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to the Si-SiG, interface

M. G. Ancona and H. F. Tierstcn

(Received 9 June 1980)

A fully macroscopic description of semiconductors is presented which includes the boundary conditions at the
surface of the semiconductor that are required for consistency with the usual diffusion-drift current equations. As in
a.l field theories, e.g., electromagnetism, both the boundary conditions and the differential equations are obtained
from the same governing integral forms. The new boundary conditions relate the jump discontinuities in the
chemical potentials across the interface to the forces exerted by the lattice on the charge carriers which prevent the
carriers from leaving the sobd. The expressions for the forces in the static case are found and the values of the
material surface coefficients appearing therein are obtained from quasistatic metal-oxide-semiconductor
capacitance-voltage measurements for some particular Si-SiO, interfaces.

l. iNTROBUCTION

The basic understanding of the behavior of
semiconductors arises from the semiclassical de-
scription of the motion of el.ectrons in a periodic
potentia1. .' ' Thi. s model of the semiconductor. has
proven invaluable in interpreting a host of phe-
nomena in the infinite lattice. Nevertheless, when
the electron number density varies appreciably, '
as it often does near boundary surfaces, or in
ca se s of inhomogeneous doping, a mac rose opic
description, which is not, related in a precise
quantitative way to the above-mentioned micro-
scopic model, is employed. ' ' This standard
macroscopic descrlp~ ion) conslstlDg of dlffuslon-
dr'=ft current equations, the charge balance equa-
tions, and the e'.ectrostatic constitutive equations,
is a continuum fieM theory, i.e. , a system of
partial differential equations containing dependent
macroscopic field variables as a function of space
and time. Howev-r, a complete field theory must
Rlso have a set of. conslsteDt bouDdary condltlons.
These are obtained from integral forms of the
governing equations just as in electromagnetism,
where electromagnetic boundary conditions are
obtained from the integral. forms of Maxwell. 's
equations. " In contrast to electromagnetism,
however, the integral forms and the associated
boundary conditions have never been obtained for
the standard macroscopic theory of semicon-
ductors. ' '

A wel. l.-defined macxoscoPic model of a semi-
conductor has been presented in the literature"
along with the integral forms obtained from that
model. The integral forms have been shown to
yield the conventional diffusion-drift current dif-
ferentlR1, equations plus the associated boundary
conditions across the surface of the semiconduc-
tor, which are missing in the existing macroscopic
semiconductor theory. However, since the equa-

tions appearing in Ref. 11 are unduly compl. icated
by the inclusion of mechanical deformations in
the description and, for other reasons, are not in
a convenient form, we rederive the equations and
obtain the more useful form here. The macro-
scopic model from which the fiel.d theory follows"
is chosen to permit electronic and hole conduction
in interaction with the electrostatic field. Al.-
though the model can readily be extended to in-
corporate electric polarizat on, "we do not bother
with this refinement and include polarization in
the usual. linear way. Also„ in the interest of
clarity all resonance phenomena are expressly
excluded from the treatment by ignoring the
macroscopic mass of all moving components
in the model. Accordingly, the model consists
of three suitably defined interpenetrating con-
tinua, which are called the lattice continuum,
the conduction-electronic continuum, and the hole
continuum. The lattice continuum does not move
arid contains a charge density representative of
the fixed ionized impurities responsible for ex-
trinsic semiconduction. The conduction-elec-
tronic and hole continua are inertialess charged
fluids which move through the lattice continuum
while experiencing a force of resistance. In ad-
dition, each conducting fluid interacts with neigh-
boring elements of the same fluid by means of de-
fined fluid pressure forces. Furthermore, charge
exchange is permitted between ail three continua
in order to ail.ow for recombination-generation
phenomena.

As in all such descriptions the application of the
laws of balance of charge and momentum yields
the equations of motion of the matter, which, with
the equations of electrosta, ties, constitute an
underdetermined system. The system is com-
pleted by the addition of various material. ly de-
scriptive constitutiv'e relations" whose allowed
functional forms are determined from thermody-
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namic arguments. ' The differential forms of the
equations of motion for the conduction electronic
and hole fluids along with linear constitutive as-
sumptions yield precisely the usual diffusion-
drift current equations containing the material
coefficients of mobility and diffusivity.

The boundary conditions at the surface of the
semiconductor, which are required for the solu-
tion of semiconduction problems involving bounded
media, are obtained from integral forms of the
semiconduction equations. As with all the other
differential equations and their associated bound-
ary conditions, this procedure ensures consistency
between the semiconduction differential equations
and the semiconduction boundary conditions.
These boundary conditions, which do not appear
in any of the existing literature on semiconduc-
tors, ' "7 relate the jump discontinuities in the
electronic and hole chemical potentials across
the surface to the forces per unit area per unit
charge densities exerted by the lattice continuum
on the respective fluids that keep the electrons
from leaving the solid. " The thermodynamic ar-
guments in Appendix A indicate that the forces
per unit area per unit charge densities are func-
tions of the electric field on each side of the sur-
face of the semiconductor and the respective
charge densities and velocities of each fluid at the
surface. The expressions for the forces per unit
area per unit charge densities contain material
surface coefficients which are to be determined
from measurements just as the mobility and
diffusivity coefficients in the differential equa-
tions for the semiconductor are often measured.
Presumably, the material surface coefficients
could be calculated from a more fundamental quan-
tum-mechanical model by means of electronic
surface structure calculations, "'"but the avail-
able results seem to indicate that for quantitative
detail. such calculations would be prohibitively
complicated ""

The missing boundary conditions have not de-
terred workers from treating problems concern-
ing semiconductors with boundaries analytically. "
To be sure, many authors have circumvented the
difficulty by imposing various boundary conditions
in order to provide the additional condition re-
quired for the solution of the boundary-value
problem. For example, some have simply dis-
regarded the existence of surface charge on the
semiconductor surface. " Others, especially those
interested in computer-aided design" have as-
sumed a Priori the value of the surface charge. ""
Another attack has been that of Kroemer, "'7 who
used the concept of a "control characteristic" in
treating certain aspects of Gunn-effect phenomena.
Many additional examples may be cited." Al-

though some of these procedures are based on rea-
sonable assumptions over certain ranges, "in a
number of cases results have been obtained which
are clearly at variance with experiment. " In ad-
dition, none of the previous approaches have
formulated the boundary-value problem without
assuming boundary conditions not deduced from
fundamental principles. In the procedure pre-
sented here, when the newly defined material sur-
face coefficients have been found from measure-
ments of a particular material surface, the new
boundary conditions enable the solution of semi-
conduction boundary-value problems.

In the final section of this paper an illustration
of this purely macroscopic description of sur-
faces of semiconductors is presented by treating
the often analyzed semiconductor-insulator inter-
face. Much work" "has been done with the pur-
pose of understanding and describing the semi-
conductor-insulator junction, especially in the
case of the Si-SiO, interface. " Microscopically,
this boundary is an immensely complex structure.
Even in the case of the much simpler semic on-
ductor-vacuum interface electronic surface struc-
ture calculations have yet to yield good quantitative
agreement with microscopic measurements. " Un-
doubtedly, the connection of the microscopic cal-
culations with the essentially macroscopic mea-
surements of capacitance and conductance, which
are frequently made in studying semiconductor-
insulator interfaces using the metal-oxide-semi-
conductor (MOS} structure, is even further away.
Although these measurements are usually ex-
pressed in terms of quasimicroscopic entities,
such as interface state densities, it is clear that
there is actually no real correspondence between
such measurements and microscopic quantities.
%e believe that the approach presented in this
paper, which depends crucially on the new (miss-
ing} semiconduction boundary conditions, affords
a purely macroscopic quantitative description of
semiconductor interfaces that can be used to ad-
vantage in categorizing semiconductor interfaces.
More specifically, as already noted, in this ap-
proach the semiconductor interface is charac-
terized by a set of macroscopic material surface
coefficients which are to be measured. In the
case of the semiconductor-insulator junction MOS
quasistatic capacitance-voltage (C-V} measure-
ments provide a means of evaluating the relevant
static coefficients, as is exhibited in the last
section for the Si-SiO, interface. Among other
things, a knowledge of the values of these material
surface coefficients can provide a detailed quan-
titative understanding of the influence of the sur-
face on the performance characteristics of de-
vices. For example, in the case of a metal-
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oxide-semiconductor field-effect transistor
(MOSFET) the range in which the values of the
surface coefficients must remain with aging in
order to satisfy some circuit performance cri-
terion can be established. '

II. THE MACROSCOPIC MODEL OF THE
SEMICONDUCTOR

y'+y +y' =0. (2.1)

Now, each conducting fluid interacts with the
lattice continuum at the macroscopic point x;
by means of defined material el.ectric fields des-
ignated E' and E, respectively. These cause
equal and opposite forces + p'E' and + phEh to be

As indicated in the Introduction the maeroseopic
model of the semiconductor consists of three
well-defined interacting continua, which are
present at each point of space and time. The
three continua are defined as follows.

(1) The (combined) lattice continuum, denoted

by the superscript i, may have either a positive
or negative charge density corresponding to the
ionized impurity density. " This continuum does
not move and contains the macroscopic elements
that account for polarization. "

(2) The conduction-electronic continuum, de-
noted by the superscript e, corresponds to the
conduction=band electrons and is, of course, neg-
atively charged. This continuum is a macroscop-
ically inertialess, conducting, compressible fluid
that experiences a fore e of re sistanc e fr om its
motion with respect to the lattice continuum.

(3) The hole continuum, denoted by the super-
script h, corresponds to the absence of valence-
band electrons and is positively charged. This
continuum also is a macroscopically inertialess,
conducting, compressible fluid (hat experiences a
force of resistance from its motion with respect
to the lattice continuum.

The Cartesian components of points in the la.t-
tice continuum are denoted by x; (i =1, 2, 3),
which, of course, denotes the components of the
same point in the conduction-electronic and hole
fluids also. The charge densities" associated with
the three continua are denoted p, p', and p", re-
spectively, and are functions of space x; and time
t in general. The three continua are permitted to
exchange charge with one another through defined
charge source densities labeled y', y', and y".
These allow for the possibilities of bulk genera-
tion and/or recombination of carriers by means
of either changes in the degree of ionization of
impurities or electron-hole pair generation or
recombination. Then, in order to satisfy the
conservation of total macroscopic charge at
each macroscopic point, we must have

exerted between the lattice continuum and each of
the respective conducting fluids. The macro-
scopic forces -p'E' and -phEh exerted on the lat-
tice continuum by the fluids are assumed to be
sufficiently small that any motion they tend to
produce may be ignored for our purposes. " Each
conducting fluid interacts with neighboring ele-
ments of the same fluid by means of pressure
forces labeled P' and P", respectively, which act
on the surfaces of separation between elements of
the respective fluids. The quasistatic Maxwell
electric field E exerts forces on all elements of
charge, but we note that since the lattice con-
tinuum does not move, only those forces exerted
on the conduction-electronic and hole fluids are of
any importance in this work.

III. THE MACROSCOPIC EQUATIONS FOR THE
SEMICONDUCTOR

Since the two conducting fluids have different
velocities yet occupy the same region of space
as the lattice continuum which does not move, it
is advantageous to write the integral forms of
the balance equations with respect to a stationary
element of volume. Accordingly, we write the
charge balance equations for the lattice (impur-
ity), the conduction-electronic and the hole con-

- tinua in the respective integral forms

p'dV = y'dV,
~t

(3.1)

p'dV+ n v'p'd$ = y'dV,
~t v s v

(3.2)

phdV+ n ~ vhphd$ = yhdV
v s v

(3.3)

Bp
y (3.4)

e

+ & ~ (p' v') =r', (3.5)

~P h~h h (3.6)

Clearly, the total charge p and the actual current

where n is the outwardly directed unit normal to
the surface $ enclosing the arbitrary volume V
fixed in space. The vectors v' and vh denote the
velocities of the conduction-electronic and hole
continua, respectively. The local differential
forms resulting from (3.1)-(3.3) are obtained in
the usual way by employing the divergence theo-
rem to convert the surface integrals to volume
integrals and by employing the fact that the volume
V is fixed in space and is arbitrary, with the
result
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density J at any point are given by

(3.7)P=P +P+P,
J = p' v'+ p v = t'+ J,

where J' and J are the conduction-electronic and
hole current densities, respectively. Adding-

(3.1)-(3.3) and employing (2.1), (3.V), and (3.8),
we obtain

(3.8)

8 f—
I PdV+ n ~ JdS =0,

Bt g~
(3.9)

which is the usual integral form of the conserva-
tion of total electric charge. From (3.9), with the
aid of the divergence theorem and the arbitrari-
ness of V, we obtain

Qp—+V ~ J=Ot (3.10)

which is the usual local differential form of the
total charge balance equation. Note that Eq.
(3.10) may equally readily have been obtained by
adding (3.4)-(3.6) and employing (2.1), (3.7),
and (3.8).

In this work we need the usual charge and cir-
culation equations of electrostatics, which take
the respective integral forms

Jl n DdS = j) pdV,
S F

E ~ dr=0,
C

(3.12)

where D is the electric displacement vector, E
is the Maxwell electric-field vector, S is an
arbitrary surface encl. osing the volume V, and
C is an arbitrary closed curve. From (3.11), with
the aid of the divergence theorem and the arbi-
trariness of V, we obtain

V ~ D=p, (3.13)

which is the l.ocal differential form of the charge
equation of electrostatics. Furthermore, Eq.
(3.12), with the aid of Stokes theorem and the
arbitrariness of the area enclosed by C, enables
us to define the usual scalar el.ectric potential y
such that

(3.14)

Vfe now note that si.nce the lattice continuum
does not move the balances of linear momentum
and mass of the lattice continuum may be ignored
in this work in which the lattice continuum simply
serves as the entity that provides the reactions
to the actions of the two conducting fluids. Fur-
thermore, since the conducting fluids have been
defined as being massless, the balance of mass
of these constituents is not needed. The equations

of the balance of linear momentum for the con-
duction-electronic and hole continua take the
respective integral forms

np'dS+ p' E+E' dV =0,
S F

nP"dS+ p" E+E" dV =0.
"s

(3.15)

(3.16)

From (3.15}and (3.16), with the aid of the di-
vergence theorem, the arbitrariness of V, and

(3.14), we obtain the local differential forms of
the semiconduction field equations for the re-
spective continua:

-VP' —p'Vy+ p'E' =0,
-VP" —p"Vy+ p E =0.

(3.1V)

(3.18)

P' =f '(p', T), P" =f "(p", T),
E' = E'(p', v', E, T),
E"=E"(p", v, E, T),
D =D(E, T),
r' = r'(p', p", v', v", E, T),
r" = r"(p', p", v', v", -E, T),

(3.19)

(3.20a)

(3.20b)

(3.21)

(3.22)

where T is the (here uniform) absolute tempera-
ture. As in all macroscopic theories, e.g. ,
electromagnetism and elasticity, the functional
forms and the values of the material coefficients
(dielectric constants, elastic constants, etc.) are
to be determined from experiment. Any functional

At this point we note that the governing differ-
ential equations consisting of (3.10), (3.13}, any
two of (3.4)-(3.6), (3.1V), and (3.18), with (2.1},
(3.7), (3.8), and (3.14), constitute an underde-
termined system, i.e., there are more dependent
variables I31 (10 scalars and 7 vectors)] than

equations (18). As usual in any macroscopic de-
scription of this nature, materially descriptive
constitutive equations are required in order to
obtain a determinate system. Constitutive equa-
tions consistent with the model are obtained by
writing the equation of the conservation of energy
for the combined material continuum, from which
the first law of thermodynamics is obtained, and

employing the second law of thermodynamics.
However, in order not to obscure the main pur-
pose of this work, which is to indicate the im-
portance of the boundary conditions as well as
the differential equations in the macroscopic
description of semiconductors, we give the deriva-
tion of consistent constitutive equations from the
thermodynamics in Appendix A and simply pre-
sent the resulting constitutive relations here. In
accordance with Appendix A the constitutive equa-
tions must take the following functional forms:
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form depending on the variables shown in (3.19)-
(3.22) will be consistent with the model provided
that (A7) is satisfied. For example, the impor-
tant forms usually chosen for (3.20a) and (3.20b)
are

E' = v'(p, ',
((y (s

(3.23a)

(3.23b)

where p.
' and p,

" are the measured mobilities of
the conduction-electronic and hole fluids, re-
spectively. At high el.ectric fields, it is well
known that E-dependent terms become neces-
sary. " Similarly, the form usuall. y chosen for
(3.21) is

D=~, E, (3.24)

(lip')~P'=VV", (1&p )~P =VV'". (3.25)

The substitution of (3.25} into (3.17) and (3.18)
yields

-V(y'+y)+E' =0,
-V(q" +y)+E" =0,

(3.26)

(3.27)

which, as we shall see, are very useful forms of
the differential equations for the semiconducting
fluids. Substituting from (3.23) for the respective
fluids into (3.26) and (3.27), respectively, and
employing (3.14), the definitions in (3.8), the fact
that cp' = y'(p', T) and y" = y"(p", T) and the assurnp-
tion of uniform temperature, we obtain

J 8 ~8p8E D8+p8 (3.28)

J"= p."p"E —D"Vp,
where

8 g h
De crepe

0 Dh + ~hph 9
Bp , Qp

(3.29)

(3.30)

are the diffusion coefficients. Equations (3.28)
and (3.29) are the standard diffusion-drift cur-
rent equations for the conduction-electronic and
hole fluids, respectively, and (3.30) contains
familiar expressions also. '~ Appropriate forms
for (3.22) are weil known. "

At this point we note that we now have a de-
terminate theory, which by appropriate substitu-
tion ean readily be reduced to ten equations in
the ten dependent variables, y, p, p', p", J,

where &, is the permittivity for the semiconductor.
Before proceeding, we note that a significant

simplification in (3.17) and (3.18) may be achieved
by employing certain relations between the gradi-
ents of the pressures P' and P" and the gradients
of the well-defined chemical potential. s y'
= y'(p', T) and. ((((" =y"(p, T),"which are derived
in Appendix A and are of the form

and J' or J" The ten equations are any two of
(3.4)-(3.6), (3.10), (3.13), and three each of either
(3.26) and (3.27) or (3.28) and (3.29)."'" In
order to have a complete field theory the boundary
(or jump) conditions across surfaces have to be
adjoined to the system of differential equations.
However, before we discuss the boundary con-
ditions we note that the particularly useful dif-
ferential forms, (3.26) and (3.27), for the semi-
conducting fluids are equivalent to the integral
forms

np +ydS+
S V

(3.31)

n(s" s) ss+ Js"sv=o, (s ss)
+S V

because the local differential forms in (3.26) and
(3.27) can readily be obtained from the respective
integral forms in (3.31) and (3.32) when the field
variables are differentiable. Moreover, we now
take (3.31) and (3.32) to be valid even when the
field variables are not differentiable and. (3.26)
and (3.27) cannot be obtained, such as across
surfaces of discontinuity. Of course, all the
other integral forms are taken to hold across
surfaces of discontinuity also. For purposes of
obtaining boundary conditions in this work, the
integral forms (3.31) and (3.32) replace (3.15) a.nd
(3.16), respectively, because they are consider-
abl.y simpler forms that result in more conven-
ient boundary conditions.

The pertinent boundary (or jump) conditions are
obtained by applying the integral forms (3.9),
(3.11), (3.31), (3.32), and any two of (3.1)-(3.3)
to an arbitrary pill-box region encompassing a
portion of the surface of discontinuity and taking
the limit of the region as the volume shrinks to
zero fainter than the area in the usual way, "while
assuming that the volumetric densities either re-
main bounded or become unbounded in a specified
way. The boundary (or jump} condition obtained
from (3.12), which contains a circulation integral,
is determined instead by taking the circulation
around an arbitrary area normal to and inter-
secting a portion of the surface of discontinuity
and taking the limit as the area enclosed by the
circuit collapses to the surface of discontinuity
in the usual. way. ' The jump conditions obtained
from any of (3.1)-(3.3) are not of interest in the
present work (because only total surface cha. rge
is of interest) and consequently, are not obtained
here. From (3.11) in the above-mentioned way
we obtain the well-known condition

n ~ [D]=c,
where we have introduced the conventional nota-
tion [C] for C' —C, n denotes the unit normal di-
rected from the minus to the plus side of the
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surface of discontinuity, and & is the surface
charge density, which is defined by

JI o'dS =lim j)pdV.
S v~0 v

(3.34)

Similarly, from (3.9) with the aid of the time
derivatives of (3.33}and (3.34), we obt'ain

80
n ~ +J =0.

Ia

(3.35,)

From the circulation integral (3.12) in the above-
mentioned usual way, we obtain the well-known
condition of electrostatics

f"=f"(p", v", E, 7') (3.44)

Equations (3.40) and (3.42), with (3.41), (3.44),
and the functional dependences of y' and y", re-
spectively, on p' and p" are the previously dis-
cussed required semiconduction boundary con-
ditions, the existence of which along with the
application in the next section constitute the maih
point of this work. Appropriate specific forms
for (3.41) and (3.44) are discussed in the applica-
tion in the next section and expressions for

(3.45)

are discussed in Appendix B.
n x [E]=0, (3.36}

which, with the aid of (3.14), enables us to ob-
tain the boundary condition4'

[(p] = 0. (3.37)

The application of (3.31) to the arbitrary limit-
ing pill-box region in the aforementioned manner
yields

n[y'+y]=f'n,
where

f'ndS =lim Jr E'dV,
8 v~p v

(3.38)

(3.39)

rf"ndS =lim E"dV
S v~0 v

and from (3.20b) and (3.43) we must have

(3.43)

and we note that the force per unit charge E' ex-
erted by the lattice continuum on the conduction-
electronic fluid at the interface must be permitted
to become unbounded in the manner indicated in

(3.39) because there must be a force exerted by
the lattice continuum on the conduction-electronic
fluid at the boundary which prevents the electrons
from leaving the semiconductor. Substituting
from (3.37) into (3.38) and omitting the n, which
is unnecessary, we obtain

(3.40)

which states that the jump in the chemical poten-
tial of the conduction-electronic fluid across a
surface of discontinuity is equal to the restraining
surface interaction force exerted by the lattice.
In view of (3.20a) and (3.39), the constitutive equa-
tion for f' is taken in the form

f' =f '(p', v', E, T) . (3.41)

In a similar way, from (3.32) and (3.37), we ob-
tain

(3.42)

where '

IV. APPLICATION TO Si-SiO~ INTERFACES

As noted in the Introduction, the purely macro-
scopic equations for the semiconductor, which
have been developed here, are particularly well
suited for the description of the influence of the
properties of the surface of the semiconductor on

gross sample behavior. The MOS quasistatic
Q- V experiment provides a convenient means of
demonstrating some of the advantages of the pure-
ly macroscopic description. As already men-
tioned, this experiment provides a means of eval-
uating some of the macroscopic material surface
coefficients that occur in expressions to be writ-
ten for f' and f . The values of these coefficients
for-a particular semiconductor surface are ob-
tained by solving a straightforward one-dimension-
al problem corresponding to the experimental
setup and deriving an expression for an observable
consequence in terms of the unknown material
surface coefficients, from which the values of the
coefficients are determined by comparison with
measurements. In order that our model of the
actual MOS quasistatic C-V experiment be valid,
the following requirements must be satisfied":

(1) The geometry should be such that the as-
sumption of one-dimensional dependence holds. "

(2) The thickness of the semiconductor should

be sufficiently large that one end ean be assumed
(in the problem) to be at infinity.

(3) There should be no fixed or mobile oxide
charges.

(4) The static form of the equations should be

applicable. '2

(5) The semiconductor properties should be
macroscopically uniform.

(6) The oxide capacitance should not be much

smaller than other capacitances in order that
the surface behavior be detectable by a total
capacitance measurement. "
A schematic of the modeled MOS structure with
associated coordinate system is shown in Fig. 1.
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(4.9)

ax Sx ,. at x=0,

(4.10)

FEG. 1. Schematic diagram of the MOS structure.
where the electric-field terms are evaluated on
either side of and immediately adjacent to the
oxide-semiconductor interface, and we note that

Under the assumed static conditions we have V.„(0)=
V .(o) = V. , (4.11)

v' = v" = 0, y' = y" = y' = 0, (4 1)

and the dynamic equations consisting of (3.5),
(3.6), and (3.10) are satisfied identically. The
nontrivial equations remaining are (3.13), (3.28),
and (3.29) in the absence of J' and J". Since in

the problem under consideration we have one-
dimensional-, i.e. , x-, dependence only, from
(3.13), with (3.7), (3.14), and (3.24), we have

dX
—(p'+ p + p'} 0 ~ x

'~

(4.2)

and (3.28) and (3.29} take the respective forms

(4.3)

ader

~D dp
dx (p. dx

(4.4)

Since the charge density vanishes in the oxide,
we have

d2p =0 . -I,(x( 0.
dx (4.5)

As a consequence of condition 2 above, we have

p-0, (4.6a)

y-O, (4.6b)

—-0 as x-~
dx

(4.6c)

at x =-E, (4.7)

where q is due to the potential jumps arising
from possible double layers at the metal-oxide
interface and the metal. -semiconductor interface
and y, is the applied (gate) voltage relative to
a metal "ground" plate. From (3.37), (3.40),
and (3.42) we see that the additional boundary con-
ditions to be satisfied at the interface between
the oxide and the semiconductor are

y,„=p„atx =0, (4.8)

The boundary condition to be satisfied at the inter-
face between the oxide and the metal is

where q, is the surface potential of the sem icon-
ductor. '4 Integrating (4.3) and (4.4) and employ-
ing the boundary conditions (4.6), we obtain

q = —,ln —,= —~ln-));, 0(x
p~ p. p~

(4.12)

where p" and p" are the constant charge densities
of the respective fluids at infinity. From (4.6a),
condition 5, and (3.7) we have

p +p +p =0. (4.13)

Solving (4.12) for p' and p" in terms of y, sub-
stituting in (4.2), and employing (4.13), we ob-
tain a single nonlinear differential equation in the
single dependent variable q, a first integral of
which may be written' in the form

A
D II h h 1/2e-I via W 0'

+ ~A

(4.14)

—+ =0, 0(xd(p dip
dx dx

(4.15)

—+ =0, 0-xdp dip

dx dx (4.16)

which are just the one-dimensional versions of
(3.26) and (3.27) in the absence of E' and P, which

where the integration constant has been found from
the boundary condition at infinity given in (4.6b)
and (4.6c). The sign of dy/dx is undetermined at
this stage. Equation (4.14) may be reduced to a
quadrature immediately. In order to evaluate the
integration constant and fix the presently unknown

sign in (4.14), we must employ the heretofore un-
known (missing) boundary conditions in (4.9) and

(4.10). Since these boundary conditions involve
the chemical potential. s y' and cp", we digress with
a derivation of some simple expressions for y'
and y" in the static case. By virtue of (3.30), (4.3)
and (4.4) can be written in the form
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vanish when the velocities of the conduction-
electronic and hole fluids vanish.

Cleariy, Eqs. (4.15}and (4.16), which are the
same as (4.3}and (4.4}, can be integrated im-
mediately to obtain

0+0 =0-,
p+p =p, 0&x

(4.17)

(4.18)

Equation (4.21}provides a relation between the
surface potential y, and the electric fields on

either side of the interface and, as noted earlier,
contains material surface coefficients, which are
to be measured and are characteristic of the par-
ticular interface. When the material surface co-
efficients are known, Eq. (4.21}provides the one
independent condition which enables the one re-
maining integration constant to be found and, thus,
the solution to the posed problem to be obtained.

In the case of the static one-dimensional problem
being treated here calculations are greatly simpli-
fied as a result of (4.14), which may be evaluated

where q' and y are the constant values of the
chemical potentials away from the space charge
region, and we have employed (4.6b)." Now, the
left-hand sides of (4.9) and (4.10) are

[q']=&' -q:., [q"]=9" -q", (4.»)
into which we can substitute from (4.17) and (4.18)
for /mern and p" . Subtracting [y"] from [y'],
we obtain,

[v"] = q"".—v':. —q'-+ 9'-+ [v"], (4.20)

where, of course, q,'„and y,"„are the constant
chemical potentials in the oxide. The four con-
stants appearing in (4.20) are presumed known

and, therefore, in the static case [y'] and [y"]
and, of course, from (4.9) and (4.10), f' and f
are not independent quantities. Consequently, in
the static case (4.9) and (4.10) are not independent
boundary conditions, which is not surprising since
only one integration constant remains undeter-
mined. Since f' and f differ only by a constant
and the functional dependences for f' and f are
of the forms shown in (4.9) and (4.10), it is clear
from (4.12) that the functional dependences of
f' and f"on p' and p" must be through the respective
variables log»p'/p' and log„p "/p because the
conditions (4.9), (4.10), and (4.20) hold for
arbitrary p' and p . In view of the foregoing, from
(4.9), (4.11), (4.12), (4.17), and (4.19), the one re-
quired boundary condition at the semiconductor-
oxide interface in the static case must be of the
form

dQ
q~ —qox-qa=f I 0~» —,TI ~"dx ~x'dx '~'

(4.21)

at x =0 to obtain dy/dx( explicitly as a function
of y, . By satisfying (4.5), (4.7), and (4.11) for
the oxide portion of the problem, we find

q s pn +9Mos
~dx,„ l

(4.22)

and, hence, (4.21), with (4.14) and (4.22), pro-
vides a direct relation between y0 and p, at con-
stant temperature. The aforementioned simplifi-
cation in the calculations also causes a weakness
in our ability to obtain definitive values of the
material surface response coefficients from MOS
quasistatic one-dimensional C-V measurements
and to distinguish conclusively between field and
surface-potential (charge-density) terms in the
expression for f'. In this paper, where we in-
tend only to illustrate the completely macro-
scopic approach to semiconductor interfaces, we
are content merely to provide reasonably con-
vincing (but not definitive) evidence for the forms
chosen for (4.21).

In establishing a form for f' and determining
the values of the attendant material surface co-
efficients that arise, experimental data are util-
ized. In the quasistatic C-V experiment the total
capacitance is measured directly as a function of
the applied voltage. The Berglund integration"
of the capacitance may be used to give reason-
ably accurate values for y, vs y0 over certain
ranges of q, .57 The aforementioned simplifica-
tion of (4.21) resulting from the existence of
(4.14) makes these (q, vs y,} data preferable. "
It is also to be recommended by the fact that these
data are a direct measure of semiconductor sur-
face response, whereas total capacitance is not.
At this point it should perhaps be mentioned that
the procedure of using the C-V data to generate
[-. (I/q}do/dy, ], which is commonly referred to as
N„, the surface-state density, is unnecessary
insofar as the determination of macroscopic sur-
face coefficients is concerned. However, in a
number of cases we have used these data since it
is the form usual. ly presented in the literature.

Now, an explicit representation of f' in (4.21)
is found by choosing a suitable simple expression
in the variables shown and obtaining the material
coefficients in the expression from experimental
o' vs y, or du/dy, vs y, data. The wide range of
variation in measured surface response" seems
to indicate that the possibility of obtaining one
form for f' for all Si-SiO, interfaces is unreal-
istic. However, for annealed MOS structures, in-
terface response is found to be qualitatively sim-
ilar"' and hence for these interfaces a single
form for f' appears to be appropriate. The ex-
pression we choose for f' is"
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f' A, (T, y, ) — +A, (T, y,)—
+A, (T)(p, +A, (T)y', + ~ ~ ~, (4.23)

&o =A (O' —0o )
1

8, = ——'" (1+A,),

(4.26)

QP
DPX — ~PX ax (4.24}

where z,„ is the permittivity of the oxide. By
substituting from (3.24) and (4.24) into (3.33) we
obtain an expression for dp/dx ~,„which is in-
serted into (4.23). The resulting expression for
f' is substituted into (4.21), from which for
A, 4 0 we obtain

~ ~ ~o'=Bp+B~— +B2@s+B39s+ ' ' '
~

Iem
(4.25)

where

where all. coefficients are functions of tempera-
ture, which is constant in the present work. We
note that the electric-field terms must be present
in (4.23) because the dependence of y, on p,
arises only through the dy/dx~, „ term and unless
a dependence on y, appears in (4.23), (4.21)
reduces to an equation for y, independent of the
external conditions. Only terms linear in dq&/dx

on each side of the interface are retained in
(4.23) because the electric field is the force per
unit cha. rge. Further specification of (4.23}, as
to which terms are to be kept and the values of
the coefficients A;, is accomplished by use of a
regression analysis (including plots of residuals)
of the experimental data. The goal here is to
achieve reasonable accuracy in the representation
of f' while employing the minimum number of
terms. " However, it is important to realize that,
ultimately, the level of accuracy required in the
representation of f' is dictated by the particular
problem under consideration. It is found that al-
though the surface coefficients A, and A, can de-
pend on y„no dependence on y, is required in
order to obtain reasonable agreement with the
experimental data considered in this work. How-
ever, such a dependence can improve the accuracy
of the representation. The remaining terms in the
expression for f' are a power series in y, . The
number of terms retained in any polynomial ap-
proximation depends on the accuracy desired. We
have found that typically no more than three terms
in the power series are necessary to give adequate
agreement.

For the purpose of obtaining the material sur-
face coefficients A; from experimental data of
& vs y, or do/dy, vs y„ the solution can be put in
a particularly useful form by employing the con-
stitutive relation for the oxide

and we have taken the liberty. of omitting the tem-
perature dependences. Although (4.25) is a par-
ticularly convenient form for use in this work, it
should be noted that the A; are to be regarded as
fundamental. here and not the derived B;." In ex-
isting work on semiconductors interfaces the co-
efficient Bp is often called the surface-state
charge. '4 We al.so remark that since N„data are
proportiona. l to do'/dy, they do not provide a mea-
sure of 8,. In Fig. 2 some experimental do/dip, '

vs y, data'"' are presented along with a reasonably
accurate fit to that data using the y, derivative of
(4.25). The nonzero B; and A; coefficients de-
termined from this fit for this particular Si-SiO,
interface are also shown. "

An equation similar to (4.25) has been used
elsewhere" as the additional boundary condition
required for the solution of a boundary-value
problem to be obtained. However, as noted in
the Introduction, assumed'conditions, such as
that in Ref. 23, are used simply because some-
thing is needed and are not obtained from funda-
mental physical principles dictated by the field
theory as is done here. ~' Furthermore, the as-
sumed condition of Ref. 23 is a static condition
and not dynamic (as it is used) as shown by the
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FIG. 2. Comparison of experimental data from Ref.

65 with the theoretical. curve obtained using the expres-
sion for f given in Eq. (4.23). The B; coefficients are
B,=1.6X10 'C/cm (assumed), B&+1.2X10 farad/
cm, B2-——4.3 X 10 farad/cm, B3=—1.4 X 10 C/V
cm, B4-——5.2 X 10 C/V cm . The A

&
coefficients are

A&-——7.6X10 cm, A&=2.4X10 cm, A3= —1.1X10,
A4= —3.3 X10~ V ~ A 5= —1,2 X 10
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derivation of (4.25). Moreover the condition
employed in Ref. 23 does not contain the B, term
appearing in (4.25). The appearance of the B,
term in (4.25) is guaranteed by the fact that the
terms linear in the electric field must be present
in (4.23) as noted earlier. Nevertheless it is
entirely possible that the B, (field) term could be
much smaller than the other terms and, hence,
negligible. It is to be expected that if the 8, term
is ever important, it would be when very high
fields exist near the surface, which is the case
when large voltages are applied or when the semi-
conductor is heavily doped and subject to mod-
erate voltages. This expectation is also consistent
with the fact that high fields tend to cause many
quantities to be field dependent, e.g. , mobil. ities.
The regression studies appear to support this
expectation. However, as already noted, on ac-
count of a weakness in the static one-dimensional
problem no definitive experimental evidence of
the necessity of the 8, term can be obtained in
this way.

Figure 3 presents a comparison of fits of the y,
derivative of (4.25}, both with and without the B,
(field) term, to a particular data set." As was
typically the case for the data considered in this
work, inclusion of the field term yielded a better

fit with fewer terms needed. In addition in strong
accumulation or inversion it is the field term. which
constitutes the dominant contribution to f', where-
as for n-type semiconductors if our sole interest
is in the surface-potential range -0.55 V- y,- 0.0 V, the field term may be accurately ex-
panded in a few y, polynomial terms. We note that
for the particular sample of Fig. 3 the surface
field dip/CkI in strong accumulation is -10'
volts/cm. "

The findings presented here concerning values
of material surface coefficients and of the actual
expression used for f' in (4.23) should be regarded
merely as illustrative. Extensive and systematic
experimentation would be needed to definitely
establish a "best" form for f' for annealed sam-
ples. With the aid of such a form, a catalog of the
values of surface coefficients along with the

/

sample-preparation techniques necessary to
achieve or alter those values could be obtained
and would constitute the complete macroscopic
description of the Si-SiO, interface. As an il-
lustration, Table I gives a tabulation of values for
material surface coefficients for a specific
Si-SiO, interface, "the d&/dy, vs y, curves of
which are shown in Fig. 4, based on the form of
f' in (4.23}. Each sample underwent the same
preparation technique except that different metals
were used for the front contact in each case.
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FIG. 3. Comparison of two theoretical curves ob-

tained using Eq. (4.25) with data from Ref. 68. Curve 1
is obtained including the field term while curve 2 is
obtained without the field term. The nonzero 8

&
coefficients

are asfollows: Curve 1: B,=1.9 x 10 farad/cm, B2
=3.4x10 8 farad/cm, B3 8.0x10 8 C——/V2cm2. Curve
2: ~ = —6.4 x 10 farad/cm, B3=-4.4 x 10 7 C/V cm2,

~4- ].8x10 ~ C/V cm, jg&- 3.1x10 6 C/V cm,
gg=- 2.1 x 10 C/Vscm .
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APPENDIX A: THERMODYNAMIC CONSIDERATIONS (REF 7&)

The integral form of the conservation of energy for the three-component combined continuum, consisting
of the two conducting fluids plus the polarizable lattice, states that the time rate of increase of totgl
stored energy in the three continua in any fixed volume is equal to the rate at which work is done by the
fluid pressure forces minus the rate at which stored energy flows out of the fixed volume plus the rate at
which energy is supplied to the combined semiconducting continuum by the electric field, which enables
us to write

( e+p'e'+P"e )dV = [-p'n ~ v'-p" n ~ v"-n v'p'e'-n v"P"e"]dS+ ZdV,~t v. s v
(A1)

(A2)

where & is the stored internal energy per unit volume in the lattice continuum, E' and E are the stored
internal energies per unit charge of the conduction-electronic and hole fluids, respectively, -p'n ~ v' and
-P"n ~ vh are the rates at which work is done per unit area by the pressures acting on the two charged
fluids, n ~ v'p'e' and n ~ v"p"e" are the rates of efflux of stored internal energies of the two fluids from the
fixed volume, and Z is the rate of supply of energy per unit volume to the combined semiconducting con-
tinuum from the electric field. The quasistatic Maxwel. l. el.ectric field acting on all charged elements in
the macroscopic model of Sec. II supplies energy according to

Z=p'E ~ v +pE v +E&-
dt '

where the third term containing the electric polarization P would arise from a detailed treatment of polar-
ization in the macroscopic model. "but is here taken merely as a plausible assumption.

Taking the time derivatives in (A1), substituting from (A2), employing the divergence theorem, (3.5),
(3.6), (3.17), (3.18), the arbitrariness of V, the defined material derivatives

d
~ V —= —+vh ~ V

dt ~t' dt ~t ' dt ~t (A3)

and in accordance with the model, making the plausible assumptions

0' = e'(p', T) c"= e"(p", T),
we obtain

d~, ee' p' d'p' h0e" p" dhph, ~e' h~e" dT ~ dp

(A4)

e h

=-p E ~ v' —P E v -y —,+e' —y ~+a, (A5)
e e e h h ~h e P e h P h

p p

where we have made use of the fact that VT is = 0 since T is uniform in this work. Equation (A5) is com-
monly called the first law of thermodynamics for the thermodynamic system under consideration.

Since the first law of thermodynamics for the combined continuum is of the form shown in (A5) and only
the terms on the right-hand side are dissipative, the expression of the second law of thermodynamics may
be written in the form"

(q& p d p ~E p d p ~~& h~E dT ~ dP dg+I P e — e + P e m + P +P" ——E ~ —=T—,dt i ~p' p' dt ~p" p dt ~T ~T d.t dt dt ' (A6)

where g is the entropy per unit volume. Then, for a uniform temperature state, the entropy inequality
takes the form

e hd g 1 '

8 e ~e h h ~'h 8 P 8 h P h—= ——,pE v +pE ~ v +y —,+& +p ~+&dt T p p
(A7)

and dq/dt is the rate of entropy production.
Equations (A6) and (A7), which arise from the laws of thermodynamics as applied to this continuum, are

the basis for the generation of two types of constitutive relations: Those from the former are termed re-
coverable and from the latter, dissipative.

In obtaining the recoverable constitutive equations it turns out to be convenient to define a thermodynamic
state function g by
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—E P —qT,
the substitution of which in (A6) yields

(AS)

dt" PBp p dt 'PBps ~p dt
' dt'O'PBT'PBTldt -'

Since (A9) is a state function equation, we must have

X =X(E, T).
Taking the tots, l time derivative of (A10) and substituting it into (A9), we obtain

(A9)

(A10)

(A 11)

Since all the time derivatives appearing in (A11)
are independent and (All) holds for arbitrary val-
ues of those time derivatives, each coefficient
must vanish separately, which yields

&=—vg X (A12a)

~x
T P~T

P'=(p')', P" =(p")', '
(A12b)

Equations (A12) and (A13) are the recoverable
constitutive relations for P, q, P', and p". The
substitution of the functional dependences for X,
e', and e" shown in (A4) and (A10) in (A12a) and
(A13), and the appropriate use of the definition
of D give rise to the functional forms in (3.19)
and (3.21).

As usual, chemical potentials are defined in
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FIG. 4. Comparison of theoretical curves with experi-
mental data from Hef. 70 showing the variation of res-
ponse with the use of different front contact metals
on otherwise identical samples. The nonzero material
surface coefficients for each ease are given in Table I.

terms of &' and &" as"
B(p'e') . B(p"e")

(A 14)
~ e ~ (lt =

ape

where y' and y" are the chemical potentials of
the conduction-electronic and hole fluids, re-
spectively. These are clearly related to the fluid
pressures through (A13).'~ A useful relation be-
tween the gradients of the chemical potentials and
of the pressures in the respective fluids is read-
ily found by taking the gradients of (A13) and
(A14), assuming no material inhomogeneity, with
the results

VPe V~e VPQ V ~It
p '

p

which have been used in Sec. III.
Equations (A13) and (A14) enable us to write

Eq. (A7) in the form

(A15)

p'E' ~ v'+p"E" v'+y'y'+y"q" ~ 0. (A16)

Since, y' is a function onl. y of p' and T, and q"
only of p" and T, and (A16) must always be true
in order that the laws of thermodynamics not be
violated, we must have the dissipative constitutive
re lations

E' = E'( ', ",v', v", T),

y" =y"(p', p", v', v", T),
along with certain conditions dictated by the in-
equality in (A16) which are not of particular
interest to us here.

However, since the recoverable constitutive
equations (A12) and (A13) depend on E, there is
no logical reason to exclude E from the dissipative
constitutive equations in (A17)." Also, since the
fluids have been chosen to interact solely through
the generation and/or recombination terms y'
and y", we exclude the dependence of E' on p
and v and of E" on p' and v'. The functional de-
pendence of the dissipative constitutive equations
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may then be written in the form

E' = E'(p', ', F, T), E" =E"(p", v", E, T),

'Y = Y'(p g p ~
v

~
v

~
E

~
T ) ~

which were given in (3.20) and (3.22).

(A18) where x, is the electron number density in the
bulk of the semiconductor and y has been as-
sumed zero in the bulk. In the conventional quasi-
microscopic theory for nondegenerate situations
at thermal equilibrium an expression for n, may
be written in terms of the Fermi energy E~, and
the conduction-band energy E,. The expression is

APPENDIX B: SOME RELATIONS BETWEEN THE
MACROSCOPIC DESCRIPTION AND

CONVENTIONAL SEMICONDUCTOR THEORY

E, kT p'
ln —1

q q „-qN,
E„uT p"e'=- —"+—ln —1,
q q qX„

(8 1)

(82)

where X, and N„are the quasimicroscopical. ly de-
fined "effective densities of states" in the conduc-
tiori and valence bands, respectively, we can de-
duce the Maxwell gas approximation for the elec-
trons and holes in the semiconductor. ' Equations
(81) and (82) give the energies per unit charge
for this particular model. The use of (81) and
(82) in (A13) and (A14), respectively, allows us
to obtain"

-j'pTp' kTp-kTp
~ „p

q q
(83)

ln

(84a)

=- —"+—ln =- —"+ —ln

(84b)

where n and P are the electron and hole number
densities, respectively. Differentiating (84) with
respect to the charge densities and comparing
the result with (3.30), we can obtain the Einstein
relations for the Maxwell. gas model.

%'hen no el.ectron current is flowing E' = 0 and
hence (3.26) can be integrated, with the aid of
(84a), to yield"

The macroscopic theory can be further spec-
ified (beyond Sec. IV) by making particular choices
for the energy functions &' and e" which, as usual,
will contain macroscopic material parameters. "
However„since &' and & are descriptive of the
conducting fluids in the interior of the semicon-
ductor these parameters may be related to and
calculated with reasonable accuracy from the
usual quasi microscopic model. based on a semi-
classical view of the infinite periodic lattice. By
making the specific selections

n, =Ill, exp[(E~ —E,)/kT] (86)

Consequently, when no electron current flows we
may combine (85) and (86) to obtain

(87)

where it is to be noted that when electron current
flows the left-hand side of (87) remains well de-
fined while the right-hand side does not. How-
ever, (87) may be extended to include current
flow situations by employing (87) to define a
quasi-Fermi. level" for electrons E~", with

The relations (87) and (88) with (84a) substituted
are in agreement with expressions in the lit-
erature 80

Equation (87) [or (88)] may be used to exhibit
the connection between the boundary condition
(3.40) and the conventional semiconductor no-
menclature. For the semiconductor-vacuum
boundary (an oxide interface is treated analo-
gously) we have (for the no-current situation),

f =[+ ]=lcm -gvac = (&c —&Z) —pc ~ (89)

where pv«has been taken to be identically zero
and p, is the surface potential. We may rewrite
(89) in the form,

f'=-(E*-E ) =-e -X= r
q

(8 10)

where E,* is the "bent" conduction-band energy, 4
is the work function, and jl i.s the electron affinity.
Equation (810) provides a ready understanding off' in the conventional semiconductor terminology.
When an n-type semiconjjuctor is in accumulation
I' is small and, hence, f' is sma. ll. This reflects
the fact that in accumulation the energy of the
near-surface electrons has been lowered and,
hence, less force need be exerted by the lattice
to keep those electrons in the crystal. In inver-
sion the reverse is true. The effects of changes
in temperature may be argued in a similar man-
ner. It is important to emphasize that while (89)
or (810) allow the interpretation of f' within the
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framework of conventional semiconduction theory,
in order to use (3.40) in the solution of semicon-
ductor boundary-value problems it is necessary to
provide an expression for f' in terms of the de-
pendent variables as is done in Sec. IV. For
holes expressions analogous to (B5)-(B10)may
easily be found and are in agreement with the
literature. "

We conclude this appendix by utilizing the above
expressions to obtain relations for the two con-
stants y'„and P,„, which appear in (4.21) and are
required for the conversion of the B; coefficients
in (4.25) to the fundamental A. ; coefficients in

(4.23). Since no current flows (B t) gives im-

mediatelyy

(E.-- ~~), (811)

which is approximately equal to 0.55 V in in-
trinsic silicon. Concerning the oxide, we view
insulators simply as semiconductors in which
E' is balanced by E. As a result of this assump-
tion, with (3.26) we can assume uniformity of
y', i.e., p' = y,'„=const, even a@hen a field. is ap-
plied. Henc e

v':. = —(&;"-&z"),
g

(B12)

which is approximately 4.0 in silicon dioxide. "
Expressions for p"„and p,„may be found in a
similar manner.
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