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The polarization of F-center luminescence caused by an applied stress is calculated from a direct numerical
diagonalization of the matrix of the interaction Hamiltonian that includes the stress splitting of the electronic states
for the simplest vibronic model of the relaxed excited state consistent with cubic symmetry. In this model the 2s
electronic state is coupled to 2p by a triply degenerate odd-parity vibrational mode of frequency co, and the 2s state
is taken to lie below 2p by an energy ~E,

~

=d Rco. The polarization is found in general to increase from its value at
0 K as the temperature rises, reach a maximum, and then fall, eventually approaching a hmiting rate of decrease
that is independent of3 and of the vibronic coupling strength. For 3 2 this variation with temperature is found to
be too large to be consistent with the experimental observation by Hetrick and Compton for KC1, NaC1, RbC1, and
NaF that the polarization is efFectively independent of temperature below 140 K. The conclusion from our work
that we must have d & 2 for these materials agrees with an earlier estimate for KC1 from magnetic-polarization data
but is not in agreement with other published estimates based on the temperature dependence of the radiative lifetime
and of the Stark polarization. The implications of these results are discussed.

I. INTRODUCTION

Research has been under way for more than a
decade in an attempt to learn the nature of the
relaxed excited state (RES) of the E center in
alkali halides and to develop a full understanding
of the processes involved in E-band lumines-
cence. The discovery by Swank and Brown' that
the radiative lifetime of the E center in KCl,
KBr, KI, and NaCl is anomalously long provided
the first indication' that the lowest level of the
RES might be a state of even parity rather than
the electronic 2p state expected from studies of
optical absorption in the I' band. Subsequent
theoretical calculations by Fowler et al. ' and by
Wood and Opik' sQowed that the 2s state should
be close in energy to 2p and might be below it in
the relaxed configuration. This last possibility
was given strong additional support by Stark-
effect studies on KCl, KF, RbCl, and NaF by
Hogan and Fitchen, ' Kuhnert, ' and Stiles et al,.'
which have since been extended to KBr, KI,
RbBr, and RbI by Ohkura et al,.

If the 2s electronic state is indeed close to or
below 2p, coupling of these states by odd-parity
vibrational modes of the lattice plays a crucial
role in determining the radiative lifetime and
other properties of the RES. An interpretation
of the temperature dependence of the radiative
lifetime on the basis of such a model was first
proposed by Tomura et al, .' The implications of
this model were developed more fully by Hogan

and Fitchen' and by Honda and Tomura, ' using
a semiclassical approximate theory of the vibra-
tional-electronic ("vibronic") coupling. A quan-
tum-mechanical treatment of this problem was
first given by Ham, "who used similarities be-
tween this problem and that of the dynamic Jahn-
Teller effect to give a general method of solu-
tion and to show how various properties of the
RES might be calculated. This theory was used
by Ham and Grevsmuhl" to propose a quantitative
interpretation of the experimental data for KCI.
and KF, using a perturbation treatment of the
vibronic coupling for the weak-coupling limit.
Numerical calculations of vibronic states and
energies for intermediate coupling strengths
were subsequently given by Qrevsmiihl" and by
Kayanuma and Toyozawa. " The latter authors"
also extended the theoretical model to include the
possibility of coupling to additional. vibrational
modes of different symmetry type, and on this
basis Kayanuma" proposed a reinterpretation of
the data for KCl. More recently, the theory has
been applied by Imanaka, Iida, and Ohkura" to
give a quantitative interpretation of Stark-effect
and l.ifetime data on seven alkali halides, and by
Qhkura et g$. ,

"Imanaka et gl, ' and Iwahana
-et al."to interpret stress and magnetic effects
in the RES. A further extension of the theory has
also been made by Kayanuma and Kondo" to in-
clude vibronic coupling among higher states
(3s, 3P, 3d) of the RES and to propose an inter-
pretation on this basis f.or the transient optical
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absorption within the RES observed by Kondo and
Kanzaki" and by Schneider. "

While these attempts to account for the exper-
imental results in terms of a vibronic model of
the BES have led to general agreement that for
I' centers in alkali halides the 2s electronic state
is nearly degenerate with or below the 2p state
in the relaxed configuration, no consensus has
yet developed concerning the values of the pa-
rameters in such a model that give the best
quantitative fit to the data. In particular, quite
different values have been inferred for the energy
difference 4 between the 2s and 2p states, depend-
ing on the type of experiment emphasized in fitting
the theory. For example, from the circular polar-
ization of the luminescence induced by a magnetic
field, Ham and Grevsmuhl" obtained the values
&=3.75 and 3.5 for KF and KC1, respectively
(with & given in units of the vibrational quantum
A&@ of the P-like mode that couples these states),
while Imanaka et gl. ,

' using the same vibronic
model, found instead that the values & =0.0 and
1.25 for the same two materials gave the best
fit to the temperature dependence of the radiative
lifetime and of the electric-field-induced linear
polarization. So large an uncertainty in the fun-
damental quantity & is clearly of crucial impor-
tance in seeking a consistent interpretation of
these and other experiments.

One of the arguments advanced by Ham and
Grevsmuhl" in favor of a large value for & was
the temperature independence of the stress-in-
duced linear polarization of the E-band lumin-
escence found by Hetrick and Compton' for
KCl, NaCl, BbCl, and NaF over the range 20 to
140 K. From their perturbation treatment of
the vibronic coupling Ham and Grevsrnuhl showed
that the stress-induced polarization should in-
crease appreciably with increasing temperature
as higher levels of the RES become populated, if
& were not sufficiently large. In particular, if
& were as small as some of the values proposed
by Imanaka et al. ,

"the results of Ham and
Grevsmuhl" would lead one to expect a strong
temperature dependence of the polarization,
contrary to the observations of Hetrick and
Compton. " However, it is now clear from the
calculations of Grevsmuhl, "Kayanuma, "and
Imanaka et al. "for intermediate coupling that
treating the vibronic coupling by perturbation
theory does not provide a quantitatively reliable
means of analysis except in the limit of vanish-
ingly small coupling, since the calculations show
that many of the parameters of the vibronic levels
depend very strongly on the strength of the cou-
pling and may change their values by a factor of
2 or more as the coupling strength S, increases

from 0 to 0.5. Clearly, we need to make numer-
ical. calculations val. id for intermediate coupling
in order to determine what limits can be placed
on ~ as a consequence of the temperature in-
dependence of the stress-induced polarization.

The purpose of this paper is to outline a cal-
culation of this type for the stress-induced polar-
ization and to give the results in a more complete
form than was possible in an earlier preliminary
report. '4 These results are found to lend support
to the original arguments of Ham and Grevsmuhl"
(paper II) in favor of a value for & larger than
those proposed by Imanaka et al." In Sec. II we

give the necessary background on the vibronic
model. for the BES based on the treatment by Harn"

(paper I). In Sec. III the matrix elements are ob-
tained that give the effect of stress (or strain) on

the vibronic energy levels, and formulas are de-
rived giving the resulting polarization of the lu-
rninescenee originating from one of these levels
when the RES decays radiativel. y to the 1s elee-
tronie ground state. Section IV gives the results
obtained from the numerical calculations: First,
in Sec. IVA values for the stress-induced polar-
ization of luminescence from the vibronic ground
state (0 K) are presented for various values of 6
as a function of S, (0- &,S, - 5); in Sec. IVB
graphs showing the temperature dependence of
this polarization are shown; in See. IVC an
approximate formula is derived which is useful
in describing the initial dependence on tempera-
ture when only the lowest and first excited levels
of the BES are appreciably populated. This for-
mula is also useful in assessing the relative
importance of contributions to the polarization
from stress-induced splitting and mixing of the
vibronic states. A discussion is given in Sec. V
comparing the conclusions of this work with the
values of & and S, inferred from the various other
types of experiments. We also discuss the con-
trast between our conclusions and those of
Ohkura et gl."and Iwahana et gl. ,

"who have in-
dependently made calculations of the stress-in-
duced polarization. Finally, in an Appendix we
derive for the stress-induced polarization an
asymptotic formula which is independent of the
coupling strength and which gives the limiting
behavior at high temperatures of the calculated
curves.

The calculations given in this paper are limited
to the simplest vibronic model for the BES that
is consistent with the cubic symmetry of the E
center. In particular, of the possible vibrational
modes that couple to the 2s and 2p electronic
states we have included only the P-like mode that
couples 2s with 2P. Whil. e coupling to additional
modes of different symmetry may be significant,



CALCULATION OF STRESS-INDUCED POLARIZATION OF. . . 6015

as Kayanuma" and Iwahana gt al."have proposed,
it has not yet been demonstrated to our satis-
faction that this additional coupling is necessary
to explain the data. In any case, it is important
to establish the limitations of the simple model
before complicating features are added. More-
over, the simple model is much easier to handle
mathematically, and one can easily ensure the
accuracy of the numerical calculations by includ-
ing enough vibronic states without making the
matrices too large for efficient computation. We
consider the possible effects of additional types
of coupling in a qualitative discussion in Sec. V.

II. REVIEW OF THE VIBRONIC MODEL

We consider the same vibronic model used in
papers I (Ref. 11)and II (Ref. 12) with the 2s (1",}
and 2P (I', ) electronic states" interacting in
cubic symmetry (point group 0„)via a triply
degenerate odd-parity 14 vibrational mode

Q„, Q„, Q,. In this model the Hamiltonian

B ++I ++B (2.1)

has three parts, the first of which gives the rel-
ative energies of the electronic states in the cubic
configuration (Q„=Q, =Q, =0}

1
XB + QEBp po y (2.2)

where we denote by p, the operator

pa =+12s&&2si —12p )&2p, l
—12p &&2p~l —12p &&2p I .

(2.3)

The vibrational. part Ki, describes a three-dimen-
sional simple harmonic oscillator of frequency
~ and effective mass p. ,

'JCI, = (2p) '[P'„+P,'+P', + (y, &o)'(Q'„+Q', +Q',)].

energy separation E,p is negative and & is pos-
itive.

In seeking eigenstates of X in the regime of
weak and intermediate coupling, and in determin-
ing the effect of lattice strain on these states
(Sec. III), it is convenient to adopt as a basis the
vibronic eigenstates of the simplified Hamiltonian

X =%+K, (2.10)

t.=-ti2p.&&2p, l+ti2p, &&2p.l, (2.12)

etc. In the space of the Q's we introduce the vi-
brational angular momentum operator L with
components L» L„L,given by

Ls=h '(QA~-QyP~) (2.13)

etc. , and define polar. coordinates y, 61, y
(Q, =r cos8, Q„=r sin8cosq, Q, =r sin8siny),
so that the normalized spherical harmonics
Y'».(8, y) (defined" with the phase relationship
of Condon and Shortley") are eigenfunctions of
I.' and L,. Harmonic oscillator eigenfunctions
In, L, M') having the angular dependence of
I'»(8, y), satisfying

Xz, i n, L, M') = (n+ ~)haul n, I., M'),

and therefore corresponding to a vibrational.
energy

(2.14)

which describes the system when the coupling 6
is zero, We introduce linear combinations of the
2P states

12pg =12p.&, 12p„& =+ (2) '"(12p.
&

~ t 12p,&) (2.11)

which are eigenstates, with the conventional. phase
relations, "of the z component of the electronic
orbital angular momentum operator l. Within the
basis of the 2s and 2p electronic states the com-
ponents of l have the representation

(2.4) E = (n + —,')h&u (2.15)
Finally, the linear coupling of the electronic
states by the distortion is given by

&.,=&(Q.p. +Q,p, +Q.p.), (2.5)

with n = L+ 2N (N = 0, 1, 2, 3, . . . ), are given by

I L+2N, L, M'& =
+ N L 3 /2 (m) exp(- a2'r')

[21'(N+ 1)]'"n' "
where

a =12p;&&» I +1»&&2pil (2.6)
x L„"(a'r')Yl ~,(8, y), (2.16)

and the coupling energy' is given by

Ea =G'/2p, &o'. (2.7)

where o, = (p, &o/h)'' and L'„(z) is the Laguerre poly-
nomial defined by the generating function"

n = -E,~/ke,

S, =Ea/h~.

(2.8)

(2.9)

We shall be particularly concerned with the case
in which the 2s state lies below 2p, so that the

In units of the vibrational energy quantum he@, we
denote by & and S, the ratios

(I —t) "' exp I
= Qt (I'(N+a+I}] 'L'„(z).-z~ t

(I-t)j
(2.17)

The ful. l Hamiltonian K including the coupling
, I, is invariant under a continuous group of si-
multaneous rotations of the electronic and vibra-
tional coordinates. " Thus, although K does not
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commute with T or L separately (except when G

is zero), it does commute with the components of
efficients" in the linear combinations

I J,M; (2N + L), L, 2P), (2.20)

J =l+L. (2.18)

Accordingly, it is convenient to classify eigen-
states of X by the eigenvalues J(J+ 1) and M of
J2 and Jg, respectively. Elgenstates of Xo clas-
sified in this fashion are easily obtained by form-
ing linear combinations of products of the elec-
tronic states with the vibrational eigenstates
(2.16), using a table of Wigner coefficients. " We
use the designation

I J, M; (J+2N), J, 2s) =I J+2N, J, M) I 2s)

(2.19)

for the state formed by the simple product of the
electronic state I 2s) with the vibrational state
given by Eq. (2.16) with L =J. The Wigner co-

formed from the electronic 2P states (2.11) for
J= L —1, L, L+ 1 are listed in Table I.

Because K,l. commutes with J, the only nonzero
matrix elements of 8C,z between the states (2.19)
and (2.20) are those between states with the same
values of J and M, and these are independent of
M. To obtain these explicitly, we make use of
Eq. (3.17) of paper I to perform the integration
over the electronic coordinates and the angular
part of the integration in Q space. The radial
integration in Q space is then easily done using
the radial part of the oscillator wave functions in
Eq. (2.16) and the genera, ting function for the
Laguerre polynomials in Eq. (2.17). We find in
this way that the only nonzero matrix elements of
SC«are the following:

(J,M;(J+2N+1), J-1,2PIX„IJ, M;(J+2N), J, 2s) =+(S,)'"a~[J/(2J+1)]'"[(J+2N+-,')+(J- )]'",
(2.2 la)

(J,M; (J+2N+ l), J+1,2PIRe~I J, M; (J+2N), J, 2s) =v (S)'' lf(o[( J+1) /( 2J+1)]''[(J+ 2N+—')a (J'+ —')]'a

(2.21b)

A =I@0, (2.22)

where I is the inversion operator in Q space, and

p, as defined by Eq. (2.3) plays the role of the

where either the upper or lower sign is to be
taken throughout the equation. These matrix
elements of X,~ were first given by Grevsmuhl, "
and can be obtained also (apart from some nones-
sential sign differences) from the work of
Kayanuma and Toyozawa. '4

K and X,~ also commute with the inversion
operator"

electronic inversion operator for the 2s and 2P
states. Vibronic eigenstates of X may therefore
be labeled also by their parity A' =+ 1. Since
the oscillator state I L+ 2N, L, M') as given by
Eq. (2.16) has the parity (-l)i of Y».((), rp), we
see from Eq. (2.21) that R,z couples only those
vibronic states for a given Jwhich have the parity
A' =(-1), and we give such states the designa-
tion" type I. The states of type I comprise al. l
the states formed from the 2s electronic state as
in Eq. (2.19) and the states I J, M, (2N+ L), L, 2P)
with J=L+ 1 given by the first and third rows of
Table I A second classic of states, called type

TABLE I. Wigner coefficients for the linear combinations of product states, formed from the vibrational eigenstates
i I +2N, L,M') of Xl, and the electronic 2p states, which are eigenstates of J and Jg with J=I. —1,L,I +1 and Jg =. M
(from C'ondon and Shortley, Ref. 26, Table 23, p. 76).

l J M'(2N+L). L 2P) i 2N +L,I, M—1&i 2P+i) i 2N +I. ,I., M &i 2P,& I2N+L, L,M+»I2P-, &

i I —1,M;(2N +I ),I,2P)

IL ~ M' (2N +L) I «2P)

iL+ 1,M;(2N +L),L, 2P&

ii{L M) (I. +M)II-
( L(2L+1) )

[I,{I.+ 1)]»&

(g,-~+ &~&1.+~+~i'II«2
(2L+ l)(I + 1) )i

i(L -M) (L —M + l)~ 'h
2I, (2L+ 1)

((L+ M) {I, M+ 1))'1'-
2L {L+ 1)

({L+M)(L+M+ 1))'I'
'I (2L+i)(2L+2) I

&(L+ M+ 1){L.M)& I
(~+ 1)

f(L—M)(L+ M+ 1)
2L (L+ 1)

((I M) {L M+ 1)liI2--
'I((2L, 1)(2L, 2) )I
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II, also belongs to J' but has the parity A' = (-1)~"
and is completely independent of R,~. These states
are formed entirely from the 2P states and are
given by the second row of Table I with J= L,.
The states of type II exist for all values of J

except J= 0.
Any eigenstate of the full Hamiltonian K that

belongs to J and M and is of type I is then easily
shown from the form of the matrix elements in
Eq. (2.21) to have the general form

4z(J, M, A') = Z a(J, J+2N)~ J;M; (J+2N), J, 2s)
N=o

+ g f(J, J+2N- I)~ J, M;(J+2N-1), J-1,2P)

+ g c(J,J + 2N + 1) ~ J, M; (J'+ 2N + 1),J+ 1, 2P)
8=0

(2.23)

with A' =(-1)~. The coefficients in this expansion
are independent of M and may be determined,
together with the energy eigenvalue, by diagonal-
izing the matrix of R obtained from Eqs. (2.2),
(2.15), and (2.21) for the chosen value of J. In
practice this diagonalization may be carried out
by truncating the matrix of K by omitting states
having N larger than a value chosen large enough
to make the eigenstates and energies of interest
independent of this choice to a suitable aecuraey.
Since the states of type II are not affected by , &,
these eigenstates 4'»(J, M, A') of X which belong
to J and M and have A' = (-1) ' are simply the
eigenstates of K,

e»(J'y My A') =
~
J

y My (2N + J)yi J, 2P), (2.24)

with energies given by adding the electronic en-
ergy -&E,~ of the 2p states to the vibrational en-
ergy (2N+ J+ —,')h&o given by Eq. (2.15).

Numerical calculations of the energies of eigen-
states of X of type I, carried out in a manner
similar to that outl. ined above, have been made
for selected values of & and S, by Grevsmuhl. "
and by Kayanuma and Toyozawa. " For &&0 the
lowest vibronic level (including those of type II)
is always found to be a nondegenerate state of
type I with J =0, with the nearest excited level
a triplet of type I with J=1. This is then the
expected order for the lowest states in the sit-
uation with which we are concerned in this paper.
Even with &&0, however, the same order is ob-
tained provided Sy exceeds a critical value which
depends on &. For sufficiently large S, the rela-
tive energies of the lowest states (all of type I)
approach values given by the asymptotic formula"

III. STRESS-INDUCED POLARIZATION
OF LUMINESCENCE

e~ = +X/(c» —c»)

in the crystal. Here ez is the combination
1

~e = ~zz 2(ezz + ~zy)

(3.1)

(3.2)

of the components e;& of the strain tensor, while
c;, denotes the crystal elastic constants. We will
assume that the principal consequence of the re-
duction in symmetry is the splitting of the triple
degeneracy of the 2P electronic state and that we
may ignore any similar splitting of the degenera-
cy of the vibrational modes and any change in
their coupling to the electronic states. The mod-
ified Hamiltonian is then taken to be

X+Xs (3.3)

In this section we consider how the vibronic
eigenstates and energy levels of Sec. II are
changed by an externally applied stress. In
particular, we will formulate the calculation of

-the stress-induced polarization of the lumines-
cence that results when the E center decays
radiatively from the RES to its nondegenerate
1s electronic ground state.

An applied stress induces strain in the crystal
and thus lowers the symmetry of the E center
from cubic. We wil. l be concerned primarily with
effects linear in the stress, so that we could
treat an arbitrary stress to this order by super-
imposing effects of uniaxial stress directed along
suitable axes. For convenience, therefore, we
will limit our considerations to uniaxial stress X
applied along the t001] crystal axis, which pro-
duces a strain

E,(J) —E,(0) =J'(J + 1)S~/4S, ,

which is independent of &.

(2.25) where 3C is identical with Eq. (2.1) and K~ de-
scribes the splitting of the 2P state linear in the
strain ez,



6018 JOHN THOMCHICK AND FRANK S. HAM

(3.4)

Here V, is the strain coupling coefficient" of the
2P states, and 8& is the electronic operator

&e=-I 2p.&&2p. I+ 21 2p,&(2p.l+ 21 2p,&&2p, l, (3.5a)

or equivalently, in terms of the states in Eq.
(2.11),
&e = -I 2pg&2pol + kl 2p. ,&&2p.il+ ~el 2p-x&(2p-il ~

(3.5b)
From the form of 8& in Eq. (3.5b) it is evident

that 88 commutes with l, and p, and therefore with
J, and A, so that eigenstates of the modified
Hamiltonian X' remain eigenstates of J, and A
and can continue to be labeled by the eigenvalue
M and by parity. J is no longer a good quantum

number, but because 86 transforms under rota-
tions in the same way as the M =0 component of
a spherical harmonic with J=2, nonzero matrix
elements of X& must satisfy the restriction
&J ~2. Moreover, since 8& is a purely electronic
operator coupling oddly the 2P states, the only
nonzero matrix elements of X~ among the states
(2.19) and (2.20) are those between states
I J, M;(2N+L), L, 2p) having the same values for
L and X, otherwise the orthogonality of the vibra-
tional factors makes the matrix element vanish.
From these restrictions it is clear that X~ cou-
ples directly two states of type I having M =M'
and I

J-J'I =2, and such matrix elements are
easily found from Eq. (3.5b} and Table I to be
given by

(I, +1,M; (2N+L), L, 2plXsl L —1,M; (2N+L}, I., 2p) =+ ,'V, ee(—2L,+1} "(L' —M')''[(L+ I} —M'1'~[L(L+1)] '~'.

(3.6)

R~ also couples states of type I to states of type II if M=M' O 0 and I J —J'I = 1, and these matrix elements
may be expressed as

(L~1,M; (2N+L), L, 2pl3C, I L, M; (2N+I), I„2p) =+ ,'MV, e, [I—(I,+1)(2L+1)]'~'[(U'-M')/U]'", (3.7)

where U takes the value U =I, +1 for J=I +1 [the 'upper sign in Eq. (3.7)] and U =L for J=L-1. Diagonal
matrix elements of & with respect to these states are similarly found to be given for the states of type I
by

(J, M; (2N+L), I,, 2plK, I J, M; (2N+L), L, 2p) =+V,e, [3M'- J(J+1)][(2L+1)(Z+L+1)]', (3.8)

where J' takes only the values (L+ 1) and (I, —1). The diagonal matrix elements for the states of type II
(J = L) are given by

(L, M; (2N + L), L, 2PI ICE I L, M; (2N+ L), I., 2P) = V,e~ [3M-' —L(L+ l)][2L(L + 1)] ' . (3.9)

AII other matrix elements of X~ among the states (2.19) and (2.20) are zero.
To obtain eigenstates and eigenvalues of the modified Hamiltonian R of Eq. (3.3), including the effect

of a small strain e6, we proceed as in Sec. II to set up and diagonalize the matrix of the Hamiltonian in
the basis of the states (2.19) and (2.20). Since J' is no longer a good quantum number, however, we must
now include states of both types I and II with different values of J, do the diagonalization separately for
each value of M and the parity A', and include the matrix elements of SCAN as given by Eqs. (3.6)-(3.9),
using a suitably chosen small value for the ratio o'=V, e~ jk&u. The eigensh, te of R' for the ith level now
takes the general form

4, (M, A') = g' a; (L, M, 2N +L}I L, M; (2N + L), L, 2s)
N, L

+ Z ca (L —1~ M~ 2N + L) I I —1~ Mi (2N+ I )~ I
g 2p)

+ Q" 5((L+1,M, 2N+L)I L+1,M; (2N+L), L, 2p)
N, L

+ g "
d~ (L, M, 2N +L ) I L, M; (2N + L},L, 2p),

N, L
(3.10)
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where, in contrast to Eq. (2.23), the coefficients
now depend in general on M. The primes on the
summations in Eq. (3.10) indicate that only those
values of L are included in the sums that are con-
sistent with the given parity A'; thus for A'
=+1(-1)L must be even (odd) in the sum labeled
with a single prime, and odd (even) in the three
doubly primed sums. Certain coefficients in these
sums may be zero in special cases; for example,
for M = 0 the coupling of states of type I with those
of type II vanishes, according to Eq. (3.7), so
that for a state with M =0 either all coefficients
d(L, 0, 2N+L) are zero or ail the a, b, and c co-
efficients are zero and only a single coefficient
d(L, 0, 2N+ L) (which then equals unity) is nonzero.

Except for M=O, energy levels corresponding
to the states (3.10) are doubly degenerate, since
matrix elements of the Hamiltonian R' for pos-
itive and negative values of M differ only in the
sign of the off-diagonal elements of X& which
couple states of type I with states of type II and
which are given by Eq. (3.7). This sign difference
does not affect the energy eigenvalues, since the
matrices for +M could be made identical if, in
defining the basis states, we chose to reverse the
sign of every state of type II having a negative
value of M, instead of using the sign conventions
given in Table I. The coefficients in the expansion
(3.10) of an eigenstate for a negative value of M
may therefore be obtained from those of the cor-
responding state with M positive by reversing
the sign of all the coefficients d(L, M, 2N+ L) of
the states of type II. As we will see below, this
sign difference is just what is required in order
that states with +M contribute equally to the
stress-induced polarization of the luminescence.

To determine the polarization of the light
emitted when the excited state of the E center
decays to its ground state, we use the result
proved in paper I (Ref. 11) that I '„, the probability
per unit time of emission from the vibronic state
4; of a photon of linear polarization q (q =x, x, z),

is given by

(3.11)

@t @,
i @f 2"1/2@, & 2 1/2@ &

z — 0) x —— +&+

/

(3.14)

etc. If 4; is an eigenstate of J, characterized by
M, as in Eq. (3.10), it can be shown from Table I
that 4,', and 4', are orthogonal under integration
in Q space, so that we have from Eq. (3.14)

(3.15)

We can obtain 4,'„4' „and C,' for the state
4;(M, A') in Eq. (3.10) by combining from Table I
al. l terms that have a common vibrational state.
For example, 4,', takes the form

4,', (M, A') = g" k, (L, M, N)I 2N+L, L, M-1&,
N, L

(3.16)

where k; involves the Wigner coefficients from the
first column of Table I and the coefficients b;, c;,
and d; from Eq. (3.10). Using the orthonormality
of the states I 2N+L, L, M'&, we obtain in this way
the results

Here r„(2P) is the radiative lifetime of the 2P
electronic state, and 4 „' is the vibrational factor
multiplying the electronic state I 2p, &

when we
write the vibronic wave function 0; in the form

~, =O',
I
2.&+4 „'I 2p„&+4', I 2p, &+4'. I 2p. &.

(3.12)

To correspond with the form of the states given
in Table I, it is more convenient to write 4; in
the alternative form

@~ =4".
I 2&&+4",, I 2p„&+4", I 2pg+@'-, I 2p-, &

(3.13)

and then use Eq. (2.11) to obtain the relations

l I
e', (M, W') I'dQ = g I {[(L—M+1)(L+M+1)/(2L+ I)(L+1)j'"b, (L+I, M, 2N+ L)

N, J

—[(L —M)(L+ M)/L(2L+ I)]'~'c;(L —1,M, 2N+ L) +M[L(L+ 1)] '~'d;(L, M, 2N+ L))I'

(3.17a)

4,', M A' d = " L+M L+M+1 2L+1 2L+2 '2b L+1M2N+L
N, L

+ [(L —M)(L —M+ 1)/2L(2L+ 1)]' 'c;(L —1, M, 2N+ L)

—[(L+M)(L —M+1)/2L(L+1)]' d;(L, M, 2N+L)j I (3.17b)
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II

)
4', (M, A') ('dQ = Q ( ([(L—M)(L —M + 1)/(2L + l)(2L + 2)]' 'b; (L+ 1,M, 2N+ I )

S,I
+ [(L+M)(L+M+ 1)/2L(2L+ 1)]i2c;(L- 1, M, 2N+L)

+ [(L—M)(L+M+ 1)/2I (L+ 1)]'2d;(L, M, 2N+ L)] i2 . (3.17c)

Together with Eqs. (3.11), (3.14), and (3.15), Eqs.
(3.17a}-(3.17c) provide the expressions we need
for the probabilities I„' (or I,') and I,' for emission
from the state 4;(M, A') in Eq. (3.10).

It was noted earlier that in the calculation of
the eigenstates of X' for an axial strain e~, the
coefficients of corresponding states 4'~(M, A') of
positive and negative M are identical. except for
the sign difference

d; (L, —M, 2N + L) = -d( (L, M, 2N+ L) . (3.18)

Using this relationship of the coefficients in Eq.
(3.17a), we find that states of +M have equal val-
ues for the integral of

~
4 o~' and thus of I', . The

same is true for I „', as we see by noting from
Eqs. (3.17b) and (3.17c) that the expressions for the
integrals of ( 4,', ~' and

~

4', (' are exchanged if the
sign of M is changed and the relationship (3.18}
used.

At a temperature T, the probability per unit
time I„(T) that a photon of polarization q is
emitted is then obtained by averaging I„' over all
vibronic levels of the 2s and 2P excited state,
weighted with the probability of level occupancy.
Assuming an equilibrium Boltzmann distribution,
we have

parameter (r = V, ez/h(u the polarization of the
emission from this level arises solely from mix-
ing with states having J=2. Treating the strain
interaction 8C~ [Eq. (3.4)] by perturbation theory,
we may show easily from the matrix elements of
Eqs. (3.6)-(3.9) that the coefficients b,(2, 0, 2N+ 1)
in Eq. (3.10) for this lowest level are proportional
to o in lowest order, whereas the coefficients
d, (L, 0, 2N+L} are zero. The coefficients
co(0, 0, 2N+1} are independent of o' in lowest
order, their size being determined by the strength
S, of the vibronic coupl. ing. It follows then from
Eqs. (3.11)-(3.17) that Pz(0), the stress-induced
polarization at T = 0 K as defined by Eq. (3.21),
is given to first order in o by

( )
3 Z„b„(2, 0, 2N + 1)c,(0, 0, 2N + 1)

(2) ~' Q„[co(0, 0, 2N + 1)]'

(4.1)

In Fig. 1 is shown the ratio Pz(0)/o as calculated
for various positive values of & as a function of
S,. In making these calculations, we obtained
values for the coefficients c,(0, 0, 2N+1) and
b, (2, 0, 2N+1) for the lowest level from a numer-
ical diagonalization of the matrix of X =%+K~

l, (T)=l ' El„'exp( '),
where E; denotes the level energy and p the
partition function

s = E exp~ ') .

(3.19)

(3.20) b

1.5-

1.0-

The linear polarization of the luminescence is
then defineds'xx by

0.5—

P (T) = [I (T) -I„(T)]/[I (T) +I„(T)]. (3.21)
0.0 1.0 2.0 3.0 4.0 5.0

IV. RESULTS

A. Stress-induced polarization at T = 0 K

At T =0 K only the lowest vibronic level of the
RES is occupied, if the RES is assumed to be in
thermal equilibrium. As discussed in Sec. II,
this state has J=O in the absence of stress for
all values of S, and all positive val.ues of &. The
effect of a strain e& is to mix this state with the
M=O component of states of type I having
J= 2, 4, 6, . . . , but to fir st order in the strain

s)
FIG. 1. Stress-induced polarization I's (0) of lumi-

nescence at T= 0 K, when all luminescence originates in
the lowest vibronic level of the RES, as a fundtion of the
coupling strength S&. The ordinate is the ratio of P&(0)
to the strain parameter 0., and the curves are labeled
with the corresponding value of &, the energy of the 2p
electronic state with respect to the 2s state in units of
Sco. The curves were obtained from calculations de-
scribed in the text using a value 0 = 0. 1. The dashed
lime represents the asymptotic relation given by Eq.
(4.4) of the text.
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(

for M=O, A'=+1, as discussed in Sec. III, using
standard computer routines. ' The matrix was
truncated in these calculations by excluding states
with N&9 and also states with J&4, and a value
o = 0.1 was used. This value of o' is small enough
to cause no significant difference between P~(0)
as given by Eq. (4.1) and that calculated from the
more general formulas in Eqs. (3.17), which were
actually used in obtaining the results in Fig. 1 and
which include terms of order a' or higher that
are omitted in Eq. (4.1).

The results shown in Fig. 1 may be compared,
in the limit S,- 0, with the formula obtained in
paper II (Ref. 12) [Eq. (3.6) of paper II] by treat-
ing the vibronic coupling by perturbation theory,

levels having J=O, 1, 2 in the absence of strain
will be significantly populated, and accordingly we
have carried through the matrix diagonalization
only for M=0, 1, 2 but for both values of the parity
A' =+1. To ensure that all contributions to Eqs.
(3.17a)-(3.17c) linear in o' are included for these
populated states, we have included in these ma-
trices all states of the same value of M with
J=3 or 4 that have nonzero matrix elements of
Xz with those of 8=1 or 2 as given by Eqs. (3.6)
and (3.7). According to this scheme, we used
the following six nonmixing sets of basis states
4(Z, M) from Eqs. (2.23) and (2.24) in setting up
the matrices to be diagonalized for the various
values of M and A'.

lim Pz(0) = ~ V,eq/(~ E@,( +k&u),
S ~0

1

or, in the notation of Fig. 1,

(4.2a)

M = 0, A' = -1: [4,(1, 0), +,(3, 0)], (4.5b)

M=0, A' =+1: [4,(0, 0), %,(2, 0),4, (4, 0)], (4.5a)

1im P z (0)/o = 3/[2(& + 1)] .
S ~~0

Good agreement with Fig. 1 is found.
A further check in the limit of strong coupling

is provided by the asymptotic relation obtained
in paper I (Ref. 11) [Eq. (5.50) of paper I, where
the numerical factor was erroneously given as
3

20 1&

(4.2b)

P (o)- ( —,'. )V.ee[&i(2) —&i(0)l ". (4.3)

B. Temperature dependence of stress-induced polarjiation

At a temperature T above 0 K, higher vibronic
levels of the RES have a finite probability of be-
ing occupied, and calculation of P, (T)/o requires
averaging the polarized emission probabilities
over possible initial states in accord with Eqs.
(3.19)-(3.21). To obtain the relative energies of
these states in the presence of a small strain e&,
together with the coefficients in the perturbed
wave function of Eq. (3.10) needed to calculate
the emission probabilities from Eqs. (3.11) and
(3.17), we have used standard computer rou-
tines' as in Sec. IVA to diagonalize the matrices
of X' =X+Xs for different values of M and A',
again using a value o = 0.1 and truncating the ma-
trices by excluding states with N& 9. For suf-
ficiently low temperatures and the order of levels
expected for && 0, as described in Sec. II, only

Taking the energy-level difference from Eq. (2.25),
which is independent of 4 for sufficiently large
S„we have

P~(0)/v- —,8, . (4.4)

The curves of Fig. 1 appear to be converging
toward this limiting relation, shown by the
dashed line.

M=+1, A'=-1: [4'g(1, +1),4'qq(2, +1),@,(3, +1)],
(4.5c)

M=+1, A'=+1: [4', (2, +1),4„(1,+1),

4' „(3,+ 1),+,(4, + 1)], (4.5d)

M =+ 2, A ' =+ 1: [@,(2, + 2), 4„(3,+ 2), e,(4, + 2)],
(4.5e)

M=+2, A'=-1: [e„(2,+2),e,(3, +2)]. (4.5f)

M = 0, A' = -1: 4gg(2, 0) (4.6b)

which we found in Sec. II are not affected at all
by &,L, and which, having M =0, are not coupl. ed
to any other state by the strain perturbation
36~ =V,e~Se according to Eq. (3.7). These slates
are shifted in energy to first order in the strain,
however, according to Eq. (3.9), and this shift
must be included in forming the Boltzmann factor
for these states used in caiculating Pz(T) Final-.
ly, in obtaining Pz(T) we have included emission
from the states (again including all those with
N ~9)

Including all states with ¹ 9, we then used the
following number of basis states in diagonalizing
these matrices: (4.5a) 80, (4.5b) 60, (4.5c) 70,
(4.5d) 80, (4.5e) 70, (4.5f) 40. A separate matrix
diagonalization for states with M =-1 and -2 is
unnecessary, since according to Sec. III such
states are degenerate with the corresponding
states of positive M and make an identical con-
tribution to P~(T). Not included among the states
(4.5a)-(4.5f) but also required in calculating
P~(T) are the additional, states of type II

M=O, A'=+1: 4„(1,0), 4„(3,0), (4.6a)
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+i(3,+3), +i(4, +3), +x(4, +4), +»(3, +3)

(4.7)

P, (T) = tanh(3V, e,/4kT), (4.8)

where we have taken into account the energy dif-
ference of the states in forming the Boltzmann
factors. Expanding Eq. (4.8) to lowest order in
o=V, ee/k&u, we have then

P~(T)/o = ,'(Au&/kT) . — (4.9)

This expression is plotted as the dashed curve

which are not coupled by Kz to any of the states
with J = 0, 1, 2, and for which we obtained vibronic
energy levels and wave functions as in Sec. II by
treating the interaction K,~ alone. Had we omitted
these states in calculating P~(T) from those in-
cluded in the sets (4.5a)-(4.5f) and (4.6a) and
(4.6b), we would have obtained a spurious non-
zero value for Pz(T) even for a zero value of
the strain e&, because of the asymmetry in the
emission from individual states. Even though
levels having J = 3 and 4 have only a small proba-
bility of being occupied for temperatures kT/k&u
& 0.5, the spurious value for P~(T) obtained when

not all their component states are included be-
comes comparable in the higher end of this tem-
perature range with the correct value of the stress-
stress-induced P~(T) obtained for o =0.1. For
this reason the additional states (4.7) must be
included in the calculation even though their in-
teraction with the strain may be ignored.

Results for P~(T)/& as a function of temperature
are shown in Figs. 2(a)-2(e) for values of &

ranging from +0.25 to +5.0 and values of the
coupling strength S, from 0.1 to 1.5. The inter-
cepts of these curves with the vertical axis agree
with the values of P~(0)/o for T = 0 K shown in
Fig. 1. With increasing T, the polarization is
seen to rise initially, reach a peak, and then fall. ,
the relative change with temperature being larger
the small. er the value of 4 and the weaker the
coupling S,.

It is of interest to contrast the stress-induced
polarization shown in Fig. 2 for the 2s and 2P
states coupled by the vibronic interaction with the
polarization that would occur if the vibronic cou-
pling were zero. In that case, emission would
occur only from the e1.ectronic 2P state, and in the
presence of a strain e&, the 2p, state would lie
below the 2P„and 2P, states by the energy dif-
ference (—,')V, ez in accord with Eqs. (3.4) and (3.5).
Since emission from the 2P, state is polarized
entirely a1.ong the z axis and from 2p„along x,
and since the radiative lifetimes of both states
are equal to 7„(2p), we obtain for the polariza-
tion Pz(T) from Eq. (3.21)

in Fig. 2(a) and is seen to lie above the curves
for the vibronically coupled states, approaching
them as T increases. Indeed, it may be shown

(Appendix) that Eq. (4.9) provides the asymptotic
limit for large T for al1. of the curves in Fig. 2.
This asymptotic behavior is evidently reached
sooner, the smaller the value of 4and the weaker
the coupling S,.

P~(T) 1+ C(T) exp(-5E/kT)
Pz(0) 1+38exp(-5E/kT) (4.10)

pf a fprm similar tp that used previpusly ' '

in describing the electric-field-induced polariza-
tion (Stark effect), as we will now show. Here
5E denotes the excitation energy of the J =1
triplet when there is no applied stress

5E=E,(l) -E,(O), (4.11)

while 8 denotes the ratio of the radiative life-
times of these states

f~ = 7„(O)/7„(1). (4.12)

An interesting conclusion of our analysis is that
for the stress-induced polarization we always
have for sufficiently low temperatures (a,nd non-
vanishing coupling S, & 0)

C(T) & 3ft, (4.13)

so that the initial effect of raising the temperature
above 0 K is always an increase in the polariza-
tion. By contrast, when the Stark polarization is
approximated by the same type of formula as in
Eq. (4.10), the inequality (4.13) may be shown to
be reversed, so that a rise in temperature de-
creases the polarization, as observed. "

To prove Eq. (4.10) from Eq. (3.21), we must
evaluate the contributions to l,(T) and f„(T) from
the J =0 ground state and from the three com-
ponents of the excited triplet as perturbed by the
strain e~. From Eqs. (3.11)and (2.23), we have
for the ground state in the absence of strain

L„'=[ 3( )]0' =[3m„(2P)] ' Z [c(0, 2lv+1)]'.
N=o

(4.14)

Taking P~(0) to denote the polarization of the
luminescence from this level that results from

C. Approximate formula for temperature dependence
of polarization at low temperatures

At temperatures such that only the ground state
and first excited state (assumed to be type-I
states with J =0 and J=1, respectively) are sig-
nificantly populated, the temperature dependence
of the stress-induced polarization can be rep-
resented approximate1y by a formula
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I 1(0) I 1(0) [7 (2p)] 1

x Q ([f)(1 2N)]'+ -„[c(l,2N+2)]']
Ã~g

= [~„(2p)]-"Z,(E) (4.19)

obtained from Eqs. (3.11) and (3.17) using the
wave function of the M =0 component of the triplet
from Eq. (2.23) (zero stress). Similarly, for
the M=+1 component we obtain

j 1(+1) I 1(+1) L[7 (2P)] 1A (@) (4.20)

with an identical result for M =-1. Weighting
Eqs. (4.19) and (4.20) with the Boltzmann factors
of the respective states and thus taking account
of the strain spl. itting of the triplet, we then ob-
tain to first order in o = Ve eh/&o the contribution
of this splitting to [f,(T) -f„(T)]

&I (1) = —,'c(h(u/kT)[E, (E)]'[7„(2P)] '3 ' exp(-5E/kT) .

(4.21)

Adding the three contributions to [f,(T) -f„(T)]
from Eqs. (4.15), (4.17), and (4.21) and dividing by

I,(T) +f„(T)
= S '(2[37„(0)] '+2[7'„(1)] 'exp(-6E/kT)]

(4.22)

from Eqs. (4.14) and (4.16), we obtain from Eq.
(3.21) the desired result, to first order in o,
in the form of Eq. (4.10) with

C(T) =3R[P,(1)/P (0)]

+ —,
'

R(kv/AT)[o/P~(0)][K, (E)]'[r„(1)/7„(2P)].

(4.23)

Since the second term in Eq. (4.23) is positive
and varies as 1/T, the inequality (4.13) is neces-
sarily satisfied at a sufficiently low temperature.
The effect of an increase in temperature from 0 K
therefore is always an initial increase in the po-
larization, and it is the strain splitting of the ex-
cited triplet state that ensures that this is so.
In addition, it was shown in paper II (Ref. 12)
[Eqs. (3.6) and (3.9)] that in the limit S,- 0 the

iatter contribution, we note from Eqs. (2.23) and
(3.8) that the direct strain splitting of the J =1
tripl. et places the M =0 component below the M =+1
components by an energy difference 2V, e()K, (E),
where K,(E) is the reduction factor"

E,(E) = Q ([b(1, 2N)]'+ —,', [c(1,2N+ 2)]'j.
N=O

(4.18)

The same factor appears in the difference

ratio P~(1)/P~(0) in the first term in Eq. (4.23)
is greater than unity for && 1, approaching unity
as & becomes large. Therefore, at least for
sufficiently small. S, and && 1, the first term in
Eq. (4.23) alone satisfies the inequality (4.13) and
thus would suffice by itself to cause the polariza-
tion to increase with increasing temperature, at
least until levels above the first triplet become
appreciably populated. "

In contrast to this behavior of the stress-induced
polarization, for the Stark effect one finds [paper
II, Eq. (3.20)] Ps(1)/P&(0) =R ' in the limit of S,
small (for && 1), and Imanaka et a/. "have shown
that this ratio decreases as S., increases. Thus,
since we have R&1, for the Stark effect the first
term in the expression corresponding to Eq. (4.23)
is always less than 3R. Moreover, in the second-
order splitting of the J=1 triplet by an electric
field, calculations for representative values of ~
and 8, show that the M =0 state is raised in energy
relative to the M=+1 states, so that the term in
the polarization resulting from this splitting and
analogous to the second term in Eq. (4.23) is
therefore negative. This second term therefore
acts to reduce C(T) further relative to 3R. The
inequality (4.13) is thus reversed for the Stark
effect, and the polarization decreases with tem-
perature, as observed. "

The relative size of the two terms in C(T) in
Eq. (4.23) provides a measure of the importance
of the stress-induced splitting of degenerate level. s
in contributing to the polarization, as compared
with the change of the wave functions of the states
caused by the mixing of states of different J. As
noted earlier, "we have used the vibronic eigen-
states calculated for zero stress to evaluate the
second term in Eq. (4.23) for representative val-
ues of & and S„and we have then used these re-
sults in comparing the curves in Fig. 2 to an ex-
pression of the form of Eq. (4.10). We have found
that this approximation reproduces the calculated
curves quite accurately for temperatures up to or
somewhat beyond their peak but that the calculated
drop at higher temperatures is more rapid than
given by Eq. (4.10), evidently because of contri-
butions of higher levels at these temperatures.
Near the peak we have found that the second term
in Eq. (4.23) is typically appreciably smaller than
the temperature-independent first term. However,
the second term is large enough to contribute
most of the increase in polarization above its
value at 0 K. Thus, although at any given temper-
ature the pol.arization due to the level splitting
is smal. ler than that due to the mixing of the
states, the effect of the splitting is crucial in
obtaining the correct temperature variation of
the polarization.
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V. DISCUSSION

We are particularly interested in learning from
our calculations what lower bound we can place on
& from the observations of Hetrick and Compton"
that the stress-induced polarization is independent
of temperature. Their data, taken for KC1, NaCl,
RbC1, and NaF, showed no evidence of any varia-
tion of more than -10% (the limit indicated by
the scatter of their-experimental. points and their
estimate of the accuracy of the measurements)
over the temperature range 20 to 140 K. Com-
paring with Fig. 2, we see that all of the curves
for 6- 2.0 show a variation greater than 10/p over
the range 0&AT/Ra& 0.5 (which for KC1, with
A&v=26. 8 meV, "'"corresponds to 0&T &155 K).
Accordingly, we conclude from our calculations
that for KCl, NaC1. , RbCl, and NaF we must have
a value && 2 in order that the simple vibronic
model used in our work be consistent with the ob-
servations of Hetrick and Compton.

This conclusion contrasts with that of Imanaka
et al. ,"who determined & and S, for KF, KCl,
KBr„and RbC1, using the same vibronic model,
by simultaneously fitting the temperature de-
pendence of the radiative lifetime and of the polar-
ization induced by an electric field. They ob-
tained in this way for the best fit the values ~

r KCl and 4 =1 5 Si =0.3 for
RbCl. For these values of S„which lie between
those of Figs. 2(b) and 2(c), and for values of &

from 1.25 to 1.5, we see from our calculated
curves that one expects a variation of the stress-
induced polarization with temperature much
larger than anything compatible with the observa-
tions of Hetrick and Compton. Evidently, there-
fore, a discrepancy exists between the values of
the parameters of the vibronic model needed to
fit the temperature dependence of the radiative
lifetime and the Stark polarization, on one hand,
and those needed to fit the stress-induced polar-
ization on the other.

A similar but even larger discrepancy occurs
for NaF, for which Kayanuma" estimated & =0.3,
8, =0.2 (with N&u =53.4 meV) from the temperature
dependence of the radiative lifetime alone. As
we see from Fig. 2(b), on the basis of these val-
ues we would expect Hetrick and Compton to have
observed the stress-induced polarization to
roughly double over the temperature range of
their observations, in contrast to the tempera-
ture-independent result reported.

Unpublished experimental results of Ishiguro
and Asami" are cited by Ohkura et al."'"as
showing that the stress-induced polarization is
independent of temperature for KBr and RbBr
also. For these materials Imanaka et al."ob-

tained the values & = 1.50, S, = 0.25 for KBr and
& =2.0, S, =0.2 for RbBr by fitting the Stark po-
larization alone. Again, from these values of the
parameters we would expect from Fig. 2(b) a much
larger variation of the stress-induced polarization
than evidentIy shown by the data of Ishiguro and
Asami.

No experimental data for the stress-induced
polarization so far are available for KF, for
which Imanaka et al."obtained the values & =0.09

S, =0.5, and Kayanuma" the, values ~ =0.0, S,
= 0.7. It would clearly be of interest to do the
stress experiments for this material, since we
would expect from Fig. 2(c) a very pronounced
peak in the stress-induced polarization versus
temperature if a value of & near zero were cor-
rect. KF should thus provide a particularly good
additional test of the compatibility of the values
of & and S, obtained from the Stark effect and
radiative lifetime with those consistent with the
stress resul. ts.

The values d -3.5 and 3.75 for KCl and KF,
respectively, obtained by Ham and Grevsmuhl"'"
from the circular polarization"'" of the lumines-
cence in a magnetic field, would lead one, by
contrast, to expect from Fig. 2 that the stress-
induced polarization should be very nearly in-
dependent of temperature. The stress data of
Hetrick and Compton" therefore seem to support
these larger values for &. It must be emphasized,
however, that these values for & were obtained
from the magnetic data with the assumption" that
the orbital g factor for the electronic 2P state
in the relaxed configuration had the same value

[g~ =0.95+ 0.1 for KCl,"g~-1 for KF (Ref. 36)]
as that measured for the unrelaxed configuration
in optical-absorption experiments. As Ham and
Grevsmuhl" and Kayanuma" have noted, the
magnetic-polarization data would be compatible
with a smaller value for & if gI, were appreciably
reduced in the relaxed configuration. From
Kayanuma's theoretical curves" for the mag-
netic polarization as a function of S„we find that
a value g1.-0.6 would be needed in order that the
magnetic data be compatible for KCl with the val-
ues & =1.25, S, =0.35 of Imanaka et al." It is,
of course, quite possible that gl. is changed ap-
preciably by the lattice relaxation, although this
change could very well be an increase because of
the orthogonality of the extended 2P wave function
to the core states of neighboring ions." We
cannot therefore regard the larger values of &
obtained by Ham and Grevsmiihl as definitely
determined by the magnetic data, in the absence
of an independent determination of gL, but we can
conclude that the stress data of Hetrick and
Compton, in supporting such values for &, do
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suggest that there is no large reduction in gJ.
in the relaxed configuration.

If the simple vibronic model used by Imanaka
et gl."and in the present work cannot account
simultaneously for the radiative lifetime, the
S@rk polarization, and the stress polarization,
some modification of the model, is evidently re-
quired. Kayanuma" has shown, in fact, that in
order to account for the observed red shift of the
luminescence caused by an electric field one can
postulate that the 2s and 2P states are coupled
differently to a symmetric (I",) vibrational mode.
Extending Kayanuma's work to include possible
coupling of the 2P states to a I"', mode, Iwahana
gt g/. "have asserted in a very recent paper that
both the I", and I"', modes must be included in
order to explain all the experimental data. While
it seems quite possibl. e to us that coupling to these
additional. modes may play a significant role in the
RES, we consider it unl. ikely, for the reasons
outlined below, that such coupling will serve to
suppress the temperature dependence of the stress
polarization if & is as smal. l @s these workers
suggest. We believe, in fact, that Iwahana et gE."
have obtained the wrong temperature dependence
in calculating Pz(T) because they have omitted the
contribution to the polarization of the stress-in-
duced spl. itting of degenerate levels, the impor-
tance of which we noted in Sec. IVC. We discuss
the contrast between their results and ours in
more detail below, but it is our conclusion that
their results concerning the rol. e of the I", and
I", modes cannot be relied upon as a basis for
improving the simple vibronic model of the RES.
What modification of this model is needed to re-
concile the data from the different experiments
is not yet apparent to us. Nevertheless, the re-
sults we have obtained suggest that in any such
modified model the difference between the 2s
and 2P electronic energies must be significantly
larger than the values of & proposed by the various
Japanese workers, if we are to explain the tem-
perature independence of the stress data.

In trying to assess the effect on the stress polar-
ization of Kayanuma's proposal" of different
coupling of the 2s and 2P states to a I", mode,
we note from the curves in Fig. 2 that what is
needed to diminish the temperature variation of
P~(T) is an increase in the effective value of &.
Kayanuma's modification should have the opposite
effect of somewhat reducing the average energy
difference between the vibronic states derived
from 2s and 2P that are mixed by the coupling to
the I 4 mode, and thus this modification should
actual. ly enhance the temperature variation of
P~(T) for a given &. To see this, we note that
the difference in coupling the 2s and 2P states to

a symmetric mode Q, causes the minimum energy
of the two states to occur at different values of
Q,. If we continue to define & as the 2s —2p
electronic energy difference in the equilibrium
configuration of the 2s state38 (in units of S~ of
the I 4 mode, which for simplicity we assume equal
tomtit of the I'+, mode), the 2P minimum then has an en-
ergy (b, —S,) relativetothe2sminimum, whereS, is
the Huang-Hhys parameter" reflecting the coupling
difference to the symmetric mode. (We assume
6&S, so that the 2s minimum is lower. ) Vibronic
states derived from 2P and near the 2p minimum
energy have their mixing with low-energy vibronic
states derived from 2s enhanced by the inverse
dependence of the mixing on the energy difference
of the states. Of course, the mixing of all states
is reduced in proportion to their overlap in the
space of Q„but the net effect of the coupling to
the I"', mode is a reduction in the average energy
of the 2p states mixed with the low-energy 2s
states, and thus a reduction in the effective value
of &. %e therefore expect in anal. ogy with the be-
havior shown in Fig. 2 that the coupling to the
I", mode should enhance the temperature varia-
tion of Pz(T) as compared with that found for
the simpler model with the same value of & and
coupling only to the I'4 mode. A similar argu-
ment leads to the same conclusion if we consider
the effect of coupling the 2p states to I", and/or
I", modes.

Ohkura et al."and Iwahana et al. ' have claimed
that by including coupling to I", and F', modes,
using & =1.05, S, =0.6, S,=0.5, and Ss = 0.15 (with
S3 the corresponding parameter for the coupling
of the 2P sites to a I'; mode) they have obtained
a temperature-independent stress polarization for
KCI. while also fitting the temperature dependence
of the radiative lifetime and that of the Stark polar-
ization. These claims are clearly in disagreement
with the argument we have made above. In ad-
dition, Iwahana gt a$. ' claim similar results for
HbC1, KBr, and HbBr for values for & andS,
similar to those obtained by Imanaka et al "
However, the temperature variation of P~(T)
calculated by Iwahana et g$."when the coupling
to I", and I", modes vanishes is completely dif-
ferent from what we have obtained in Fig. 2. For
example, for & 1 0 S, 0 5 So 83 0Iwahana
et al. [see Fig. 3(a) of Ref. 19] find that Pz(T)
decreases with increasing temperature instead
of increasing initially as we found in Fig. 2(c).
Iwahana et al. find (see Fig. 2 of Ref. 19) that
P~(T) is independent of temperature for values
of & falling along a curve running from 4-0.5
atS, =0.1 through &-3 at 8, =0.7, and that, while
P~(T) increases initially for values of b larger
than this limiting value, a decrease is found if
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& is smaller. Our results in Fig. 2 show, by
contrast, a relatively greater increase in Ps(T)
the smaller the value of & for any given S„and
we have shown in Sec. IVC that the general be-
havior of PB(T) is always to increase initially
with tempera, ture (or to remain effectively con-
stant if this increase is too small to be significant).
We believe this difference in our results occurs
because Iwahana et al."and Ohkura et al."neglect
the stress-induced energy shift of the levels, as
they state, in using perturbation theory to cal-
culate the effect of stress on the wave functions
and thus to determine the emission probabilities
of the different levels. As we have discussed in
Sec. IV C, this energy shift is responsible for the
stress-induced splitting of degenerate levels,
which makes a significant contribution to the po-
larization (to first order in the stress) because
of the difference in the Boltzmann factors of the
split states and the net polarization of the emis-
sion from individual component states even when
the wave functions are unperturbed. As also dis-
cussed in Sec. IVC, this contribution from the
spl. itting of the fi.rst excited tripl. et level always
increases the polarization and is large enough to
be responsible for most of the increase shown
by the curves of Fig. 2 in going from 0 K to the
polarization maximum. We believe that the omis-
sion of this contribution by Ohkura et al. and by
Iwahana et al. is the principal reason for the dif-
ference between their results and ours. '

An important consequence of requiring a larger
value for & than estimated by the Japanese
workers, in order to account for the stress
data, is that this wil. l necessitate revising the
interpretation of the transient optical absorp-
tion"'" within the RES proposed by Kondo and
Kanzaki" and Kayanuma and Kondo. '0 On the
assumption that + ls sufficiently small so that
transitions within the 2s-2P manifold of vibronic
states occur at too low an energy to have been
observed, these authors have interpreted these
spectra as arising from transitions from the
ground state of the RES (essential. ly the 2s state)
to states derived from 3s, 3P, 3d, and possibly
4P. The 2s-2P transition should, however, have
a much larger oscillator strength than 2s -3p,
and if & is at least as large as 2 the 2s-2p
transition or at least some of its vibrational
sidebands should occur within the spectral region
studied. Identifying the 2s 2P transition with the
observed absorption spectrum would, of course,
provide an independent determination of l E,~l
and thus of 4. Calculation of the energies and
relative intensities of the absorption peaks ex-
pected for different values of & and S, on the
basis of the simple vibronic model used in this

paper are in progress and will be reported in a
later publication.

VI. SUMMARY AND CONCLUSIONS

APPENDIX: DERIVATION OF ASYMPTOTIC HIGH-
TEMPERATURE BEHAVIOR OF THE POLARIZATION

We start from an expression [Eq. (5.6) of paper
I] equivalent to Eq. (3.11) for the probability per
unit time of emission of a photon of polar iza-
tion q if the system is initially in the vibronic
state 0, of the RES:

z„'=c gl (+;ID. I+.(»)) l'. (A. 1)

Here D„ is the q component of the el.ectric-dipole-
moment operator for the electron, C [Eq. (5.5)
of paper I] is a proportionality factor (the energy
dependence of which we ignore), and 4 (») de-
notes the mth vibrational state associated with
the electronic ground state l »)

e (»)=4 (q)l»)
Averaging I „' over the levels of the RES weighted
with the probability of occupation, we can write
Eq. (3.19) in the form

(A2)

From the numerical calculations we find that
the stress-induced polarization either remains
effectively constant or shows an initial increase
as the temperature rises from 0 K and that this
increase is pronounced if we have & &2. After
reaching a maximum, the polarization then fal. ls,
eventually approaching a limiting rate of decrease
that is independent of & and S,. Only for && 2 is
the initial, increase sufficiently small, to be con-
sistent with the observation by Hetrick and Comp-
ton that for KCl, NaCl, RbCl. , and NaF the po-
larization is independent of temperature between
20 and 140 K. While our conclusion that we must
have &&2 for these materials agrees with esti-
mates of & made by Ham and Grevsmuhl from
magnetic-polarization data, it disagrees with
values for & obtained by Kayanuma and by Imanaka
et al. by fitting the temperature dependence of the
radiative lifetime and that of the Stark polariza-
tion. Extending the vibronie model to include
coupling to additional vibrational modes of other
symmetry types, as suggested by Kayanuma and
by Iwahana et al. , does not appear to be sufficient
to reconcile these differences. Evidently a
vibronic model for the RES that provides a com-
pletely consistent quantitative explanation for all
the data has not yet been achieved.
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f„(T)= s 'c gg &e„(1s)I D„Ie, &
m i,j

x &4'I exp(-X'/kT)I g,.
&

(A3)x &+;ID, I +~(»)&,
where we have used the fact that the orthonormal
set of states 4; are eigenstates of

Egg +Xg +Xeg +X$ (A4)

from Eqs. (2.1) and (3.3). Since the states 4',
form a complete set in the space of the vibrational.
modes and in the limited electronic space spanned
by the 2s and 2P states, we can make the sub-
stitution

we can then simplify Eq. (A3):

t (T)=e'CD' +&22, &P„exp( ) 2) 22).

(A7)

To proceed, we note that X& and X,L, do not
commute, so that to expand exp(-X'/kT) in a
power series in Xs we first need the general
operator relationship, "which is exact

exp(-PX') = exp[-P(X+X~))
1

=exp& j — X~ t dt exp—
0

Q IP;&&P;I =(E Ie..&&e. I)(g)ke&&ke( ),

(A5)

where P =1/kT,

Rz(t) = exp(-PXt)lC~ exp(PXt),

(A8)

(A9)

where a=s, p„,P„p„ for the sums over i and j
in Eq. (A3). Since D„ is an electronic operator
with only one nonzero matrix element

&1sID„I 2P„& =D, (A6)

[-]denotes the ordered operator as defined by
Goldberger and Adams, "and K is given in Eq.
(2.1). Expanding Eq'. (A8) to first order in Xz
and substituting into Eq. (A7), we obtain an ex-
pression for f„(T) that is exact to this order

t, (T)=k'DD g 22, Ct 1 —2 Jl CC (t)dt)ex (- P)2tk22) 2P). (A10)
Pal 0

Substituting Eq. (A10) into Eq. (3.21) for the polarization P~(T), we obtain
t 1 1

Pe(T)= (2kTA) '.Q 22, -e„J xc (t)dtexP(-dxc) 2 22, -P 22, tk„J tc ~ (t)dtexP(- )det„c) 22,)),m 0 m 0

(A11)

where

(A12)

X,(t) =X, -Pt[X, X,]+-,'P'P[X, [X,Xe]]+.~ ~ ~ .

A = g&2P, I &a I exp(-PX)lc' &I 2P ).
Ne have used the fact that A. is independent of q
(because X has cubic symmetry) and have dropped
all terms of higher order than the first in X~.
To this order, Eq. (A11) is still an exact expres-
sion for PB(T).

To evaluate Eq. (All) in general, we would need
the operator expansion

thus in effect ignoring all the commutators.
(These commutators do equal zero if the vibronic
coupling is zero. ) Since X~ =V,ee Se is a diagonal
operator with respect to the electronic states
I2P„& and I2p, &, and since it is independent of the
Q's, this asymptotic expression for Pz(T) be-
comes simply

P, (T)- (2kT) '(& 2P. I Xg I 2P. &
—

& 2P.IRg I 2P.&)

(A14)

ol

(A13) P~(T) -+ (3V,e()/4kT) . (A15)

However, in obtaining the asymptotic behavior
of Pz(T) to order (1/T) it suffices to retain only
the term in Eq. (A13) of lowest order in P =1/kT,

This asymptotic result is thus independent of the
strength S, of the vibronic coupling and agrees
with Eq. (4.9).
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