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Diffusion in a deformable lattice: Theory and numerical results
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We develop a transport theory of one-dimensional diffusion of a single particle in a three-dimensional deformable
lattice with a Debye spectrum. Our treatment'is based on the Mori formalism; the memory kernel is evaluated in the
mode-mode coupling approximation. This allows us to evaluate the absolute magnitude of the diffusion constant, the
frequency-dependent conductivity, and the incoherent neutron scattering cross section of the diffusing particle. The
main results are: (a) The diffusion constant obeys an Arrhenius law at very low temperatures. At higher temperature
(k~T dE/4, dE is the activation energy) the apparent activation energy increases with temperature. This increase
depends on the mass M" of the diffusing particle leading to an apparent activation energy that increases slightly with
decreasing M". The prefactor (attempt frequency) shows only a very small dependence on M" for not too small
masses. As a result, the diffusion coefficient is nearly independent of M" . Only for small M" we recover the isotopic
effect as predicted, for instance, by the theory of Vineyard. (b) The frequency-dependent conductivity cr(cu) shows a
two-peak structure and a temperature dependence which is similar to that obtained in the Fokker-Planck
treatments. The frequency of the upper peak of o.(co) exhibits a square-root dependence on M" whereas o{co)
depends very little on M" at low frequencies. Detailed results for the dependence on the elastic constant of the
crystal and the masses of the particles are given. (c) Analogous results and plots have been obtained for the
incoherent cross section of the diffusing particle.

I. INTRODUCTION

'The diffusion of particles in solids has been
studied by many authors over the last fifty years.
The most famous examples are the diffusion of
defects in metals" (for instance, hydrogen atoms
in transition metals) and ionic conductors. "Re-
cently the interest in diffusion problems has in-
creased in connection with the rapid transport
of ions occurring in superionic conductors.

The classical diffusion of a particle in a solid
is a very complex theoretical problem. One dif-
ficulty is associated with the periodic potential
experienced by the diffusing particle which is due
to the periodic arrangement of the atoms of the solid.
In almost all cases the difference between the maxi-
mum and the minimum of the periodic potential (acti-
vation energy AE) is large compared with fee T. This
makes the diffusion process thermally activated.
The diffusion constantbecomes -e & and thus
obeys an Arrhenius law. Clearly this prevents
any perturbational treatment since this woul. d l.ead
to a power series in T or in T '. The second
difficulty is that the prefactor of the exponential,
called attempt frequency, is a nonequilibrium
quantity. Only in very special cases is it justified
to approximate it by equilibrium quantities such
as the curvature of the periodic potential near the
extrema. '

There are two major theoretical approaches to
particle diffusion in solids: The first one has
been proposed by Vineyard' and refined by many
authors. '- The basic idea of this transjtion-state
theory is to map the nonequilibrium aspect of the
problem onto equilibrium quantities. It is assumed

that the diffusion consists of discontinuous jumps
of the system between the minima of the free en-
ergy over saddle points. The jump rate can be
calculated from the expansion coefficients of the
partition function around the saddle point in terms
of generalized coordinates: The zeroth orde.".

yields the activation energy; the second-order co-
efficients are related to frequencies and yield,
after a configurational. average, the attempt fre-
quency. In particular, the jump rate becomes

M" '' with M being approximately the mass of
the diffusing particle. The second approach treats

~ the nonequilibrium aspect of the diffusion process
more correctly. A simple way to do this has been
used in Ref. 7: The diffusing particle and all the
other particles are interacting via harmonic for-
ces. The irreversibility is introduced in an
ad @0& way by the postulation of a breaking point
where the harmonic band is destroyed and the
particle jumps over the potential barrier. It is
shown that in this model the diffusion constant is
proportional to the inverse square root of M" as
it is in the transition-state theory. Reference 8
avoids the assumption of a breaking point by con-
sidering explicitly the nonlinear interaction be-
tween the normal modes. In this case the diffusion
constant becomes proportional to the inverse
square of M" in contrast to the above theories.
Dealing with a heavy diffusing particle and using
a similar approach, Ref. 9 comes to the conclu-
sion that the diffusion constant should be inde-
pendent of M".

In view of the above disagreement we thought
it worthwhile to reconsider the problem and to
use a different method for the calculation. We
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approximate the excitations of the lattice by har-
monic phonons with a Debye spectrum. Moreover
we consider only a singl. e mobile particle which is
restricted to move in one dimension. Starting
from a Hamiltonian we calculate the self-correla-
tion functions of fluctuations in the density and
momentum of the diffusing particle using the Mori
method" "and the made-mode coupling approxi-
mation for the memory kernel. Clearly such an
approach is superior to the first approach men-
tioned above: It keeps the general Hamiltonian
but avoids the assumption of an equilibrium state
in the saddle-point configuration. Actually the
only approximation of the present approach is the
mode-mode coupling assumption for the calcula-
tion of the memory kernel. In the absence of any
small parameter it is hard to justify such an
assumption a prio. However, it has been shown
that this assumption gives excellent results in the
case of anharmonic solids" and simple fluids. '~

By studying the neglected terms in the memory
function we will demonstrate that at least for
small temperatures k~T ((&E our assumptions
yield reliable numerical results. In Sec. II we
define our model Hamiltonian and derive the form
of the imaginary part of the memory function in
mode-mode coupling theory. This is compared
with the Fokker-Planck result and related to ex-
perimental quantities. In Sec. III we present the
de)ail. s of the numerical calculations. The numer-
ical results are shown and discussed in Sec. IV.
The conclusions are summarized in Sec. V.

II. FORMALISM

A. Model

Our aim is to calculate the self-correlation
function of a mobile particle in a deformable
lattice. In the absence of interactions between
the diffusing ions, it is sufficient to consider a
single mobile ion. We assume that the Hamil-
tonian H of our system can be written as the sum
of three terms

H=H +H +H'

where

2
H"= „+ V(xe„-xi"(I))

E

represents the part which depends only on the
mobile particle A. P is its momentum, M" its
mass, and V represents the interaction potential
of the mobile ion with a lattice ion in its equilib-
rium position x"' (I). The summation goes over all
lattice iona I. In writing (2) we have assumed that
the mobile ion is restricted to move in the x di-
rection, i.e., only x coordinates of A are con-
sidered. Correspondingly, only xx correlation
functions can be calculated.

l~, l2.ej, a2

is the part of the Hamiltonian that depends only
on the lattice ions. Ne assumed that a harmonic
description of this part is sufficient, since the
lattice particles B (mass Ms) are bound to a
time-independent equilibrium site. u (l) is the
momentary displacement of the particle at site
/ in direction a from this site. The lattice par-
ticles can move in all three directions.

H' = Q V~')(x, l)u (I) (4)

represents the coupling between the mobile par-
ticle A. at x and the displacements of the lattice
particles. V(' (x, l) is the first derivative of the
lattice potential V of (2) with respect to x. In
writing (4) it was assumed that it is sufficient to
include only the terms to lowest order in the dis-
placements of the lattice ions, whereas the part
depending on the coordinates of A. is retained fully.
The advantage of this form of the coupling is that
the effects of the lattice relaxation on the effective
potential "felt" by the diffusing ion can be included
exactly. This wil. l be done explicitly later.

In nature there are several ionic conductors in
which the mobile ions are restricted to one di-
mension, whereas the lattice vibrations are three-
dimensional, e.g. , P-eucryptite or hollandite, "
to which our model applies directly. Furthermore
one-dimensional diffusion model. s are often used
as simplest theoretical systems to describe dif-
fusion in solids. ""

Ne now introduce real normal coordinates of
the lattice (q) 0 means that the summation is re-
stricted to one-half of the Brillouin zone):

or

u (&) = — g Qi ~cos[q x(I)]+Q
~

»n[q «(I)](g) i' q

(~) (a+3)

i)'2

Q~ ~=i
— gu (I) cos[q'x(l)], Q

~ i

= — u (l) sin[q ~ x(l)].
~n+g)

(6)
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With P('}=Ma@(') one gets

where
I

where

and

D (((q) = Q C ~(l) cos[q ~ x(l)] (8) V(')I x, I
I

I= g " exp[-i q ~ x(l)].('i-r)

~l 2 "
y(i) „q,

~&O +, N CR

( q )'I ( q &

(m+3)i (n+3i

D remains real. if every atom is at a center of
inversion symmetry. Without restriction of gen-
era. lity we a.ssume that D is diagonal in the in-
dices c(, ii. Then one can, e.g. , evaluate the par-
tition function as (j = oi, a+3)

Z= dxdpe 8"'„',d q dP 'l e 0("""')
&ji

where

(,) ( q i) ~&V(xe„-x(l))

(10)
(,) ( ( q i ) g BV(xe„-x(l))

sx. (l)3ji
Since in many cases it is more convenient to deal
with complex coordinates, we also define these
by

v(x) = P V(x e„-x(l))

, P' V(,)(„(q9 '

5 &jf)
,,(q).

IB 3N/2 D-1/2

a

x+ dx e '"'"',
0

where the effective potential is given by

(16)

qi
«) q «)„qi

PI != P 'I +iPI a+3

(11)

Q2 =iM
(~1

and

M"-.' g D., (q)q*! qi!q qi

i ) (tlat

(12)

(- i
ff = —' gv'

I
I'!q q

I

4s+ Q Q

where 2 is the Liouvillian (2 = —isist) of the
system. q now takes positive and negative val-
ues. With these the Hamiltonian becomes

The correction term in (16) arises from a quad-
ratic complement introduced to evaluate the
integrals over Q(«) in (15).

From this partition function one can now eval-
uate various thermal expectation values, ex-
pressed as

Q( =Z '
JF I„,d(«) IdP dxdp

y(aa. a)-
(jj

V(,)( (q9

(17)

Since V(') (x, («)) is a ntisymmetric with respect
to x=-0 and v(x) is symmetric,

,„,(„('-.)Yti;( ) llD, ( ) .! (-/)
,, (q) e-'"'"'dx 6

-gt (x) (18)
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8. Mori formulation

All correlation functions of interest can be ex-
pressed easily in terms of relaxation functions
4~&(z) for suitably chosen variables A. ; and A&

(see subsection II. F)."' The relaxation function
is defined as

(A;(t)i A, (0))= P«A,.*(t)A,. 0)))

=P«A,.(0}+e ' 'A (0))) .

Substituting (20) into (19) we obtain

C „(~)=&A,
~ (~ —Z)-~A, ),

(20)

(21)

where we have written A, =A, (0). Mori showed
that the relaxation function can be written as

@~((x)= Q [& -IlX '+~(x)X '] «'X«g (22)

where

g„=&A; ~A, ), (23)

(24)Q(~ ——(A.; i ZAg),

~„(~)= -(A, Zq[ (x - qZq)-'qZA, ) . (25)
I

The operator q is the projection operator onto the
subspace of variables that has not been considered
explicitly:

4;&(z) =+i
J

dte(+t)e '
&A~(t)~A&(0)) for Imz~& 0,

w N

(19)

where

of the other variables on the A.
&

can be described
by a well-behaved and smooth M(z) for which it is
easier to make reasonable approximations, for
instance, perturbation theory or a multimode ex-
pansion. '4 In Sec. II. E we are going to show that
this approach is a generalization of the Fokker-
Planck method in the sense that there one also
chooses a set of relevant variables A. ~ and rep-
resents the rest of the system by a white-noise
force and frequency- and position-independent
damping, whereas we are going to calculate both
frequency and spatial dependence of the damping
and its magnitude within the so-called "mode-
mode coupling approximation" (Sec. II.D). But
before we can proceed we have to specify what
variables we are going to consider explicitly as
A~. We are interested in the position-position and
velocity-velocity self-correlation functions of the
diffusing particle A; therefore we are going to
choose its position and momentum:

n(k„) = e'«

p(k ) i««x

(28)

(29)

X1S

where x is the momentary position of the diffusing
particle and P its momentum. Higher powers of

P will be ignored. In the following we will denote
n(k} by 1 and P(k) by 2 in matrix notation. If,
for the moment, one includes the lattice coordin-
ates q(«) as 3 and P(') as 4, then from sym-
metry considerations one gets the following
forms for X and 0:

=1-I

IA)) X(~'&A) [.
ij

(26)

(2V}
0 0 X44

0 X, 0 0

41 XSS

(30)

The matrix X is called the static susceptibility,
0 the frequency matrix, and M the memory
matrix.

Equation (22) is an exact reformulation of
Eq. (21) and nothing is gained as yet. There are
two ways of proceeding from Eq. (22). Firstly,
one can note that (25} has exactly the same form
as (21), only the time evolution operator 2 is
replaced by q~ (only the time evolution in the
subspace not explicitly considered in the vari-
ables A~ contributes) and the variables are qZA»
instead of Aq (only states orthogonal to the orig-
inal sia, tes A& contribute). By choosing a new

subspace for ( qZAq) the procedure can be re-
peated, leading to a continued fraction expansion
for C.

The alternative procedure, which we are going
to follow, is to choose a set of variables A& to be
considered explicitly and assume that the influence

and

0 n„o 0

02, 0 0 0

0 0 0 Qs4

0 0 Q~ 0

(31)

Owing to the periodicity of the lattice and hence
of the potential felt by the diffusing ion, one gets
coupling between n(k„) and P(k„}with k vectors
differing by multiples of the reciprocal-lattice
vector in x direction. The coupling decreases
rapidly with increasing reciprocal-lattice vector.
Therefore, in the following only a small number
is h, ken into account explicitly (5 to 15), the ex-
act number No being determined by the convergence
of the calculation. X„, X», 0», and 0» are then
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d(Q) = (e'ox"), (32)

Kp + Np matrices in the rec iproca l-lattice vector s.
X33 f44 034 and 043 are 3 x 3 matrices in the
Cartesian indices n, P, and )t» is an Ão x 3 matrix.

If one defines X„((k+G, )., (k+ G.).) = W(G,.—G,.),
g„((k+G,)„,(k+ G, ).) =M "d(G,„-G,„),

(33)

(34)

where Q is a reciprocal-lattice vector, one can
ca1.culate X and 0 easil. y as

a
=o D'(k) dxe "" 1 pN'V'

( ~-~j
1=D '(k)5 g+0—

a

dx e-'" &"&

0

(36)

g»~(k+G, )„,
~ ~

~=iillV ''D '(k)Im dxexp[-Pv(x)+i(k+G, )„x]Vl'l x,
~

„,( &-. » a

dxe '"'"' (37)

O»((k+G, )„(k+G,)„)= (k+G, )„d(G,„—G,„)= (k+G, )„d(G,„—G,„)+iP Q E(G„)d(G,„—G„—G„)

A»((k+G, )„,(k+G, )„)=(k+G,)„d(G,„—G,„),

(-. q
Q3~

(

=z5 p,
(a Pf

(39)

(40)

where

I=-i6 s,
l, n p

(41)

Z(~) = g Z(G„)e"*"=- (42)

C Effective potential

We want to get as far as possible analytically, therefore we make some further simplifying approx-
imations. Firstly, we assume that the harmonic lattice has a simple cubic structure with lattice pa-
rameter a and can be described adequately by a Debye spectrum

D~y(k) =M c2k25„~. (43)

Secondly, we assume that the interaction potential between a lattice ion and the mobi1. e ion is described
by a Gaussian

V(r) =A exp(-Br') . (44)

We do not expect that our results will depend sensitively on the delailed form of the potentia. l (44) as long
as the interatomic forces are short ranged.

One can then evaluate the effective potential for the diffusing ion explicitly by substitution into (16) to get

V(x) = Q 4 exp{-B[xe„—x~'l(l)]']

4A'B' exp(-B([xe„-x ' (f,)]'+ [xe„—x ' (l,)]'j )
1' 2'

x g [xe„—x~'l(l, )] [xe„—xl'l(l, )]
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FIG. 1. Effective. periodic potential seen by thedif-
fusing ion for various sound velocities {cm/sec) with
A =2000 K, B=5/a .

The first term in (45}arises from the direct
interaction of A with all the lattice ions, the sec-
ond term represents the effect of the lattice re-
laxation. It is always negative and hence l.eads
to a reduction of the total energy, inversel. y pro-
portional. to M~c' =the elastic constant of the lat-
tice. Furthermore it is -A', i.e., the square of
the direct interaction strength, as is always the
case in a linear coupling approximation. q is
the maximum wave vector of the Debye spectrum
and Si the sine integral function.

The activation energy for classical. diffusion of
A is given by v(0) -v(a/2) (assuming that the lat-
tice always relaxes to its equilibrium configura-
tion for any position of A). The change due to the
relaxation of the lattice is given by

This shows that the activation energy increases
if Ba'&2.77, i.e., for a long-range interaction,
and decreases otherwise. This behavior can be
understood qualitatively by bearing in mind that
the relaxation of the neighbors will be stronger
for A at its saddle point than at its equil. ibrium
position. If the interaction is short ranged, then
the saddle-point energy gets reduced more than
the equilibrium energy, 4 E& 0. On the other
hand, if the interaction is long ranged, then the
energy reduction depends more on the number of
relaxing neighbors than their displaeements and
4E&0. In Fig. 1 we compare the effective po-
tentials for a particular choice of A, B, and a
for different values of the elastic constants. In
this case Ba'=5 and this leads to a reduction of
the activation ehergy with decreasing elastic con-
stant. Mathematically this can be taken to the ex-
treme of an almost vanishing activation energy
(bottom curve), which in fact leads to a double-
well potential. Reduction of the activation energy
due to polarization effects, which are neglected
here, have been discussed in Ref. 19.

One can now also give an explicit expression
for g». First we expand V{'l(x, ( )) in reciprocal-
lattice vectors (bearing in mind the periodicity
of V')as

( {'klan .v{"( x
I

( {, i&

X Q ~) - i(p+Q)„x -(7P+ Q) /4Z
I fx

(47)

Substituting this expression into (37}we get

(48)

This form will be used in the explicit calculation of M(s).

D. Mode-mode coupling approximation

Since we are interested only in the self-correlation functions for the diffusing ion, we restrict our at-
tention to the subset of n(k) and p(k) of the variables considered in (30) and (31). The coupling to the lat-
tice then only determines the memory functions (in a Brownian-motion language the lattice is the origin
of the random force on the diffusing particle and the damping; however, we want to consider its influence
more explicitly). The susceptibility and frequency matrices in (30) and (31) then become

(x„o ')

& o ){,.i
The memory kernel

(o
Q —

i

12

of,
has the form
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(0 M„P

This follows immediately from considering the vertex in (25)

Iqz (k„)& =(ik„/M")I qp& =o.

Therefore the only nonvanishing part of the memory kernel becomes

M»(z, (k+G, )„,(k+G, )„)=-&p((k+G,)„.gQI(z —QCQ) 'Qgp((k+G, )„)&.

(50)

(51)

(52)

Our aim now is to find an approximation that allows us to cal.culate M» explicitly from the known coupling
to the lattice. To achieve this we have to make a number of approximations which we ar'e going to sum-
marize and discuss in the following:

(1) Oniy decay into product states of the original variables n((k+6)„), P((k+G)„), Q(", ), and P( ) is
considered. This is the mode-mode coupling approximation which has been used in the theory of liquids"
and of anharmonic solids. "

(2} The projection operator Q is neglected in the time development of the product states (i.e., the
slates at a later time are taken as orthogonal to the original variables):

(z —QZQ) '-(z —Z) '.
This approximation is always made in the derivation of the Fokker-Planck equations. "

(3) The time development of the product states is factorized, i.e., we always assume that

&&;&, I
e '"&.&i& = p '(&&;I e *"&~&&&,l e "'&i&+&&;Ie "'&i&&Apl e "'&.&)

(53)

(54)

With these approximations, the explicit term of the imaginary part of M» is derived in the Appendix. We
get

M,",((o„(k+ G, )„,(k + G, )„,)

kBTA. m
2 -(&'2+&"2)/4B

/6M Bg2g3+3
Q& Qn

~m
x dq„(q -G '}„(q—G "),exp[q„(G '+G "}„/(2&)]

I fft

40D

d~ ~ ' e ' ' ([(&u/c)'+G' ~ 6"—q„(G'+G "}„]f,(x) —2Bxf, (x)'f
~~x

&& [4',",(~+ ~„(k+q+G'+G, )„,(k+q+G" +G, )„.)+4,",((o—-(o)], (55)

where x = [(&u/c)' —q„'] ''(G'+G")~/28. G„' is the
x component and G~ is the normal component of
the reciprocal-lattice vector G'. q is the max-
imum wave vector of the Debye spectrum and &d~

is the Debye frequency. I, and I, are Bessel func-
tions which result from the angular integration
over q. The real part of M» can be obtained by
Kramers-Kronig transformation.

Equation (55) is the final equation of this sec-
tion. It allows an explicit evaluation of M». How-
ever, we have to note that it involves 4,",. To
calculate 4;, from Eq. (22) we need to know M»,
i.e., (55}has to be solved iteratively.

The main approximation in the above procedure
is the neglect of the term

I
Q(Ze"")p) compared to

the term I Q(ZP)e' ") in the calculation of the
memory function (52). Evaluating the time deriv-
atives one finds for the ratio of neglected to con-
sidered terms for the memory function, roughly
(with the parameters used in the figures)

I

(k/M")'&p'I qp'&

(i) (q } -(q
(n)j kc.3

y2g2y yM B~2

Q E2

= 10-'a2k2(k r/r E)' (55)

This means that our approximations hold true as
long as kBT is substantially smaller than &E
(ak is in general not small compared to one be-
cause of the presence of umklapp processes).

E. Fokker-Planck limit for N

It is interesting to compare (55}with the result
obtained in the Fokker-Planck limit. We follow
the procedure suggested by Forster" and apply
the same approximations to the memory kernel.
Let us first write the Liouvillian as
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g gA g B gB~A

where

(57)

(58)

represents a freely propagating particle A,

(5S)

is the part of the Liouvillian that acts only on the coordinates of the lattice particles, and

represents the influence of the lattice on the mobile particle. Then one can show that the vertex
~ QZP& in (25}becomes

le~&((&+G.).)&=le&' "u((&+G.). )&

+g ' ' ' u, (l)
~

e' "' *
) = i

~

QS' e' ' 'fey BVi" (x l)
l,Bx ~ ex . j

where E is the force on the mobile particle. The Fokker-Planck limit is then obtained by

(1) replacing QZQ by 8 (valid for M"/Ms-~)
(2} decoupling force from density fluctuations,

and
(3) white-noise approximation to forces.

Then

M22 (z, (k+G, )„,(k+G, )„}.=-(e'i ' &l "EQi (g —g ) 'qy'e'i"'G2 *),
=-P '( ""'~l""I "'"'"&(+el( -&,)-'@A=M' d(G,„-G,„). (62)

The same result is obtained by using the back-
ward Fokker-Planck operator instead of the
Liouvillian in (22)-(25). Then the damping term
(62}arises directly from the momentum-mo-
mentum matrix element of 0 (which now does not
vanish); i.e., in the Fokker-Planck formulation
the damping is already included in the frequency
matrix and arises because the Fokker-PIanck
operator is not Hermitian. "

Note that in the Fokker-Planck approximation
one gets

M(z)g ' =M»(z)y, ,' =M /M"y6(G, „,G2„), (63)

i.e. , the damping term in (22) becomes diagonal
in the reciprocal-lattice vectors and independent
of them (i.e., spatially independent), independent
of s (i.e., frequency independent), and vanishes
for M /M"-0.

The advantages of (55) over (63) are then:
(1) The frequency and spatial dependence of the

damping can be taken into account, at least ap-
proximately.

(2) The absolute value of the damping (at least the

contribution from the decay of a density fluctua-
tion into another density fluctuation and a phonon}
can be calculated. In particular one can study the
influences of different diffusing and host masses,
different elastic constants, and the temperature
dependence of y.

F. Relation to experimental quantities

Since we are calculating only self-correlation
functions of the diffusing particle, we can only
calculate incoherent or one-particle properties
of the diffusion. That is, strictly speaking we can
only find the tracer diffusion constant and the in-
coherent neutron scattering cross section. How-
ever, we will also give a one-particle approxima-
tion to the frequency-dependent conductivity a(v).
When comparing this with experiment, one al-
ways has to bear in mind that all correlation ef-
fects and all contributions from the lattice are
neglected.

(n) Incoherent neutron scattering. The inco-
heren't neutron 'scattering cross section is pro-
portional to the incoherent scattering law

S,(k, &u), which is given by (classically)
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S s (k, (k)) = -2P '4 „",(z, k, k) = lim (-2/P) Im [g„/z + Q„l(„'/z'(z + M„y ' —Q» lt, ,'z 'Q„lt,,') 'Q„j . (64)

For k =0 the second term in (64) vanishes because both Q» and Q» contain a factor k, therefore we are
left with -2y»/Pz =2mksT6((d), i.e., a 6 function at the origin. There is no admixture from higher re-
ciprocal-lattice vectors. As k increases, these higher terms gain in intensity k', while the peak at
co =0 develops a finite width.
(p) Tracer diffusion constant. The tracer diffusion constant is given by the (v =0 limit of the Fourier
transform of the velocity-velocity correlation function and can hence be expressed as

D = iim — „,k,",(z, 0, 0) = iim iim, k,", (z, k, k))

=iimiim —
( „),)Im[(z+M„k, ,' —B„k,,'z 'ik„k, ,')'k„],

4)~p 0~ p
(65)

where the C, =6, =0 element of the matrix 4,",
has to be taken.

(y) Frequency-dePendent conductivity o((d).
As we have already noted this is really a coherent
property of the crysta, l, but here we give the
single-particle contribution of the diffusing ion
to o'((d). This is also related to the velocity-
velocity correlation function and is given by

ne'
o' ((v) = —

( „),Ck,",(e, 0, 0), (66)

where we wrote o to emphasize that it is a
single-particle contribution. n is the number of
diffusing particles per unit volume and e their
charge. Note that

o'(0) = pne'D, (67)

which is just the Nernst-Einstein relation in the
absence of correlation.

III. DETAILS OF THE CALCULATION

In order to get the experimental quantities in

which we are interested, we have to solve Eq.
(55). This is an integral equation involving a
double integration at each step. This problem
can in principle be solved iteratively, but would
be very time consuming on the computer. So as
a first approximation to M» we take only the first
iteration of (55), i.e., we approximate (fk,", by the
resul. ts obtained in the absence of M». This
means that we approximate broad modes by 5
functions. As long as the widths of these modes
are smaller than the structure in the integration
kernel and the range of the integration, we expect
to get at least qualitatively correct results by this
approximation. The difficulties arising from this
approximation wil. l be discussed when they occur
in the next section. The real part of M» is
neglected altogether since it only leads to a shift
of the features observed, but does not change
them qualitatively.

A. "Dispersion curves"

If M» is neglected in the calculation of 4» then

C» has an imaginary part only at frequencies
which are the square roots of the eigenvalues
of Q„X„'Q„X„',as may be seen by inspection of
(64). Clearly these dispersion curves do not
represent the true dispersion of our system be-
cause M» is not smal. l. Moreover they depend
sensitively on the particular choice for the vari-
able considered explicitly. Nevertheless, we will
find them useful later in the discussion of various
properties of the correlation functions.

In the limit M» =&q-0, the integral over m in

(55) is replaced by a discrete sum over 6 func-
tions with weights determined by the full (64)
at the square roots of the eigenvalues as long as
these are in the interval of the integration. It
is therefore of interest to see explicitly what
these frequencies are. To do this we first of all
write

i.e., the frequencies just become

~ =+
I (k+G, ), I (k.T/M")", (70)

i.e., we get a straight dispersion with a slope
(T/M")". Nondiagonal d leads to a mixing of

modes originating from different values of Gy,
which affects the modes most at the zone bound-
ary where they are degenerate in the absence of

Q»y, ,'Q„li,,' = g (k+G')„d(G,„—G„')
G'

xd '(G„' —G,„)(k+G,)„ksT/M" .

(68)

In the limit of high temperatures, d is diagonal.
The off-diagonal terms vanish approximately as
tkF/ksT, where &F. is the energy difference be-
tween maximum and minimum in Fig. 1. Then
(68) becomes

Q2kg, ,'Qk2X„' ——(k+ G, )„'ksT/M "6(G,„,G,„), (69)
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FIG. 2. Dispersion curves for density fluctuations for
M22 ——0 withe =2000 K, B=5/a, a=San, c=l0 cm/sec,
M =M~=50 amu: (a) T =50 K, (b) T =200 K.

this mixing, and leads to a splitting. At finite
temperatures we can write with the aid of (38),

21itll 12X22 (GlXI G2&) ( G14 8 / (Glut G2X}

xi/M E(G,„—G2„)(k+G,)„.
(71)

This shows that as T-0 the, diagonal term van-
ishes, whereas the terms depending explicitly on
the effective potential remain finite and are pro-
portional to (M~} '~' in the frequency.

In Fig. 2 we show the dispersion curves calcu-
lated explicitly with the full d(G) for the poten-
tial corresponding to c =10'cm/sec in Fig. 1
(activation energy 200 K) for T = 50 K (a) and
200 K (b). The results suggested by (70) and (71)
are borne out qualitatively. The slopes of the
dispersion curves at 300 K are greater than the
50 K ones, as suggested by (70). In fact for the

higher branches the ratio of the slopes is exactly
2, as predicted by (70). At the zone boundary
there is a gap which is relatively larger in the
50-K case, a manifestation of the greater im-
portance of the off-diagonal coupling terms in
d(G). If the temperature is increased beyond
200 K, the form predicted by (70) is approx-
imated more and more closely. The first gap at
the zone boundary is determined largely by
d(l), the second gap by d(2), etc. However,
d(l)& d(2)& d(3), etc. , explaining why the higher
gaps are smaller. In the 50-K case the first
gap at k = 0 is larger than the higher ones (2.4
instead of 1.8 x 10" sec '). In fact, as the tem-
perature is decreased further, the higher gaps
decrease -

v T, whereas the lowest one approaches
asymptotically a limiting frequency of 2.35 & 10"
sec '. This has to be compared to the Einstein
oscillator frequency of 2.48 X 10"sec ' in this
case and shows clearly that this limiting be-
havior is a consequence of the off-diagonal term
in (71). The discrepancy between our limiting
frequency and the Einstein oscillator frequency is
explained by bearing in mind that E(G) in (71)
samples the whole potential, not just the curva-
ture at the bottom of the potential. The average
curvature of the potential. , however, is lower,
due to the bending down of the potential at the top
(Fig. 1). This leads to our lower "effective Ein-
stein frequency. "

As the temperature decreases, the lowest dis-
persion curves become much flatter than pre-
dicted by (70), emphasizing again their Einstein-
type character. The range of the integration as
given by (55} is indicated by the dashed triangle
in Fig. 2. Only branches within the triangle con-
tribute (for e, = 0; for &u, e 0 the triangle is shifted
and split).

B. k = 0 and w&
= 0 limit

The expression (55) for

M„((u„(k+ G,)„(k+ G,)„)
contains a factor u ', which can lead to a divergent
contribution for q„-0, so special care has to be
taken. However, for the first iteration 4,", con-
sists of a series of 6 functions in m; therefore
difficulties only arise if ~ =0, q =0 coincides with
one of the 5-function peaks of

Q,",(+(u+(u„(k+q+G'+G, )„,(k+q+G" +G,)„),
i.e., most notably at co, -0 and k-0. We treat
this case specifical. ly by setting k =0 and con-
sidering the (u, - 0 limit. Then by inspection of the
dispersion curves in Fig. 2 we see that a section
of the lowest dispersion branch of length - ~,
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contributes, and that the factor I/&e becomes ap-
proximately I/e„ i.e., the frequency factors
cancel and we get a finite contribution from the
lowest branch, even in the limit (d, - 0. We are
now going to work this out anal. ytically.

First we bear in mind that there is a contribu-
tion only if &u„&u, and q are small (k =0). Then
in (55), x- 0 and by replacing a, ll terms by their
limits the corresponding contribution M22, to M„
becomes

2

16M c'a'8'
/II

4)dq„de &u '[4 p, (w+ &e„(q+G'+G, )„, (q+G" +G, )„)
am c la& l

+4
~ t ((d CO) ] . (72)

4 yy are 0 functions and in Fig. 2 we see that for sma ll q and ~ the lowe st branch may be appr oxima ted by

4,",(&o+ te„(q+G'+G, )„, (q+G" +G,)„)=5(te+ &u, —c,q„)% „((G'+G,)„,(G"+G,)„),
where +» is a matrix of weight functions, c, is the slope of the lowest dispersion branch, and c,&c is
assumed. The integrals in (72) can then be evaluated to give

kg TWA ~ (Qs2+Q~&2)/4g
Msse(~z 0~ Gzx~ Gsx) 16Ms s sflsca

(72)

x (O' ~ 6")s4„((G' + G, )„, (G "+Gs)„)c,' ln[(c+ c,)/(c —c,)j. (74)

This expression is independent of ~, as we had
expected. In practical calculations this expres-
sion was used for ~, = 0 and including it led to a
good agreement of the calculations for co, =0 and
&u, small but finite (where the lowest branch is
already included in the integral and does not have
to be added on artificially).

IV. RESUI.TS

In this section we discuss the results of our ex-
plicit numerical calculations. As far as possible
we give physical or mathematical reasons for
their qualitative behavior. Whenever possible we
compare these results with what would be ex-
pected in a simple Fokker-Planck (FP) model (in
the large-friction limit). In Sec. IV. A. we show
some of the general features of M», while in the
later sections we discuss their implications for
the diffusion constant, the frequency-dependent
conductivity o(&0) in the one-particle model, and
finally C»(q, u) and C„(q, te). For C»(q, &a) we
compare our results also with the Chudley-
E lliott model.

A. %22

We have seen in Sec. II that in a simple FP
model. M» should be diagonal in the reciprocal-
lattice vectors G, and G, and independent of these
and the wave vector k. However, from general
principles one would expect that M»- 0 as the
wave vectors become very large, since very-
short-wavelength functions cannot be damped.

(k, k)
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FIG. 3. Momentum dependence of the imaginary part
of the memory kernel for ~= 0 in units of 10 sec
withe =2000 K, B= 5/a, a =3k, c = los ctn/sec, M
=M+=50 amu, '5 =200 K.

In Fig. 3 we show the calculated wave-vector
dependence of the diagonal element M,",(&u, = 0, k, k)
(which is constant in the FP limit) and the off-
diagonal terms M,"s(&e, =0, k, k+2m/a) and
M,"s(te, =0, k, k+4m/a) (which vanish in the FP
limit). First of all, we notice that all three ma-
trix elements decrease around k =6m/a (for our
pa, rticular set of parameters), corresponding to
three reciprocal-lattice vectors. This is in
agreement with what we had expected and can be
understood by inspection of the dispersion curves
in Fig. 2(b), which are calculated for the same
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set of parameters. One sees that the dispersion
curves from three reciprocal-lattice vectors fit
into the dashed interval of integration. Since
higher branches can contribute only via the off-
diagonal elements in d(G) [which are much smaller
than d(0)], this explains the decrease of M».
This observation leads to a general rule, since
the slopes of the dispersion curves are -(T/M")' '
and the interval of integration approximately
equals the sound velocity c in the host lattice,
i.e., -(cx/M~)", where cx is the effective elastic
constant and M the mass of the host atoms.
We find that the wave vector k, at which M» de-
creases is

M c@
MB

i.e., departures from the Fokker-Pl. anck limit are
particularly important for small M" /M~, i.e.,
light diffusing masses. This is just what is ex-
pected from the derivation of the FP equations,
where M"/M~ && 1 was assumed. Furthermore,
we see that the off-diagonal matrix elements in
M» may be as large as 50/0 of the diagonal ones
and therefore cannot be neglected.

The situation with respect to the frequency de-
pendence of M,", is similar. In the FP approx-
imation one assumes that the forces exerted by
the lattice are completely uncorrelated in time,
i.e., that the damping is independent of fre-
quency. However, one expects that for very
short times the particles do not collide and
therefore move undamped. Therefore we ex-
pect that M,",(&u}-Oas u-~. In Fig. 4 we plot

0.6

-0.4—

M,",(v, k =O, k =0), M,",(~, k =O, k =2m/a), and
M2', (e, k =O, k =4x/a). All three show a decrease
near v = coD. The mathematical reason for this
behavior is that at ~& &u~ + tu, (a&, is the lowest
nonvanishing frequency of a dispersion branch
at k =0) there is no direct overlap between the
shifted first dispersion branch in (56) and the
interval of integration. The main decrease of
M,",(&u} occurs in the range en —&u, «u«u~+ &u„

i.e., at high temperatures the decrease is
smoother than at low temperatures (the interval
is HT at high temperatures). It is physically
plausible that the decrease is centered around
+D, since this just means that the correlation
time for the forces exerted by the lattice is a
typical period of vibrations of the lattice ions.

The discontinuous decrease of M,", in Fig. 4
is a consequence of the 5-function approximation
to 4 j y

since that means that a point of the dis-
persion curve either contributes completely or not
at all to the integral, whereas a finite width
would smooth the dependence, effectively con-
voluting the calculated behavior by the widths
of the lines (typica, lly 1-5 x 10" sec ').

The frequency dependence of M,", is important
in the calculation of the frequency dependence
of, for example, o(e) if &u~-~„ [since the struc-
ture of v(ar) occurs at &u,]. Since u&~ 1/(M )''
and &o, M", we again see that the departures from
the constancy of M,",(&o) are particularly important
for M"/M~ « l.

These considerations also impose limits on the
parameter values which can be treated within our
approximation. We expect to get sensible results
only if at least one dispersion branch is included
completely in the frequency interval of integration
and if the total number of dispersion curves con-
sidered (we could treat a maximum of 15 in a
reasonable computer time) spans a frequency in-
terval somewhat greater than ~D. This leads to
the following approximate condition:

4sT/M"c s40, (76)
C)

3

=~ 0.2—
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where T is measured in K, M" in amu, and the
sound velocity c of the host in 10' cm/sec. By
making the treatment self-consistent it would be
possible to relax the upper limit by including more
reciprocal lattice vectors in the lower limit. 'The
number of reciprocal-lattice vectors also leads
to another condition via the convergence of d '(G)
[Eq. (32)]:

FIG. 4. Frequency dependence of the imaginary part
of the memory kernel in units of 10 sec for three
different momenta: —go=0, ——gk=2z, . uk=4m
with A = 2 000 K, B= 5/a, a = SA, c = 10 cm/sec, M
=M~=50 amu, T =200 K.

6g/T 6 8,

where 4E is the activation energy for the mobile
ion.
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TABLE I. Activation energy h, E and frequency Q)p

of the reststrahlen oscillator as function of the elastic
constant c, calculated from the fully relaxed periodic
potential, using A = 2000 K, B = 5/a 2, a = 3 A, M~ = 50
amu.
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279.0
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2.47
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3.14
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FIG. 5. Diffusion constant as function of temperature
for various sound velocities (cm/sec) with A. =-2000 K,
B=5la, a=3K, M =Ms=50 amu. The solid lines are
calculated with a constant M22 chosen to lead the same
diffusion constant as the full M22 at T =50 K. The points
have been calculated for c =10 cm/sec using the full
M22.

B. Diffusion constant D

The general expression for D is given in Eq.
(65). In a zeroth-order approximation one may
use the Fokker-Planck approximation for M,
i.e., M approximated by an effective damping
constant y. Evaluation of Eg. (65) shows then that
D is in a good approximation inversely propor-
tional to y. If one assumes y- (M") ' [as one
might expect from the yaa' factor in (22)], but in-
dependent of T, M, and c, then one gets a dif-
fusion constant which is independent of M", M
and c, and, at low T, depends on temperature
with a simple Arrhenius law. The activation en-

ergy is exactly the barrier height in Fig. 1, i.e. ,
it decreases with decreasing c. This behavior
is demonstrated clearly in Fig. 5, where we show
the temperature dependence of D for the potential.
shown in Fig. 1 using the approximation (63) for
M. The corresponding heights of potential bar-
riers are given in Table I. The damping y was
chosen so that the curves agree with the regplts
using the full M» at T =50 K. At high T (wh'ere

the neglect of higher powers in the momenta how-
ever, is less justified), D(T) T, o(+ =0, T)- constant [i.e. , the corresponding plots for
&(ru = 0, T) would curve down rather than up for
high T, in agreement with experiment"j.

The advantage of our treatment is that we can
calculate the absolute value and dependence on

T, M", M, and c of the damping (matrix) ex-
plicitly. Therefore we do not have to resort to the
gd hog assumptions of the Fokker-Planck treat-
ment. We are now going to study the dependence
on the various parameters in turn.

In Table II we give as an example the tempera-
ture dependence of selected elements of the mem-
ory matrix for M =5 amu. First of all we note
that the matrix elements decrease with increasing
wave vector and that this decrease occurs at
smaller wave vectors if the temperature is higher,

TABLE II. Temperature dependence of various matrix elements of M22 for the parameters
0

A =2000 K, B=5/a, a=3 A, c=10 cm/sec, ~ =5 amu, M =50 amu, ~=0. M2& is given in
units of 10 sec

40 50 70 100 150 200

m2, (0, 0)

M22 (27t./a, 27t. /a)

M22 (4x/a, 4x/g)

I",, (6~/~, 6~/a)

Sf&2 (0, 2~/a)

M&2 (0, 4~/a)

6.02

8.75

317
4.24

1.90

2.06

6.18

7.51

3.13

1.71

1.32

2.60

6.12

6,65

3.71

0.24

1.04

2.87

5.88

5.39

3.83

-0.30

0.72

2.80

5.48

4.23

2.87

-0.16

0.47

2.12

4.78

1.30

-0.03

0.45

1,27

4.15

3.63

0.63

-0.01

0.63

0.83
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in agreement with (75). Furthermore, we also
note that the matrix elements generally decrease
with increasing T [this arises from the smaller
I/&u factors in (55) for the steeper dispersion
curves at high T j. Since the diffusion constant
is approximately proportiona, l to M,, {it is no

longer exact, since there are off-diagonal matrix
eiements), D increases more rapidly with T than
e & . For the case M„=5 amu and c=10'
cm/sec, the resulting diffusion constants are
shown as crosses in Fig. 5. One can see that the
temperature dependence is still approximately

, exponential, but not precisely; i.e., if one forces
the functional form to be exponential, then the
apparent activation energy is temperature de-
pendent. For very low T, 4E"'(T)-4E, the FP
value, whereas for higher T, b,"(T)) bE.

In Table III we show the dependence of hE"'(de-
termined between T, = 2&E and T, —= ,'&E) and —v

on M~ [D = @exp(-6E /k~T) j. It shows clearly
that the additional temperature dependence from
the memory matrix leads to a stronger tempera-
ture dependence than in the FP case (b,E=200 K)
and that this departure becomes more dramatic
for lighter diffusing ions. For light diffusing ions
the prefactor varies approximately as 1/(M")'~',
whereas for heavy diffusing masses, D is al-
most independent of M". Both these results
are contrary to what is expected from clas-
sical rate theory which predicts a prefactor
1/(M")' ' and a mass-independent activation en-
ergy for all diffusing masses. Physically, this
departure from the classical rate theory can be
understood by bearing in mind that in the classical
theory one assumes that the lattice is always in
equilibrium with the diffusion ion, i.e., fully
relaxed. If the diffusing particle, however, is
very light, then the lattice particles cannot al-
ways follow the diffusing ion to their momentary
equilibrium positions, i.e., the lattice is not ful-
ly relaxed, leading to a higher apparent activation
energy. This effect will be most pronounced for
small M /M

As far as we know, this is the first time that
a dependence of the activation energy on the mass
of the diffusing particle has been predicted in a
classical theory. The mass dependence is in
qualitative agreement with that found experimen-
tally for hydrogen isotopes in fcc metals. ' The
standard explanation for this behavior is in terms
of the quantum theory of diffusion, ' but our calcu-
lations show that it might be possible to explain
the experimental results without having to invoke
quantum theory, whose applicability appears
questionable at the high temperatures and com-
paratively high masses encountered in hydrogen
diffusion. In the classical rate theory the pre-
factor of the exponential is given by

(78)

where v, is the Einstein frequency of the defect
and a the jump length, i.e, the lattice constant.
Using our potential we predict for M" = 5, that
v = 10.5 compared to the value 15.1 in Table II;
i.e., we predict an attempt frequency about 50Pp

larger than in the classical case. However, if
one repeats the fit for T, = 40 K and T, =30 K,
one gets A =9.5 and &E"' =202 K, in rather closer
agreement with the classical result and with our
previous observation that 4E"decreases with
decreasing T. In fact this is a prediction of our
theory which has not yet been checked exper-
imentally, but should provide a useful. test for
its validity. Similarly we investigated the influ-
ence of the mass of the host atoms on the ef-
fective activation energy and the prefactor. The
results are summarized in Table IV. %e find
that the activation energy increases with increas-
ing M, which emphasizes again the point that the
ratio M /M" is the important quantity for de-
termining the departure from the FP behavior.
The decrease in the prefactor can be understood
by bearing in mind that c- I/(M )'' for fixed
elastic constants. Therefore the density of pho-
non states into which a diffusion mode can decay
increases with M and the damping for the diffu-
sion mode therefore also increases; D therefore

TABLE III. Effective activation energy AE {in K)
and prefactor p {in 10 ~ cm2/sec) for the defusion con-
stant D{T) for T~=100 K and T2=50 K as a fugction of
MA. Other parameters as in Table II.

TABLE IV. Effective activation energy AE+~ {in K)
and prefactor v {in 10"4 cm2/sec) for the diffusion con-
stant D{T) for T&=100 K and T2=50 K as a function of the
host atom mass M . I =20 amu, other parameters as
in Table II.

3
5
7

10
20
40

18.5
15.1
12.8
12.2
12.0
11.3

225
224
215
213
213
213

50
100
150
250

12.0
8.7
8.0
6.9

213
214
221
221
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decreases. At a given temperature, D varies
roughly as 1/(M )''.

If the elastic constant decreases, then the
sound velocity c also decreases and with it the
barrier height as shown in Fig. 1 and Table I.
Thus the temperature dependence of the diffusion
constant becomes l.ess rapid. Also with decreas-
ing c the phonon density of states increases and
decays of the diffusion mode become more l.ikely
[there is a fa.ctor 1/c' in (55)]; this leads to an
increased damping for small c and hence a smal-
ler prefactor v.

C. Frequency-dependent conductivity 0 (u)

As we have seen in Eq. (66) the frequency-de-
pendent conductivity (in the single-particle ap-
proximation) c (~) is simply related to
4»(&u, k =O, k =0). If M,",(u&, k =0, k =0) is known,
it is a simple matter to calculate it.

In Fig. 6 we show c' (&v) in arbitrary units for
four different temperatures. It shows that o (0)
4 0 for all temperatures, corresponding to the
finite dc conductivity of our model (related to the
finite diffusion constant D). Generally speaking,
o (cu) shows a two-peak structure, one peak
centered at ~ = 0 and one at a finite frequency.
The peaks arise from the dispersion branches at
k =0 (compare Fig. 2). Only the lowest two
branches contribute noticeably to o (&e), since one
is considering the k =0 limit. Higher branches
are associated with higher rec1.procal-lattice vec-
tors which couple only via small. d(G)'s and there-
fore have a low weight associated with them (there
are small indications of a third peak in the T =30

Vl

K 1.0

IXI
lE

0.5

3
O

I I I I I

3 4 5 6 7
FREQUENCY (10' sec ')

FIG. 7. Conductivity as function of the frequency for
different masses for the diffusing particle with A = 2000
K, B = 5/a, a = 3A, c = 10 cm/sec, Ms = 50 emu, T = 50
K.

and T = 50 curves around e = 4 && 10" sec '). As
we have seen, the mode at finite frequency shifts
to lower frequency as T decreases and approaches
the Einstein oscillator frequency for low T (in
Fig. 6 there is hardly any shift in the peak be-
tween T =50 K and T =30 K). The most dramatic
feature of Fig. 6 is the gradual shift of weight
from the Einstein oscillator peak to the diffusion
peak at +=0 as T increases. The mathematical
reason is the decrease of d(G) with increasing T.
Physically this behavior is very reasonable, too.
At low temperatures the particle is mainly local-
ized in one of the potential minima and oscil. lates
around it, therefore the oscillatory peak is dom-
inant. At high temperatures, on the other hand,
the particle is moving fairly often above the max-
ima of the potential and the diffusive peak is
bigger. The total. area under the curve is in-
dependent of T (and M and c, for that matter),
a consequence of the sum rule

dtd 0 (QJ) =J ns(Ze)'
(79)
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FIG. 6. Conductivity as function of frequency for four
different temperatures with A =2000 K, B=5/a, a=3k,
e=&0 cm/see, M =M~=50 amu.

Figure 7 shows the dependence of v (&c) on the
mass of the diffusing particle (for T =50 K). The
features worth noting are that a (0) depends only
very little on M" (the differences are a few per-
cent and do not show up at all in Fig. 7), contrary
to the 1/(M")'' dependence predicted by classical
theory. The frequency of the Einstein oscillator
peak varies as 1j(M")'' a.s of course it should.
The damping (i.e., the width of the Einstein oscil-
lator peak) depends on M" roughly as 1/M" (which
arises from the 1/M" factor in y,,', converting
M» to M»); this increase of the damping for low
diffusing masses fills up the minimum between
the diffusion and the oscillator peaks. Finall. y
the area under the curves varies as 1/M", as
predicted by (79).

In Fig. 8 we present o' (cc) for various masses
of the host ions M, while keeping M" =20,
T =100 K, and the elastic constant fixed. This
shows an increase in the damping with increasing
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FIG. 8. Conductivity as function of frequency for three
different masses for the particles of the host lattice
with A =2000 K, B= 5/a, a =3/, M+ =20 amu, M+c
=6060 K, T =100 K.

v) o4

0.3
IXI

0.2
3

0.1—

0
I I I I

2 3 4 5
FREQUENCY (10'2 sec '

I

FIG. 9. Conductivity as function of frequency for three
different sound velocities (cm/sec) with A = 2000 K,
B=5/a, a=3K, M+=20 emu, M =50 emu, T =100 K.

M, which arises from the increasing density
of phonon states already noted in Sec. IVB.

Similarly in Fig. 9 we show the variation of
o (&e) with the elastic constant of the host, while
keeping all. the other parameters fixed. This
clearly shows the increase of the damping with
decreasing c, again arising from the different
densities of states available for the decay. Also
we note that the Einstein oscillator frequency
shifts to lower values as c decreases, in agree-
ment with the flattening of the effective potential
in Fig. 1. The area under the curves in Figs. 8
and 9 is constant, in agreement with Eq. (79).

Finally in Fig. 10 we compare the results of
our full calculation with the FP results. The
problem with such a comparison is that the damp-
ing is not known in the FP approximation and a
value has to be chosen for it. We take the matrix
element M,",(~, = 0, k = 0, k = 0) which we calculate
at T =200 K, namely 0.58X10'" sec ' This
tends to minimize the discrepancies at T=200 K.
Differences only arise due to the presence of off-
diagonal matrix elements and the k dependence of
M» (the &0 dependence can be neglected in the range

2 3 4
FREQUENCY (1012sec1j

FIG. 10. Conductivity as function of the frequency for
bvo temperatures: —full theory, ——M22{k~, k2, ~) is
approximated by its k~ = k2 = ~ = 0 value. The other para-
meters are A =2000 K, B=G/a, a=3K, c =10 cm/sec,
M+ =M~=50 amu.

of frequencies considered}. The full curve shows
the calculation with the full M», and the dashed
curve shows the FP approximation. The qualita-
tive agreement is quite good. However, when the
temperature is changed to 50 K, the discrepancy
at &u = 0 is already 50%. The frequency-dependent
conductivity o(&u} has also been calculated recently
by other authors. ""' Neglecting phonons, they
solved the Fokker-Planck equation for one particle
either by a continued fraction method or by ex-
pansions in terms of complete sets of functions.
Such a treatment has the advantage of yielding
accurate numerical values for all temperatures
and wave vectors once the approximations be-
hind the Fokker-, Planck equation have been ac-
cepted. In particular, the damping y is assumed
to be independent of frequency, wave vector, and
temperature. In contrast to that, our treatment
gives a microscopic foundation of y in terms of
the memory function M". Moreover, it allows
us to calculate M" in a well-defined approximation
and thus to determine its dependence on a1.1.

parameters of interest. Owing to the more com-
plex nature of our approach, we have neglected
higher powers in the momenta which means that
our results are reliable only for temperatures
small. compared with E&. Comparing our results
with those of Refs. 15-18 we would like to stress
two points: (a) Each of our o(&o) curves char-
acterized by a certain set of parameters
T, M", M, c, . . . could be qualitatively reproduced
by a curve calcu1ated from the Fokker-Planck
equation if an effective y is used. (b) Our many-
body treatment of the memory function M" is,
however, necessary if queitions like deviations
from an Arrhenius law of o(0) or isotopic effects
are discussed. This is so because M" itself
shows a non-negligible dependence on T and M".



6060 G. KLEPPMANN AND 8, . ZEYHER 22

3
C4

1.2 —.

z9 1.0

z
~ 0.8z
O

~ 0.6

K
O~ 04

X

~z Q2

X
X Ii0r .~~'I

0 1

aq=0
aq = Tt;/2
aq=m
aq= 2m

I l

2 3 4

FREQUENCY (IP12 sec-I)

D. Momentum-momentum correlation function -4»& (q, u)

FIG. 11. Momentum correlation function as function
of frequency for different momentum transfers with
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FIG. 12. Density correlation function as function of
frequency for different momentum transfers with
A=2ppp K, B=5/a', a=3 A', c=lp5 cm/sec, I
=50 amu, T=50 K.

In this section we discuss the q dependence of
4». Figure 11 shows the calculated results for
T = 50 K. The figure shows that -C g, (q, &o = 0) = 0
whenever q 40, whereas it is finite for q =0. This
behavior arises from the importance of the order
in which the ~- 0 and q- 0 limits are taken. The
various peaks appearing in Fig. 11 can best be
understood by referring to the dispersion curves
in Fig. 2 which were calculated for the same pa-
rameters. Similar to Fig. 6, the main intensity
at 50 K is in the peak originating from the Einstein
oscillator (the second from the bottom in Fig. 2).
There is a gradual. transfer of intensity from the
diffusive peak to the oscillator peak as q increases
so that at q = v/a the oscillator peak is more in-
tense. This transfer of intensity is completed, at
q =2@/a, where no intensity is left in the diffusive
peak. There is also some contribution from high-
er dispersion branches, just as in Fig. 6. If
even larger values of q were considered, the in-
tensity would begin to shift to the higher disper-
sion branches. The q dependence of the peak can
also be understood immediately by referring to the
dispersion curves: As q increases from 0 to v/a,
the diffusive peak shifts to higher frequencies and
the oscillatory one to lower frequencies.

E. Density-density correlation function

The density-density relaxation function 4,",(q, e)
has much more practical importance than
42', (q, &u), since it is related directly to the in-

coherent neutron scattering cross section (64).
In Fig. 12 we show the results for -4,", for
T = 50 K. At q =0 (not shown), 4,", is a 5 function
in the origin, as may be seen by inspection of
(79). 0» contains a factor q and hence vanishes
and C „reduces to

4 „(z,0, 0) = -li„/2 . (80)

@„(I,~) f d~'o„(i, w' )e"„(i,~ —~'), (8l)

For finite q the 0 function cancels (except if q is
a multiple of 2v/a) and 4,",(e =0, q, q) is finite.
For small q values 4,", consists of a I.orentzian
at the origin whose width broadens with increasing
q (and increasing temperature). This is the over-
damped diffusive peak. At the same time the
Einstein oscillator peak gains in intensity q'.

4» can be completely understood in terms of
the overdamped diffusive peak whose width in-
creases up to q =w/a and then decreases again to
a 0 function at q.=2m/a, and the Einstein oscil-
lator peak, whose weight increases with q. If
q increases, even higher dispersion branches
can contribute.

For completeness we would like to compare
our results for 4» with the results for a Chudley-
Elliott o model, applied to our situation. In the
Chudley-Elliott model one uses a convolution ap-
proximation between the diffusive and the oscil-
latory part as
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4,', (q, (d) =f (q)/[~'+f '(q)],

where

f (q) = [1—cos(qa)]/r

(82)

(83)

and v is the jump time. The total relaxation func-
tion is then given by

4 „(q (d) f (q)e 2 )2IO(x)
2

+ q

I„(x)
.—, (~'~~*.('+f'(e() '

(&4)

where x = (kBT/M")(q'/u&e2), (de is the Einstein
oscillator frequency for a diffusing particle, and
f„are modified Bessel functions. In (84) the term
in J, corresponds to the zero-phonon term and
I„ to the n-phonon terms.

E(lu'ation (84) shows that the width of .all lines
varies as f (q) q2 for small q, not just for the
diffusive line. Similar to our results, the inten-
sity of the one-phonon line varies -q' for small q.
But the intensity in the phonon lines is much
smaller than we would predict (for T =90 K and
aq = w it is approximately —', th of our result) and it
increases rather than decreases with T. Further-
more, there is no dispersion in the peak positions.
Whereas for small q values there is reasonable
qualitative agreement between the Chudley-
Elliott model and our theory (if one uses a suit-
ably chosen 7 to get the same diffusion constant),
there is not even qualitative agreement for large
q values.

In the Chudley-Elliott model the width of the
lines is periodic in aq =2m. In particular one gets
a series of 5 functions whenever aq is a multiple
of 2w. The intensity of the higher phonon lines
increases with increasing q and tends to a constant
independent of n for q- ~. In our model only the
co =0 peak is a 5 function; if aq is a multiple of 2m',

the peaks centered at finite frequencies retain a
finite width. For increasing q most of the'inten-
sity is localized in one or two peaks of 4,", (de-
pending on the exact q value), which shifts to
higher frequencies as q increases. In particul. ar,
the peak at co =0 has a very small intensity for

which corresponds to saying that the particle can
simultaneously oscillate and diffuse and moves
from ~, to z, by diffusing to r' and then oscil-
lating from x' to r, . The diffusive part is given by
diffusive part is given by

large q values —the intensity varies roughly as
d(G) compared to 1 in the main peak.

V. CONCLUSIONS

We have derived a transport theory of a single
diffusing ion constrained to move in one dimen-
sion in a three-dimensional deformable lattice.
Our calculation was based on the Mori formalism
with the variables n(k„) and P(k„), and the memory
kernel was evaluated in the mode-mode coupling
approximation.

The memory kernel was found to decrease to
zero for frequencies around the highest lattice
frequencies and for wave vectors such that the
associated diffusion mode corresponds to a sim-
ilar frequency. Both results differ from the as-
sumptions made in the Fokker-Planck treatment
of the problem.

The absolute magnitude of the diffusion con-
stant is found to be of the same order of mag-
nitude as predicted by classical rate theory. An
Arrhenius law is a reasonable description of the
temperature dependence. However, the activa-
tion energy increases slightly with temperature
and approaches jhe barrier height only at very
low temperatures. At higher temperatures the
lattice relaxation is imperfect, leading to a
higher apparent activation energy. This increase
of the activation energy depends on the mass of
the diffusing ion and thus gives rise to a,n isotope
effect in the activation energy. On the other hand,
the prefactor (attempt fre(luency) varies less with
the mass than (M") '~', especially for large M".
These results show that an analysis of experi-
ments in terms of the classical rate theory may
be dangerous. Furthermore our calculations
show that one can get an isotope effect for the ac-
tivation energy even in a purely classical theory.
This means that it might not even be necessary
to resort to quantum theory to explain the exper-
iments with H, D, and T. We al.so studied the
influence of the mass of the lattice ions and the
elastic constant.

The frequency-dependent conductivity shows a
two-peak structure. This result is in qualitative
agreement with previous Fokker-Planck calcula-
tions; however, the two peaks exist for a wider
range of parameters in our calculations. For the
incoherent neutron scattering we predict a peak
centered at co =0 whose width increases with
wave vector and an Einstein oscillator peak whose
weight increases as k'.

APPENDIX

In the following we derive the explicit from (55) for the memory kernel. If one introduces the abbrevia-
tions
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and

4,„(t)=(A.;i e 'A )

&;;,~r =(A Ar I A~Ar)

(Al)

(A2)

one obtains within these approximations

M„(z, (r+G, )„(r+G,),)=)))'f dte '(Pr(k+G, )„.)Z )IA), A;)
0

x X,-„.r „[e„.(t)C,„(t)+e,„(t)C,.(t)jN ',„.(A, A, i QSP((k+G, ).)) . (A3)

[ZP) is symmetric with respect to time reversal, whereas P and P are antisymmetric. Therefore the
vertices (ArA;[QZP) vanish, unless none or both the variables A; and A, are momenta. On the other
hand, we have restricted our original set of variables so that it contains only first powers of momenta.
Therefore, to be consistent with this original approximation, we keep only products of n and Q. Then
we get the following possible combinations:

a„,C„',Cx
in((k+q+G')„)n((-q+G")„)),

-(k.ql - &-q~
(A4b)

(A4c)

(A5)(P&QI QQ) = -(P«) X,r'(nI QQ) =0(I/&)

if (ni QQ) is factorized. Therefore (A4b) is also neglected. This leaves us with (A4c). The appropriate
normalization constant is

It is tedious but straightforward to show that (pZQinn) =0 and therefore (A4a) does not contribute. (A4b)
leads to the vertex

Ni
(k+q)„-q (k+q'), -q'l
G„n G„' n' f

= n((q-q'+G-G')„)Q
~

- =l- (=i
&-) i-)

=&(q. -q.')& "(G.-G') Q Q
, -(-ql- =q'l

&~j
(A8)

where in the last step the factorization approximation was used. We can now define a vertex T by

T
~

(k+G, ), "
~

= g P((k+G, ) gQ n((k+q+G') )Q X-'~ * ' (A7)

and propagators by

C»(t, (k + G, )„,(k+ G, )„)= (n((k + G r)„)i e ' 'n((k + G,)„)), (A8)

C„(t,«, err. ) = Ql
/

e ' 'Ql() ij
If we neglect propagators of the form (ni e ' 'Q), (A3) becomes

(A9)

M„(z, (k+G, )„, (k+G, )„)=ikrrT Q T (k+G,)„*
i

T*
i

(k+G, )„
%~ C~e G~~R

x dte'"4„ t, k+q'+G' „, k+q+G" 4'33 t, -qn, -qn . (A10)
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Let us first evaluate the propagators. By substituting into the equation of motion and assuming that the
phonons are not disturbed by the presence of the diffusing particle we get

4»(t, k(x, k'a') = — cos &uI f6(k —k')5~m. (k)
M uP

I

(().)
I

If we substitute this we get

dt e'"4»(t, (k+q+G')„, (k+q+G")„)4»(f, -q()), —qn)
0

i 2M'(d'I
I

d&o (x —(d) (z —&())' —&u'
I
4,",(((), (k+q+G')„, (k+q+G")„), (A12)

where 4,",(&o, k», k») is the imaginary part of the Fourier transform of 4„(t,k„,k,„).
For the next step we have to find the vertex. Let us first consider (PZQI nQ):

I

p((k+G, )„)zq n((k+q+G')„g
I I

= p((k+G, )„g n((k+q+G')„)q
- t'-q)

Z ()'(()'+ G, ).))') N(() + G").))

x x,,'((k+G"). (k+G'").& ~((k+G"').& ~((k+q+G')*)@
I

- (-q)

+x,,' (k+G")„,
I

"I QI
"

I

n((k+q+G')„)Q

In (A13) we replaced (()) by 1-P. The term multiplying X,~', however, vanishes except for k+q =0 or
k=0, if it is factorized. Hence, we are going to neglect it. Also, since X„ is of O(l/vN), one gets
(X ')» =X„,'+O(1/N) in the second term of (6V). Then to O(l/N), Eq. (A13) becomes

(A13)

P((k+Gx) ) @l"((k+q+G ) )@
I I

=& (k+q+G'). «ll (-q-G'+G. ~

L ))

(k+Gll) d(G G)))d 1(Gn Ger)
C" C»'

X g

x x,.l
(-q-G'+G"').

I II ~

k~ ))
(A14)

By substituting (A14) and (48) into (AV) we obtain the simple expression

T
I

(k+G, ), lI =-iN ''Aa '(rr/B)' '(q-G»e+G»e), (q-G»e+G»e)~exp[-(q —G»e+G»e)'/4B].

(A15)

Finally, substituting (A12) and (A15) into (A10), replacing the sum over intermediate q by an integral, and

performing the integral over the normal directions of q (q„q,), we get for the imaginary part of M»,
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M2', (~„(k+G, )„, (k + G,)„)
k TA2m

exp[ (QI2+G 211)/~]
16M c'a'83

Qlt

dQ'„g —G „q' —Q" „exp q„Q'+Q" 2B
-~m

x [@,",(&+&„(&+(f+G'+G, )„,(0+(f +G" +G,)„)+4,",(&o—-&u)], (A16)

where x = [((d/c)' —q„'] "'(G'+G")~/2B G„' i.s the x component and G~ is the normal component of the re-
ciprocal. -lattice vector 0'. q is the maximum vector of the Debye spectrum and (d~ is the Debye
frequency.
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