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The nonlinear Thomas-Fermi equations which describe the screening of intercalant layers in graphite
intercalation compounds are solved analytically in the approximation that the graphite c-axis band
dispersion is neglected. The total energy of the system of charged intercalant layers and the self-consistent
charge distribution are calculated analytically for general configurations of the intercalant layers. Because of
electrostatic screening, pure stage configurations minimize the total (electrostatic plus band) energy for fixed
chemical potential. Estimates of the stage dependence of both the electrostatic and elastic interactions
between intercalant layers are presented. Experimental tests of these mechanisms for staging are suggested.

Graphite intercalation compounds are character-
ized by an ordered sequence of n carbon and one
intercalant layer with n defining the stage of the
material. "A wide variety of chemical and phys-
ical differences are associated with the different
stage compounds. The explanation of the existence
of pure stage materials as the equilibrium pro-
ducts of the intercalation process in graphite'4 can
be pursued on three levels: (i) the classes of in-
teractions which give rise to pure stages [Fig.
1(a)J

—in contrast to those interactions which re-
sult in more complicated one-dimensionally modu-
lated structures [e.g., Fig. 1(b)J, (ii) the micro-
scopic origins of the interactions responsible for
staging, and (iii) the effects of finite temperature
on both the stage and the in-plane intercalant con-
centration. A previous paper' presented a discus-
sion of (i) and (iii) in a calculation of the phase dia-
gram for staged intercalation compounds which
used a phenomenological model for the intercalant
interactions. In this work, we address (i) arid (ii)
and use a self-consistent, nonlinear, Thomas-
Fermi approximation' to calculate analytically the
electrostatic repulsive interaction energy between
intercalant layers that have donated their charges
to the graphite host. The electrostatic interaction
energies are compared with estimates of the elas-
tic interaction energies between intercalants in
graphite intercalation compounds, "since both are
possible sources of stage ordering. We show that
electrostatic screening implies that the lowest en-
ergy state of graphite intercalation compounds (at
fixed chemical potential) is given by pure stage or
dering. Although elastic interactions are import-
ant in the kinetics of intercalation and staging, the
electrostatic interact:ions dominate in equilibrium
for completely intercalated materials where the
repulsive coherency strains vanish. "

The screening of the intercalant layers by the
charges donated to the graphite is a problem of
current interest. In particular, the magnetic sus-

ceptibility of graphite intercalation compounds has
been shown to be particularly sensitive to the c-
axis charge distribution. " In Sec. I, we sum-
marize the Thomas-Fermi equations for the self-
consistent charge distribution in graphite intercal-
ation compounds. This formulation was first sug-
gested by Pietronero eI; gE.' who calculated the @-
axis charge distribution using a numerical integra-
tion of the Thomas-Fermi equations. For the case
of a single intercalant layer in an infinite graphite
medium, they showed that the screening of the in-
tercalant follows a power law with a potential p(z)
of the form p(z) -(z+z, ) '. The nonexponential na-
ture of the screening is associated with the (ap-
proximately) zero density of states at the Fermi
level for unintercalated material. In Sec. II, we
derive an analytic expression for the total (band
plus electrostatic) energy in the approximation that
the q-axis graphite band dispersion is neglected.
In contrast to the numerical results of Ref. 6, our
expressions are valid for any general configuration
of intercalant layers. We thus show how the long-
range, screened electrostatic interactions imply
the existence of pure stage ordering in contrast to
the more complicated structures generally found
in systems with long-range binary interactions.
Section III presents a calculation of the energies of
pure stage materials, including estimates of the
magnitude and stage dependence of both electro-
static and elastic interactions. The theory is com-
pared with experiment ~ and suggestions for fur-
ther experiments are presented in Sec. IV.

I. SUMMARY OF THOMAS-FERMI EQUATIONS

In this section, we derive the Thomas-Fermi
equations which describe the q-axis charge distri-
bution in graphite intercalation compounds. As in
Ref. 6, we assume that the charge is homogene-
ously distributed in the layers perpendicular to the
c-axis. Since stage ordering exists in graphite in-
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$n'

In Eq. (1) n(z).and p(z) are the carrier and ion
charge distributions, respectively —the charge is
assumed to be homogeneously distributed perpen-
dicular to the c axis. e2(n) is the total band energy
per electron due to in-plane graphite band disper-
sion only. The i'irst term in Eq. (1) is the electro-
static energy and V, (z) and V, (z) satisfy

s'V, (z) 4ze'
8 iz, 2 —1,21,2 (2)

(b) (c)

FIG. 1. Possible c-axis orderings of the intercalate
layers in graphite intercalation compounds (Ref. 5)
(only the intercalate layers are shown). (a) Pure stage
ordering: a periodic sequence of an intercalate layer,
n graphite layers, .... (b) Nonpure stage ordering: a
periodic sequence of intercalate layers more compli-
cated than that of (a). Shown here is a sequence of inter-
calant, n graphite, intercalant, n' graphite, .... (c)
Mixed phase: a macroscopic mixture of pure stages n

and n ~

+ e~ nz nz dz.

tercalation compounds with a wide variety of in-
plane orderings" (commensurate or incommensur-
ate with host) or disorder' (lattice-gas, liquidlike)
the details of the in-plane intercalant ordering do
not seem to be erueial. Furthermore, one can
show that corrections to our theory due to the in-
plane intercalant structure consist of exponentially
small terms of the form e ~', where G is the
smallest intercalant layer reciprocal-lattice vec-
tor. These terms can be neglected in comparison
with the possess lace interactions obtained here. In
addition to assuming a homogeneous charge distri-
bution perpendicular to the g axis, we use a coritin-
uum approximation to represent the nonhomogene-
ous charge distribution between the intercalant
layers. Since our interest lies in the interaction
between intercalant layers, the neglect of the dis-
crete nature of the graphite layers should be a
good approximation for high stages where the dis-
tance between intercalant layers is much larger
than the 3.35 A which separate adjacent graphite
layers. Along with the neglect of the discrete
nature of the graphite layers, we neglect the ef-
fects of the small e-axis band dispersion of the
graphite energy bands.

Since we are interested in the interaction energy
of the intercalant layers, we derive the Thomas-
Fermi equations describing the charge distribution
from an energy density formalism' where the
electrostatic and band energy is written in a Har-
tree approximation as

E(n) = —,
'

gt [V,(z) —V (z)] [n(z) —p(z)]dz

where 8, =n(z) and 8, = p(z). In Eq. (2), e is the
graphite c-axis dielectric constant'5' which ac-
counts for the screening of the. intercalant ions due
to the bonding g electrons and g electrons which
are not explicitly considered in this calculation.

For small shifts of the Fermi level of the two-
dimensional (single-layer) graphite band struc-
ture, "

e (n) =-', Pn' ' (3)

where for a single graphite layer with q intercalant
atoms per carbon and a charge transfer of f elec-
trons per intercalant,

P
l/2

y (~31/2 qy)1/2

In Eq. (4) y2 is the tight-binding matrix element

(y2 =3 eV). Minimizing the energy [Eq. (1}7with
respect to n(z) and using Eqs. (2) and (3) one can
write Poisson's equation for the total electrostatic
potential p(z) as

82
=~'[n(z) —P(z)] . (5)

Here we have used dimensionless units for the
charge distributions n(z) and p(z} with

n(z)=n(z) /c, o

P(z) = p(z)c, /c.

(8)

(7)

4se 2 (o/c, )'/2

is related to the ratio of Coulomb to band energies.
If e2 and the potential p have their zeros defined by
the Fermi level of neutral graphite, we find that
the minimization of Eq. (1) yields the nonlinear re-
lationship between the potential and the charge
density:

y'(z) =n(z). (8)

We now introduce the dimensionless length g =- zv
and rewrite Eqs. (5) and (8) as

In Eqs. (8), and (7) c2 is the spacing between adja-
cent carbon planes (co =3.35 A) while g =o,/8 where

o, is the planar density of carbon atoms. The po-
tential P is dimensionless and



608 S. A. SAFRAN AND D. R. HAMANN 22

Q2

, =n(()- p(g), (9a)

y'(~) =n(~). (9b)

d(()p(()d(+-', f d (()d(),q t',

6NO (I,

ET/c,
NP(e/c )' '

(10a)

(10b)

where pf is the total number of intercalant atoms
and &0 is the number of intercalant layers.

To facilitate an analysis of the intercalant-inter-
calant interactions and orderings, we solve Eq. (9)
for a general configuration of intercalant layers.
A given configuration is characterized by cells la-
beled by j, of length c&, with n, graphite layers
separated by intercalant layers with charges p/ (in
the units described above) so that

The intrinsic nonlinearity of these equations arises
from the zero density of states at the Fermi level
for a single graphite layer. For a finite density of
states, (p and n would be linearly related to lowest
order. Using this notation, the energy per inter-
calant can be written

(y3 @3 )1/2 + (y3 y3 )1/2 (3 )I/2p (15)

The a sign in Eq. (14) has been chosen such that
Eq. (13) is satisfied for p1 &0. Integrating Eq. (14)
from 4 & $ &$,.„,with signs appropriately chosen,
we obtain (c,. -=g/„—$,.)

(16)

as )7-0. The first condition, Eq. (12), expresses
the continuity of the potential across the intercal-
ant sheets, while the second condition, Eq. (13),
relates the jump in the electric field to the inter-
calant ion charge.

To solve the system of Eqs. (11)-(13)we multiply
Eq. (11)by 2(p'(]) and integrate to obtain

~d(g) —+(2)1/2(@3 ~3 )1/2 (14)

where p3,. =min[(p(()] in the interval ],. & $ & $,.„
so that p3, =0 (see Fig. 3). Since we are interested
in the dependence of the energy on the intercalant-
intercalant separation, it is unnecessary to solve
explicitly for (f& as a function of g (see Sec. II). In-
stead, we parametrize the problem in terms of e, ,
p, , (t). .. and Q,. where (pj = (p(g, )as s. hown in Fig.
3. From Eqs. (12)-(14) we find

Figure 2 illustrates the cell notation used in our
calculations. Within each cell, i.e., for (,. & ]
& 4+1

~2
s t2

with the boundary conditions

y(&,') =y(&, ),
y'((,') —y'(&, ) =-p, ,

(12)

(13)

where the prime signifies differentiation with re-
spect to t and where

where

g (y) (y3 y3 )-1/2 (17)

Thus, we find equations which, in general, cou-
ple the potential at the intercalant layer and the
potential minimum to those of all the other cells.
However, for pure stage configurations, Eqs. (15)
and (16) are merely a pair of nonkinea, r coupled
equations whose solutions are discussed in Sec.
II. Here, we note that for general configurations
of the intercalant layers, one can solve Eqs. (15)-
(17) in the approximation that most of the trans-
ferred charge is localized near the intercalant lay-

PJ

CJ

CJ+q

PJ+ q

PJPP

FIG. 2. Notation describing a general configuration of
intercalant layers. The jth intercalant layer with charge
p j is located at $ j . Each pair of intercalant layers
Q and j+1) defines a cell of length cj .

~J+1

FIG. 3. Schematic plot of the electrostatic potential
@($) as a function of distance $ in a given cell (see Fig.
2). @j is the potential at the cell boundary while po j is
given by ft)0 j=min[p(f)] for $ j~(»( j f.



22 E LE CTROSTAT IC INTERACTION S AND STAGING IN. . . 609

er so that Q3 ~ «Q&. One then finds

f rh3 +83
) y + w0.9 wO. S"1

—(3 )I/3p 2/3

QO, 1
= V " (Cy+d/+dy+1)

(18)

(18)

(20)

of isolated layers in an infinite graphite medium.
The second sum in Eq. (24} represents the self-
consistently screened intercalant-intercalant re-
pulsive interaction. Substituting Eq. (20) we find

Q() g(cg+4/+ d/+1) = (12P v (cs +d/+ds+1)

In Eq. (20), the dimensionless, nonlinear "screen-
ing lengths" (f& and d&„are related to the charges
on the jth and (j+1)th intercalant layers, respec-
tively, with

(24)1/3p 1 /3 (21)

The expressions in Eqs. (18)-(21)are exact to or-
der r3 where

&/ = &4,g/(t)/ (22)

as given above. The order y~ equations are suffi-
cient for an evaluation of the energy to this order.
The small parameter in the expansion is always r3&

so that the next term in the energy behaves as r~z.

Numerical estimates of p,. and (II)3 / will be pre-
sented in Sec. III where the energetics of pure
stages are discussed. Here we note that the low-
est-order term for the minimum of the potential in
the unit cell (t)3,. has the form expected from the
application of the asymptotic form of the potential
for a single layere given above.

II. ANALYTIC EXPRESSION FOR TOTAL ENERGY

In this section, we derive a formula for the total
(band plus electrostatic) energy of graphite inter-
calation compounds using the model theory pre-
sented in Sec. I. We show that to a good approxi-
mation the lowest-energy configuration of a set of
intercalant layers is a pure stage configuration
[Fig. 1(a}] under conditions of fixed chemical po-
tential if the electrostatic repulsive interaction is
dominant.

In the Appendix we show that the energy per in-
tercalant (in our units) can be written

80 ~8 Q4/Py+Q (to, /&; I
~

90NO & ~ ~
' ') (23)

This expression is exact within our Thomas-Fermi
model. By using the approximations for y& and

p3 J presented in Eqs. (18)-(20) we can find the en-
ergy to order y, Equation (23) can then be rewrit-
ten

where p3 1 is given by Eq. (20). The first sum in

Eq. (24) is independent of the separation of the in-
tercalant layers and is just the sum of the energies

The next term in the expression for q is of order
(c&+d&+d&„) ", since it arises from terms of or-
der rz(c, +d,. +d1.„).These terms are thus neglig-
ible for large intercalant-intercalant separations.

For the case p& =p, applicable to zero tempera, -
ture where each intercalant layer is at its "close-
packing'l density, d&

= d and we can write

e = e„(p) 1+ Q (I + ~2 e,/d) 'iI,
No

where

e (p) =(3' '(I/20)p' ' (26a)

and

a =v'3' /1728=0. 9636. (26b)

U=-p.N+ EN, (27)

where E is the electrostatic and band energy per

'The total energy is thus the sum of all the individ-
ual cell energies (each depending on c1}but with no

terms involving products such as c~c~„so that ~

is independent of the configuration of the cells
within our approximations. Higher-order terms in

our expansion would produce coupling between
cells. For example, higher-order expansions of

P~ involve terms such as p, ,y. . .which lead to
products involving c& and cy y The effective inter-
action between layers described by Eq. (25) is un-

usual in the sense that one cannot consider a given
layer (say at ]=0) as interacting with other layers
according to some function V($) where V(g} is a
simple, continuous function. Instead, a given layer
interacts with its nearest-neighbor layers through
some function V,(g) and with its next-nearest
neighbors through another function V3(g). In our
case, we have demonstrated that V,(])-(I+(/]3) '
while V3($) is of order (1+$/]3) ". The two-body
layer interactions are thus nonadditive and only
nearest-neighbor interactions need be considered.
The energy is then approximated as the sum of
"cell" energies. The physical origin of this inde-
pendence upon configuration is the screening of the
intercalant layers so that the energies of the con-
figurations shown in Figs. 1(b) and 1(c) are approx-

imatelyy

degenerate.
At fixed chemical potential (g), the internal en-

ergy of the intercalant system has the form
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intercalant and N is the total number of intercal-
ants. In a continuum model for the graphite host
(whose total volume is fixed) for a given value of
p. , U is minimized by a lattice of intercalant lay-
ers with equal spacing, due to the repulsive inter-
actions [Eq. (25)]. The lattice spacing is a contin-
uous function of p, in this case. However, if one
now constrains the separation of any two intercal-
ant layers to be (within a constant) an integral
number of graphite layer spacings, only pure stage
configurations will. have the same energies as those
of the continuum limit. In our approximation, any
microscopic configuration of intercalant layers
with a total concentration in between that of two
pure stages is degenerate with that of a macro-
scopic mixture of the two pure stage phases in ap-
propriate proportions. Such configurations will
necessarily have internal energies higher than
those of the equally spaced lattice for the same
concent'ration continuum model. Thus, the mini-
mum on a curve of U as a function of N (for fixed
tt) is always attained for the pure stages.

A. Electrostatic plus band energy

From Eqs. (25) and (26) one can write the energy
for graphite intercalation compounds with stoichio-
metry C»„X (e g , stag. e. n ~ 2 alkali metals K, Rb
Cs) as

E(n) ~E„.{i+a[1+x(n)] '] . (28)

In E q. (28), E =E/& is the energy per intercalant;
For unit charge transfer (f=1)E„=1.1 eV, o,
=0.96, and x(n) =n/4. 1. For comparison with Ref.
6 we have used a value for the c-axis dielectric
constant'5' of e =5.4. figure 4 shows AE(n) =- E(n)
-E„plotted as a function of concentration or in-
verse stage for both Eq. (28} (with n treated as a
continuous variable} and a numerical solution of
the nonlinear Thomas-Fermi equations for a staged
configuration. Note that the stage dependence of
the energy is not approximately n ' for the stages
of interest (1&n ~ 15)—but is rather slower since
the asymptotic form of [1+x(n)] ' is not reached
with 10% accuracy till n =200. The energy is a
monotonically decreasing function of stage, repre-
senting a repulsive interaction between nearest-

III. ELECTROSTATIC AND ELASTIC ENERGIES

In Sec. II, we derived an expression for the total
(electrostatic plus band) energy based on a self-
consistent solution of the nonlinear 'Thomas-Fermi
equations. We showed that the minimum-energy
configuration is given by a pure stage. In this sec-
tion, we evaluate the energy for the pure stages
and discuss the contribution of elastic interactions
to stage ordering.

0.15—

0.10
I

P LLI

0.05—

0.00
0.0 0, 1 0.2 0.3

C0NCEN TRATION (1/n)

0.4 0.5

FIG. 4. Stage dependence of the total electrostatic
and band energies as a function of intercalant concentra-
tion. The squares are the results of a numerical solu-
tion of the nonlinear Thomas-Fermi equations for stages
I =2, ... , 10. The solid line is the analytical result
calculated from Eq. (28) for a simple periodic sequence
of intercalant layers with lattice spacing c()/x, where
x is the ratio of intercalant layers to carbon layers and

c,= 3.35 A'.

neighbor intercalant layers.

B. Elastic interactions

An alternative origin for the repulsive interaction
between intercalate layers that gives rise to stag-
ing is the elastic strain induced by the intercalate
atoms due to the separation of the graphite layers.
In previous publications" we have shown that the
elastic interaction between intercalants is long
ranged. For a staged configuration of intercalant
islands in an infinite graphite medium, the elastic
interaction is repulsive and results in an energy
per intercalant of AU, h„=0.5 eV/n. However, in a
sample that is fully loaded with an array of inter-
calant stacks, these coherency strains vanish. "
Thus, for+fly intercalated graphite single crystals
in true equilibrium, one does not expect the long-
range repulsive elastic energies to dominate the
staging energetics. (See, however, Sec. IV for a
discussion of the experiments. ) Furthermore,
since the elastic interaction is not screened there
is no simple way to understand the existence of
pure stage ordering as opposed to more compli-
cated ordered sequences of intercalant layers. On
the other hand, the electrostatic mechanism dis-
cussed above provides an explanation for pure
stage ordering.

In addition to the repulsive elastic interaction due
to the separation of graphite layers, there exists a
small attractive elastic interaction between inter-
calants due to the change in the in-plane lattice
constant of the graphite upon intercalation. As-
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suming the intercalant atoms exert in-plane forces
tending to contract or expand the (in-plane) lattice
constant'of the bounding graphite layers only (i.e. ,
those layers of graphite that are adjacent to inter-
calant layers), one can write a phenomenological
expression for the energy of this elastic distortion.
For a compound with stoichiometry C,„X,

LL+inplane = tg(SCE + 2lkof) ~ (29)

where &0 =C/ao. This expression for e is in agree-
ment with experiments" in C»„K which indicate Qo

=0.008. Thus, the energy due to this in-plane
strain ~Uh„~~, =-0.05 eV/n. This energy is low-
est for stage 1 and hence can be termed an "anti-
staging, " attractive interaction between intercalant
layers. " Although this treatment neglects any cou-
pling of the in-plane and c-axis strains, it does in-
dicate that there is a long-range (I/n dependent)
attractive interaction, which at some stage must
overcome the repulsive electrostatic interactions
responsible for stage ordering. The competition
of these energies thus results in some maximum
possible stage. However, since the precise quan-
titative nature of the various energies involved is
as yet unknown, numerical estimates of this effect
are premature at this time.

IV. COMPARISON OF THEORY VGTH EXPERIMENT

In this section we compare the theoretical dis-
cussion of Secs. I-ID with experiment. Suggestions
for further experiments are presented and we sum-
marize the main theoretical results.

At low temperatures, where the intercalant lay-
ers are fully saturated, the intercalant configura-
tion is a pure stage (see Sec. III) and is determined
by the minimization of the internal energy [Eq.
(27)]. In general, the energy per intercalant Z

In Eq. (29) C =68 eV while the strain e =- ha/a,
where a is the graphite in-plane lattice constant. "
~0 is the force on each bounding graphite layer.
The factor of n appears in Eq. (29) since we have
assumed that all n graphite layers in the unit cell
between the intercalant layers maintain the same
in-plane lattice constant. It is assumed that the
energy of the misfit dislocations which would arise
if the layers had different in-plane lattice constants
is greater than the strain energies for these small
(&1%) in-plane distortions. (Misfit dislocations are
allowed for graphite layers separated by an inter-
calant layer. )

One immediately sees from Eq. (29) that the en-
ergy is minimized for

=ED+ E,(n), where only E, is a function of stage.
Qne can then show that the range of chemical po-
tential p, over which a given stage is stable
[a p. (n)] is given by'

ay(n) =n [IE,(n+ I)+E,(n 1)-—2E,(n)
~ ] . (80)

Thus, measurements of the low-temperature range
of stability of a given stage (determined by in situ
structural measurements of both the stage and in-
plane density} yield direct information about the
interactions responsible for stage ordering. For
example, for the electrostatic interactions dis-
cussed here [Eq. (28)], E, (n) -(I+n/s ) ', while
for the elastic repulsive interaction (applicable
only to crystals that are not fully intercalated), E,-n'

Although no in situ structural and chemical poten-
hal (e.g. , vapor pressure} experiments have as yet
been reported, the "equilibrium" vapor pressure
as a function of weight uptake has been measured
for both alkali4 and iron chloride' graphite inter-
calation compounds. A preliminary analysis of the
alkali data seemed to indicate4 that the repulsive
stage-dependent energy E,(p}-0.5 eV/n, although
the stage was only inferred from weight-uptake
measurements and no high-stage (n &5) data were
reported. The need for precise, equilibrium, in
situ studies of high-stage compounds is clear. Qne
could speculate and relate the repulsive energy de-
duced from the early data, of Ref. 4 to the repulsive
interactions between intercalant layers due to the
distortion of the surrounding infinite graphite ma-
trix. This would imply that the samples were not
fully intercalated or that grain boundary effects
simu1ated the behavior of an infinite medium
through clamping. Elastic clamping should play an
important role in the kinetics of intercalation and
might dominate if staging were a kinetic and not an
equilibrium phenomenon.

Qn the other hand, for true equilibrurn proper-
ties of fully intercalated crystals, the dominant
repulsive intercalant-intercalant interaction should
be the electrostatic repulsion which is long-ranged
due to the nonexponential screening. We have
solved the nonlinear 'Thomas-Fermi equations for
the electrostatic potential and have self-consist-
ently calculated the total (electrostatic plus band)
energy for a general configuration of intercalant
layers in the approximation that the graphite c-axis
dispersion is neglected. Due to screening, the in-
teraction is effective between a given intercalant
layer and its first-neighboring intercalant layer
(wherever it may be) and leads to pure stage or-
dering. Corrections to the simple, analytically
tractable theory presented here due to c-axis dis-
persion effects are currently being pursued. 2'
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APPENDIX

In this appendix, we present the steps leading
from Eq. (10) to Eq. (23) for the total energy in our
approximations. The first integral of Eq. (11)
yields [Eq. (14)]

(A1)

Using this expression for p' in Eq. (10) we find

In Eq. (A2) the prime on the integral signifies inte-
gration over the jth cell only. The first integral in
Eq. (A2) can be converted to an integral over the
variable P and has the form

3 3 j./2d

Rationalizing the numerator of this expression and
integrating by parts, using Eq. (13) for the bound-

ary conditions, results in Eq. (23).
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