,
Eq. (5.6); it screens the RKKY interaction at
large distance such that the correlation between

f electrons at different sites is short ranged.
In order to interpret our results physically we

distinguish the cases U«V and U» V. The in-
variant coupling V is a measure for the coherence
of the state, whereas U characterizes the multiple
single-site scattering, i.e. , the local correlations,
and V ' HKKY the many-site scattering, i.e. , the
nonlocal correlations.

If U«V, we have for V'&D' from Eqs. (4.1),
(4.4), and (4. 11) that U «V, i.e. , that the effec-
tive hybridization is more important than the fluc-
tuations in the extended-state picture. In other
words, the renormalization of coherent states
yields again coherent states. Qn the other hand,
the renormalization in the local picture yields
small fluctuations and a large hybridization,
such that coherent states must develop. Hence,
one drives from the local picture to the- extended
picture. An alternative way to arrive at this con-
clusion is to compare the ground-state energies
when the fluctuations are neglected. A coherent
hybridization reduces the energy-per-site pro-.
portionality to V', while the local resonance

levels yield an energy gain of only V 'p~.
If U» V, the local and nonlocal correlations

are dominant in the extended-state picture, Eqs.
(4.11) and (4.12). These large fluctuations destroy
the coherence of the states, and the renormaliza-
tion drives the system to the local incoherent pic-
ture. In this case the fluctuations require a large
energy compared to the energy gain provided by
the coherent hybridization. Qn the other hand, in
the local- and incoherent-states framework, the
nonloeal correlations are small, such that each
RE ion behaves essentially as an isolated impurity.
Since P» V the multiple single-site scattering
still dominates over the hybridization such that
the system remains within this picture when re-
norm alized.

In physical systems we expect the Falicov-
Kimball interaction U to be of the order of 1 eV
and a hybridization of a few percent of eV. With
these values for the energy parameters we expect
local and incoherent valence fluctuations; in other
words, a mixed valence compound behaves like a
system of essentially isolated impurities. This
picture agrees with that arising from the experi-
ment, i.e. , thermodynamical properties and the q
dependence of the inelastic neutron scattering
cross section, which is given by the ioni:c form
factor. " The solution of the f-level impurity
problem is discussed in the following paper,

In summary, we have to distinguish three
regimes: (a) if U«V, the mixed-valence state
is extended and coherent; (b) if U» V, the valence
fluctuations are local and incoherent; and (c) the
crossover region for intermediate ratios of U/V.
This crossover regime is physically different from
the other two and could give a possible explana-
tion for some properties of systems like SmB, .

bootes added in proof. If the spin degree of free-
dom is included the large Coulomb repulsion Uff
between f electrons with opposite spin provides an

additional mechanism to break the coherence of
the extended states. This can be seen from the
fact that the leading logarithmic divergences are
due to single-site correlations.

There is an approximation involved in the cal-
culation within the extended picture. The momen-
tum integrations over the Fermi sphere depend on
the choice of the band structure. Hence, the
problem is not universal. Moreover, it is essen-
tial for the validity of multiplicative renormaliza-
tion to consider the quantities d&, d~, V, and I' as
independent on the momentum variables. This has
been assumed throughout the paper. With this ap-
proximatiop tedious integrations over the Fermi
sphere are avoided. We do not expect the results
to change qualitatively with a more careful treat-
ment of the momentum dependence. The renorm-
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FIG. 7. Integral equation for the renormalized hy-
bridization vertex.

equations are a coupled set of integral equations
whose solutions yield the vertex'as a function of
the three energy variables. This procedure is
tedious, and it can be simplified using the Sudakov-
Abrikosov""" trick. By means of this trick the
parquet equations for the vertex depending on three
energy variables is reduced to an integral equation
for a vertex function depending on a single energy
variable,

D
I" = 1 — (1+sgn5) dv, —I'(~, )1+ (5/ CO&

alization within the local picture is not affected by
this approximation. +1 (1 —sgn5) d(o, —I ((o,).UPp

L) 1
1+ g

(A1)

APPENDIX

We present here a diagramatic derivation of
the scaling laws for some of the quantities defined
in Sec. II. This derivation is independent of the
assumption of multiplicative renormalization and
can be considered as a proof for its validity. The
diagramatic calculation is tedious, and much care
must be taken with the logarithmic variables. The
renormalization group is an alternative method
which straightly and safely yields the same results.

We first derive the scaling equation of the four-
leg vertex in leading logarithmic order. The ver-
tex is in principle a function of three energy
variables. In general we have to consider two
scattering channels termed in the literature as the
zero-sound and Cooper channels. "'""' Following,
for instance, Refs. 19 and 20, one has to define
irreducible vertex blocks within these channels
and set up the parquet equations. The parquet

This equation corresponds to the diagrams of Fig.
1 with the interaction lines replaced by a full ver-
tex function. We restricted ourselves to the case
Eo =0 in leading logarithmic order discussed in
Sec. III. Taking the derivative with respect to &
we obtain

d F 2Up~
dl (I~I») I+I5I ' (A2)

Since in leading order U = U, this equation is
equivalent to (3.4) and (3.5).

We proceed now to calculate the hybridization
vertex in leading and next-leading logarithmic
order. The integral equation determining P is
diagramatically shown in Fig. 7. Here V is de-
noted by an encircled cross, the bare V by a
cross, the four-leg vertex by a square, and the
dressed propagators by the double lines. It is
sufficient to consider F as a function of a single
energy variable. Within the logarithmic approxi-
mation the integral equation can be reduced to

D

V(~) = V+ F (1 —sgn5) d&g, —d~(u&, )d&(to, ) I"(v, ) V(u&, ) .
I~l

Taking the derivative with respect to ~ we obtain

d lnV(&u) 1 —sin(5) - 1 —sgn5

(A3)

(A4)

This equation is equivalent to (3.8), (4.11), and (5.2).
Let us finally consider the function A. The response function ((d,f„f,d, )) is obtained by evaluating the

diagrams of Fig. 2 with dressed propagators and the interaction line replaced by a full vertex function de-
pending on three energy variables. In leading logarithmic order we have

&1-s n51 ' Tf

(A5)

where q =lnD/~v
~

and t are logarithmic energy variables and I" is the vertex I' depending on three energy
variables. It is now necessary to make a similar reduction as the Sudakov-Abrikosov trick for the vertex.
The procedure is tedious and can be taken from Appendix A of Ref. 20. We obtain finally

D

A(te) =exp(2Ue d» —I'(e)) .
+ ]~i x (A6)
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The derivative with respect to ~ yields the scaling equation

31nA 1 —sgn6 —,1 —sgn6
(A7)

This equation is equivalent to (4.2) and (5.1).
The self-energies contribute to the next-leading logarithmic order and Eq. (A5) is modified to

7l 1 —s n5 7l

((d» f 'f d»)) =
py 1

dfdd(f)dy(t)+ppU )6( df dd(f )dy(f») df2dd(f )dg(f )f'(f »f g),1+ )~I

(A8)

By the above procedure this equation is reduced to

A((o) 1 —sgng 1„()„()= p 2V (( dx r(x)d, (—x)dy(x)),

and we finally obtain

9 1n(A/d~d, ) 1 —sgn6- 1 —sgn5
s»(I~I/D) 1+ I&I 1+

Comparing Eqs. (A4) and (A10) we obtain that

V'((u) = (const) A((u)/d~((u)d~(u)) .

(A9)

(A10)

(All)

The proportionality constant is fixed by setting &u =D to be V'. Herewith we have proved Eq. (2.6) up to
next-leading logarithmic order.
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