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The convergence of the quartic term of the Helmholtz free energy (F4) in metals is investigated by comparing the
numerical results of F4 by two methods. In the first method, F4 is calculated by summing over the direct lattice
vectors of the product of the fourth-rank tensor derivatives of a two-body potential and correlation functions

involving Brillouin-zone and branch-index summations. In the second method, F4 is calculated from an alternative

expression which requires beforehand the knowledge of wave-vector-dependent fourth-rank tensors. The alternative

expression for F4, which is derived in this paper, is more appropriate for the calculation of F4 in metals where the
forces are long range and oscillatory. Calculations are carried out by the two methods, for different volumes, from

almost 0 K to the melting temperature range for Na and K using the same first-principle potential as used by Shukla

and Taylor in their previous calculations of F4. Representing the F4 results of the two methods by F4(s), where s is

the shell index at which the 1 summation is truncated in the first method and F4 (Ewald), we find the two methods

giving the same answer for F4 only in some cases. Foi example, in Na, F4 (Ewald) agrees exactly with F4(s), where

s = 18, at the 90-K volume. The agreement between the two. is almost exact at 160-K and 361-K volumes with

s = 17 and 10, respectively. At the other two volumes referred to T = 5 and 293 K, F4 (Ewald) and F4(s) differ by

about 1% where s = 22 and 21,, respectively, for these volumes. In K, F4 (Ewald) and F4(s) differ by less than 1% in

each case for the three volumes corresponding to temperatures 9, 215, and 299 K where for each of these volumes

s = 15, 7, and 10, respectively. The largest disagreement between F, (Ewald) and F,(s) (s = 7) arises for the volume

at 99 K. In this case they differ by 3%. It is clear from the above discussion that F, (Ewald) and F,(s) are in

agreement with each other for "some" shell index s, but s changes with volume. Thus, without a priori knowledge of
an exact value ofF4, such as the one obtained by the Ewald procedure, one cannot decide the shell index (s) at which

the summation in the first method should be truncated to obtain a correct answer for F4.

I. INTRODUCTION

In recent years, several anharmonic calcula-
tions have been reported in the literature for me-
tallic crystals. For example, the phonon frequen-
cy shUts (n) and widths (I') have been calculated
for aluminum, ' sodium, ' potassium, ' rubidium,
and lithium. ' The two lowest-order terms of the
Helmholtz free energy, commonly known as the
cubic (F,) and quartic (F4) terms, and their contri-
butions to the specific heat at constant volume (C"„)
have been calculated in sodium, ' ' potassium, ' ru-
bidium, ' and copper. '

In all of these calculations, the anharmonic co-
efficients, which are Fourier transforms of the
third- and fourth-rank tensors, have been obtained
from the Cartesian tensor derivatives of a two-
body potential, V(r) In differe.nt calculations, the
real-space summations arising in these Fourier
transforms were truncated at the various neighbor
positions. For example, Koehler et a/. ' have
truncated the above-mentioned sums at the eighth-
neighbor .distance in their calculations of b, and
I" for Al, whereas in the calculations of 6 and 1"

for Na and K, these sums were truncated at the
19th-neighbor distance. " It is not clear in all the-
above-cited references how many neighbors should
be included in the various calculations of d and 1

or E, and F, for a satisfactory convergence. In
fact, these sums are truncated with as few as two-
neighbor distancess (in Rb) to as many as 23-neigh-
bor distances' (in Na and K).

Shukla and Taylor' pointed out the difficulty of
convergence in the above-mentioned sums in their
calculations of F, and E4 for Na and K. For ex-
ample, Shukla and Taylor' found that E, converged
reasonably well because it comes in as squared,
but E4 oscillated sometimes quite wildly; even
when the summations were taken out to the 23rd
shell, no convergence was found.

This difficulty of convergence of E4 is a typical
one in metals and is in fact one of the major prob-
lems in the anharmonic calculations in metals
where the potential is a long-range and oscillatory
type. For instance, both the Na and K potentials
show an asymptotic behavior of the form'" P~y
= [cos(2k~r+ 8)]jrs, where k~ is the Fermi radius
and 8 is the phase factor. As mentioned before,
since the anharmonic coefficients contain the de-
rivatives of the potential function, the nth deriva-
tive of these potentials will also contain a term of
the same form. Now for a given neighbor distance
from the origin, r„, the number of neighbors sit-
uated at this distance, is roughly proportional to
r'„ for large x„. Thus we can expect that for an an-
harmonic property which is directly proportional

22 5997 1980 The American Physical Society



5998 R. C. 8HUKLA

to these derivatives (such as E~ and the quartic
phonon frequency shift d, ), the corresponding con-
tributions from the individual neighbor shells will
show roughly an z„' dependence, which of course
gives rise to rather slow convergence. This de-
pendence of F4 and L~ in some metals will be like
I/r if V „=[cos(2k~r+ 8)]lr' I.n such circum-
stances, a brute-force summation approach in-
stead of the Ewald method of evaluating the anhar-
monic Fourier coefficients is bound to be unsatis-
factory and not very reliable. This was clearly
demonstrated by the E, calculations of Shukla and
Taylor. '

The purpose of this paper is to calculate E~ in
metals by an alternative procedure where the an-
harmonic coefficient Fourier transforms can be

calculated to any desired degree of accuracy and
thus avoid the whole questj. on of the truncation of
sums mentioned previously. This ne.cessitates
another derivation of the expression for E~. The
expression for E, derived by Shukla and Taylor'
is not suitable for the purposes of this paper.

The theory needed in the derivation of an alter-
native expression for E, is presented in Sec. II.
The numerical method of calculating E4 from the
expression derived in Sec. II is presented in Sec.
DI. A discussion and comparison of the numerical
results of E4 for Na and K for different volumes,
obtained by the present method, and the method
used previously by Shukla and Taylor, ' is presented
in Sec. IV. The summary and conclusions of this
work are contained in Sec. V.

II. THEORY

The quartic contribution to the Helmholtz free energy is given by" '

- . iN(qiA} N(q2j2)
@ q.,j„q.j., -qyjy -q.j2r

sq). jy) wq j )

where, in Eq. (1), v(q j) are the eigenvalues associated with the wave vector (q) and branch-index (j) nor-
mal mode of vibration, N is the number of unit ceQs in the crystal, 5 is Planck s constant divided by 2m,

N(q j)= coth[ —,
'

pk&u(q j)], p= [kzT] ', kz is the Boltzmann constant, T is the absolute temperature, q, j, and
q, j, denote the double Brillouin zone (BZ) and branch-index summations, and C(q, j„q,j„-q,j„-q,j,) is
the Fourier transform of the fourth-rank-tensor atomic force constant p z„,( ~r' ~). It is defined by

2 M'Y
C(qljl l2 j2 qlj1 q2j2) M

~ ~ 0 gy6( g ~)e (ql jl)eg(q2j2)e (ql jl) (eq6j22)M'; g6

x(1 —cosq, r')(1 —cosq, r'), (2)

where, in Eq. (2), r'= —,'al, a is the lattice con-
stant, T is the direct lattice vector with integer
components which are either all odd or all even
for a bcc lattice and whose sum is even for fcc
lattice, the prime over the l summation sign indi-
cates the omission of 1= 0 term from that sum, M
is the atomic mass, e (q j) is the nth component
of the eigenvector e (q j) corresponding to the mode

q j, and the o.', P, y, 5 indices are assigned the Car
tesian values x, y, z, respectively which produces
81 components of the fourth-rank tensor

Since it is impossible to obtain all the 81 compo-
nents of Q ~„,( ~r' ~} from some general force mod-
el, we obtain them from a two-body potential
Q( ~r'+ u ~) by differentiating it with respect to the
displacement vector u and setting u= 0 after dif-
ferentiation, i.e. ,

(l, l)
s'y(lr'+ul}
&u su, &u„&u, -„ s

In simple metals with small ion cores (Na, K,
Al, etc.), the two-body potential P( ~r' ~) is de-

where

16 „'S l S„ 1, 5
1 ogy6

S ~(I)=~ ~ ~ N(qj)(1-cosq r'} (6)
~ e (qj}e~(qj)

(u(q j)

I

fined by 5

g(r) = —» J(, exp(iQ r)d'q,
z'e' 4me' (' G( IQ I)

27K lQ l2

(4)

where, in Eq. (4), G(~Q ~) ss the electron-ion ma-
trix element with the proper screening function in-
cluding the exchange and correlation effects, z is
the valence, and e is the charge of the electron.

Setting aside for a moment the derivation of E~
from the potential given by Eq. (4), let us briefly
see the cause of oscillation in E, mentioned pre-
viously in Sec. I. Substituting Eq. (2) into Eq. (1)
and isolating the BZ and j sums, F4 can be ex-
pressed as
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and a similar expression for S„6(T).
Shukla and Taylor' used this approach in their

calculations of F, for Na and K. With some alge-
braic manipulations and rearrangement of terms,
it can be seen that Eqs. (5) and (6}yield Eq. (9) in
their paper. %e note here that in. this approach of
calculating F4, where for a given direct lattice
vector r', the BZ and branch-index ( j) summations
in Eq. (6) are done first and the I summations in
Eq. (5) last, F, is calculated as a function of T.
Since g e»( ~r' ~) contains a term of the type ~r'

~

'
and S~(T}and S»(1}themselves oscillate, F, is
found to be oscillatory and slowly convergent.

To avoid this oscillatory problem encountered

by Shukla and Taylor' in the calculation of F„we
can derive an alternative expression for F4 in
terms of the wave-vector-dependent fourth-rank-
tensor functions F e„,(q), where the (1) summa-
tions can be performed first. This function is de-
fined by

F „,(q) = g g,e„,( ~

r'
~) cos(q r') .

Combining the two cosine functions in Eq. (2) and
introducing the function defined by Eq. ('7), F, can
be written from Eq. (1) in the following alternative
form:

2 g [F.,„,(o) —F.,„,(q,}—F.,„,(q.}+lF.„(q,+ q.) + lF.„,(q, —q,)] &„(q,j,)&„,(q.j.)
zygo q2j2 a8y6

where

T,- . , e.(qiji)ee(q. jl) ~l )Tze(qi jg) =
&(» .

)

(quilt}

and a similar expression for T»(q, j,). Since q, and q, a.re the whole Brillouin-zone sums in Eq. (8), which
means for every q there is -q in the set, the last two terms in Eq. (8) are equal, and obviously with inter-
changing q, j, and q, j, the second and third terms in Eq. (8) are also equal. Thus the final expression for
F4 becomes

2

~y~ g~ +F ~„qj+q2 T g q~g~
~a&~ ~2&2 &~~6

(10)

y(r)=y'(r)+y '(r),
we can express F,e„,(q}, from Eqs. (7), (3), and

(4), as a sum of two contributions

F.,„,(q) = F'.,„,(q) +F.;„',(q),

where F e„,(q) and Fs~,(q) arise from the pc(r)
and pe ~(r) terms of the potential function, re-
spectively.

The derivation of Fee~,(q} is straightforward and
can be carried out by substituting the second term
in Eq. (4} into Eq. (3}and then the resulting ex-
pression into Eq. (I). We find

4ne'g', t
I G(lQl) s'exp[i@ (r'+u)j

(2~)', J J lQl2 &u su, &u„au,

xd'Q cos(q r') . (13)

(12)

The.calculation of the quartic free energy from Eq.
(10) requires the knowledge of the function F e»(q)
which we now derive from the potential function
defined in Eq. (4}.

Since the two-body potential p(r) defined by Eq.
(4) consists of two terms, (a) Coulomb and (b)
electro'. -ion, i.e. ,

Performing the necessary differentiations in Eq.
(13), interchanging the order of summation and
integration, and using the following transforma-
tion

l (2w}'r
5

(14)

where y is a vector of the reciprocal lattice and
v is the unit-cell volume, the three-dimensional
integration over Q in Eq. (13) involving the Dirac
5 function can be trivially done, and the final re-
sult is

4me' (q+ 7) (q+ y)8(q+ 7)„(q+ p),F'i'n q) =—
V Iq+ el 2

x G( ~q+ r ~)+D, (15)

where D is a constant term independent of q aris-
ing from the I NO condition in Eq. (13). The con-
stant term in Eq. (15) does not contribute to F„
which can be easily verified by substituting Eq.
(15) into Eq. (10).

The derivation of Fc~»(q) follows from the Ewald
procedure as described in Born and Huang" or
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Fc„„(q)= 105e'S„„„(q)
—15e [S„„(q)+S (q)] + 3e'S(q),

(16)

(I t)

Fc„„,(q) = 105e'S„„„,(q) -458'S„,(q),

Fc, ,(q) = 105e'S„„„(q)—15e'S„(q),

where

4

S„„„„(q)=Q—t cos(q r'),
l l

(18)

(19)

Cohen and Keffer. " Here we will omit the details,
but note the following: %hen each of the indices
a, P, y, and 5 is assigned x, y, z values, a total of
81 terms is obtained, but only 15 of them are inde-
pendent. Among those 15 terms, only four need be
derived, viz. , Fc„„„(q),F~„,„(q), F~,„,(q), an

F„„„(q).The other 11 terms can be obtained from
these four terms by a suitable change of indices.
Furthermore, we can express these four terms in
terms of certain other fourth-, second-, and
zero-rank tensors as follows:

Fc„„„(q)=105e'S„„„„(q)—90e'S„„(q)+ e'S(q),

fX
S„„„,(q)=Q '~' cos(q r'),

l l

'& l3'l~ lS„„„(q)=g '7,' ' cos(q r')
l l

(22)

(23)

S,„(q)=Q —,' cos(q r'),
l l

(24)

S„„(q)=g ', ' cos(q r')
l l

s(q) -=s, (q) = g""q'
l l

(25)

(26)

and we note that r, = ~r' ~. Here we have omitted
writing the corresponding expressions for S (q)
and S„(q) as they can be obtained from S (quand
S„y(q), respectively, by a suitable change of in
dlces.

The fourth- and second-rank tensors S (q) and
(q) appearing in Eqs. (20)-(25) are obtained by

repeated differentiations of S„(q) with respect to
q, q» qy7 and qQ7 using z= 9 and V7 respectively.
This basic function S„(q) is defined by

pecos(q r')
)rl)n

S„„„,(q) = Q '7' cos(q r'), (21)
Following the Ewald procedure, we obtain S„(q):

S„(t))= Z ees(t) e') ) ~*''esp &)d)r(-,'n)a" i 4

2e' 'C '
~

" „]„,(, lq+v ~'~'

r(-,'n)a" - ~ ~x 4C' (28)

Once again the last term in Eq. (28) arises from
the 1= 0 term which is excluded from the 1 summa-
tion in Eq. (2'I). Although there is no contribution
from this term to I4 it is needed for the verifica-
tion of the sum rules (see Sec. III on numerical
methods) where in Eq. (28), C is the Ewald pa-
rameter to be chosen in such a manner as to make
the two sums over the direct-lattice vector (I)
and the reciprocal-lattice vector (r) converge
rather quickly, and r(n/2) is the usual I function.
In the calculations reported in this paper we have
selected C= v v. For an fcc structure the quantity
in the large square brackets in the second term in
Eq. (28) should be multiplied by 2 and tbe constant
term changes into C'/(2m' 'n}.

IH. NUMERICAL METHOD

The numerical method of calculating I4, from
Eq. (5), as a functi. on of the number of neighbors
or shells, has been given before in Shukla and
Taylor' and more recently in MacDonald et al,.'

The method of performing Brillouin-zone (BZ) and
branch-index (q and j ) summations, required in
the calculation of S 8(I), bas been given before by
Shukla and Vfilk. " The number of points needed in
the BZ sum for a satisfactory convergence of
S ~(I ), for I as large as the vector of the 23rd
shell, have been discussed before. ' In the present
calculations we have used the same number of
points in the whole zone (viz. , 16000 points) in the
calculation of S z(I ). The fourth-rank tensors
g ~„(~r' ~} appearing in the expression for F, [Eq.
(5)] were evaluated from tbe same potential as
that used by Shukla and Taylor. ' Following these
procedures we have calculated E4 for Na and K for
the same set of volumes at which the earlier cal-
culations were performed by Shukla and Taylor. '
The E4 results for five volumes in Na and four vol-
umes in K, calculated to 23 shells, are presented
in Fig. 1. For 23 shells, and all the volumes, we
also present in Tables I and II the numerical val-
ues of E4 for Na and K, respectively.

Now we turn our attention to the calculation of
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FIG. 1. Quartic contribution to the Helmholtz free energy (E4): The solid curves labeled 5, 6, 7, 8, and 9 refer to
Na at volumes (zero pressure) corresponding to temperatures 90, 5, 160, 293, and 361 K, respectively. The dashed
curves 1, 2, 3, and 4 refer to K at volumes (zero pressure) corresponding to temperatures 9, 99, 215, and 299 K, re-
spectively. The E4(Ewald) numbers for Na and K are shown on the vertical axis on the right-hand side of the graph.

F, by the alternative expression given by Eq. (10).
For a given wave vector q the electron-ion contri-
bution to E ~„,(q), arising in Eq. (10), was calcu-
lated from Eq. (15). As described previously in
Sec. II, all the Coulomb contributions to F ~„,(q)
were obtained from Eqs. (16)-(19). The total
F 8„(q) is then given by the sum of these two con-
tr ibut ions.

Since the tensors Fo~ (q) and FsBI,(q) are the
important ingredients in the present method of the

calculation of F„ it is important to devise some
method of checking their numerical accuracy. We
have derived the following relations among these
fourth-rank tensors which have proved extremely
useful in providing checks on our numerical cal-
culations. We present these relations separately
for the Coulomb and the electron-ion contributions.

(a) Relations among E z~,(q). Substituting the
values of n, P, y, 6 in terms of x, y, z, we find from
Eq. (15) the following relations:

2

(q) F'-'(q) "[F'.:.(q) ' F:-'*(q) F'„:.(q) ~
= „ lq l'G( lq+ l) + BD

2

F',.',(q)+ F'„„„',(q)+ F„„',(q) = (q+ ~)„(q+~),c( lq+ r l)+ 3D,

(29)

2

F'...'(q)+ F'„.'«) + F '...'.(q) = — (q+ ~).(q+ 7'),G( lq+ & l) + 3D,
V

F,'„'.(q) + F...',(q) + F„„,',(q) = — g (q+ ),(q + ),G( lq+ l) 3D .
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TABLE I. Sodium: quartic contribution to free energy I'"4 for all shells up to and including
the shell indicated in units of 10 N(k~T) erg . Lattice parameters are zero-pressure val-
ues.

Shells Coordinates

Temperature and lattice parameter
4.2247 A 4.234 A 4.251 A

(T =5 K) (T = 19Q K) (T = 16Q K)
4.288 A

(T = 293 K)
4.309 L

(T = 361K)

1
2

3

. 5
6
7
8
9

1O

11
12
13
14
15
16
17
18
19
20
21
22
23

111
200
220
311
222
400
331
420
422
333
511
440
531
442
600
620
533
622
444
551
711
640
642

0.222 82
2.572 21
2.426 37
2.178 58
2.091 28
2.215 25
2.178 79
2.499 23
2.504 21
2.497 20
2.463 41
2.503 32
2.644 88
2.79943
2.853 81
2.727 77
2.804 86
2.761 61
2.753 27
2.851 57
2.975 61
3.08800
2.849 37

0.259 61
2.567 81
2.443 74
2.237 41
2.122 45
2.150 31
2.096 33
2.189 86
2.068 37
2.087 48
2.186 89
2.239 04
2.280 29
2.290 32
2.293 45
2.338 90
2.248 70
2.190 78
2.172 92
2.204 51
2.244 03
2.354 52
2.255 65

0.31931
2.826 59
2.702 48
2.491 31
2.375 96
2.472 35
2.510 35
2.618 28
2.592 35
2.598 19
2.634 55
2.63349
2.929 34
3.085 06
3.136 80
3.15154
3.10313
2.926 98
2.943 93
2.917 71
2.88648
2.901,97
2.867 68

0.31538
3.704 13
3.71402
3.412 66
3.297 39
3.426 19
3.460 96
3.476 48
3.390 00
3.401 35
3.465 59
3.488 08
3.707 11
3.803 62
3.836 28
3.846 30
3.825 25
3.787 50
3.779 77
3.887 75
4,020 00
4.016 10
4.126 14

0.41504
4.10119
4.086 32
3.694 10
3.565 88
3.750 61
3.985 78
4.098 48
4.216 42
4.186 96
4.039 26
4.052 18
4.204 47
4.228 29
4.236 20
4.349 31
4.260 27
4.229 72
4.203 81
4.280 95
4.377 70
4.451 35
4.464 74

TABLE II. Potassium: quartic contribution to free energy S'4 for all'shells up to and in-
cluding the shell indicated in Units of 10 N(k&T) erg

" . Lattice parameters are zero-
pressure values.

- Temperature and lattice parameter
5.233k 5.261 A 5.305 L

Shells Coordinates (T = 9 K) (T = 99 K) (T = 215'K)
5.343 A

(T = 299 K)

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2Q

21
22
23

111
200
220
311
322
400
331
420
422
333
511
44o
531
442
600
62O

533
622
444
551
711
640
642

-0.528 67
2.212 57
1.99120
0.839 20
0.803 64
0.894 86
0.859 87
0.800 47
0.664 39
0.659 37
0.636 94
0.685 09
0.692 68
0.638 99
0.622 14
0.739 24
0.669 98
0.569 73
0.577 97
0.527 40
0.469 60
0.41704
0.517 96

-0.523 71
2.484 80
2.231 87
1.030 21
0.99831
1.10819
1.13131
1.205 92
0.955 14
0.978 61
1.093 40
1.11375
1.295 20
1.321 58
1.329 83
1.320 56
1.294 02
1.298 79
1.291 84
1.21701
1.129 95
1.10001
1.19407

-0.372 34
2.601 75
2.449 69
1.305 45
1.300 91
1.458 51
1.382 24
1.479 76
1.245 42
1.252 29
1.285 89
1.332 95
1.323 65
1.314 73
1.31188
1.348 74
1.304 74
1.285 05
1.269 56
1.237 48
1.200 90
1.221 86
1.293 34

-0.303 43
2.992 97
2.907 91
1.812 88
1.829 93
2.033 83
1.976 68
2.123 95
1.884 72
1.892 61
1.930 87
1.994 9.8
1.964 88
1.943 77
1.936 78

. 1.980 23
1.972 5V

1.956 79
1.934 42
2.001 87
2.083 23
2.175 22
2.005 47
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(5) Relations among Fcs„(q). F s„6(q) has been
expressed in terms of S s„,(q), S,~(q), and S(q) in
Eqs. (16)-(19). Therefore, instead of finding the
relations among the tensors Ecs„,(q), we find it is
sufficient for our purposes to find relations among
the tensors S &„6(q), S 8(q), and S(q). From Eqs.
(20}-(26)and the other expressions generated
from them by interchange of indices, such as
S,„,„(q), etc. , we obtain the following relations:

s„„„„(q)+s (fl)+s, (q)

+ 2[S„„„(q)+ S„„„(q)+ S„„(q)] = S(q),

(34}

(35)

(36)

(37)

S„„„,(q)+ S„„,(q)+ S„„(q)= S„„(q),

S„„„(q)+S„„,(q)+S„„,(q) =S„,(q,),
s„„(q)+s„„(q)+s„„„(q)= s„(q),
s„„(q)+s (q)+s„(q) =s(q).

Once again using the same step length (Z= 20),
as in the first method of the calculation of F„
which gives 500 wave vectors in the irreducible
sector of the BZ (IrSBZ) and 16000 vectors in the
whole zone, the above sum rules for the electron-
ion and the Coulomb parts of the potential function
are satisfied to better than 1 part in 10' for each
wave vector. Once we have assured ourselves of
the numerical accuracy of the tensors E s„,(q), E~
was calculated from Eq. (10) by performing the
double whole BZ and branch-index summations in
a straightforward manner. We note here that al-
though e(q j) and E s„,(q) are obtained for the
IrSBZ, they can be easily obtained for the whole
zone from their rotational transformation proper-
ties.

Another useful check on the final results of E~
is given by the calculation of F4 in the Einstein ap-

proximation (E, ). In this approximation all the
phonon frequencies ~(q j) are replaced by the av-
erage Einstein phonon frequency ~~. The j sums
in Eq. (10) are exactly done from the orthonormal
property of the eigenvectors viz. ,

(ql jl}es(ql jl}

where 6 ~ is the usual Kronecker delta symbol.
Similarly from the j, sum we have another

Kronecker delta/ 5yg Taking into account the
property 6 s=1 if a=P and zero otherwise, j, and

j, summations in Eq. (10) are eliminated. Thus
we obtain

8

+E „(q,+q,)) . (36)

Now for a given wave vector q we have the follow-
ing sum for the Coulomb contribution:

F ata. yy q = Exxxx q + F yyyy q Fzggg &

Therefore, in the Einstein approximation, the con-
tribution to E~ comes only from the electron-ion
term of the potential function. This contribution
can be easily evaluated from Eqs. (38) and (29).
We find

+ 2[F„„„(q)+Fc„,(q)+ Ec„.(q)]. (39)

Substituting for the first three and the last three
terms in Eq. (39) from Eqs. (16) and (17) and the
equations obtained from them by interchanging the
indices, and making use of the sum rules given by
Eqs. (33) and (37), we obtain

g Ec „„(q)= 105e'S(q) —150e'S(q)+ 45e'S(q) = 0.

E~ =F~(E —I)
2 2

, , I E 2 [l~l'~(lr I}- lq. +r I'G(lq. +.I)+ lq. +q. +~i'G(lq. +q.+~l)]
Cyg02

which can be evaluated in a straightforward man-
ner.

IV. DISCUSSION

In order to make a direct comparison of the mag-
nitude of E4 calculated by the two methods pre-
sented in Sec. III, we have chosen to calculate F,
from the same Na and K potential functions used
in the earlier calculations of Shukla and Taylor. '
The details concerning these potential functions
and the choice of screening function can be found
in their paper. It was shown in their work that the

Geldart-Taylor'" and Vashista-Singwi' screening
functions gave essentially the same results for
E,. Thus we have carried out all the calculations
in this paper with the Geldart-Taylor screening
function. To simplify the comparison of E~ by the
two methods we introduce the following notation:
When E, is calculated from Eq. (5), we denote it
by E4(s), where s is the shell index at which the 1
summation is truncated in Eq. (5). The calculated
value of F, from Eq. (10) is represented by E,
(Ew aid}.

Before we compare E4(s) and E,(Ewald) we note
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the following striking differences among the re-
sults of E~(s) for Na and K. For all the volumes
at which we have carried out our calculations in
Na and K, the nearest-neighbor contribution to E,
is small. It is negative in K but positive in Na.
The second neighbors make a large positive con-
tribution in both Na and K. In absolute magnitude,
this is a factor of 10 larger than the nearest-
neighbor contribution.

It is interesting to note that for the five differ-
ent volumes at which we have performed our cal-
culations in Na, E4(2} and E4(23) differ by less
than 2% at the 160-K volume, whereas they differ
by 14% at the 90-K volume. For the other three
volumes, E~(2) and F~(23) differ at the most by

In K, E,(2) is four times larger than E,(23) at
9-K volume, whereas at 99- and 215-K volumes,
E,(2) is approximately twice as large as F,(23).
At 299-K volume F~(2) is 50% larger than F~(23).

We have chosen to compare F,(2) and E,(23) in
detail because Copley has used in his caiculations
of d, I', E„and E4 for Rb only two neighbors in
the anharmonic interaction. If the trend in K is
any indication of the behavior of F,(s) in heavier
alkali metals (i.e. , Rb and Cs), his calculations
on Rb cannot be reliable due to the cutoff of anhar-
monic interactions at the second-neighbor dis-
tance.

Quite recently, Ma.cDonald et al. ' have examined
the behavior of the high-temperature specific heat
of Rb. Since I have participated in this work, the
following remarks on E~(s) for Rb are in order.
The nearest-'neighbor contribution is indeed nega-
tive, the second-neighbor contribution is a factor
of 10 larger in absolute magnitude than. the near-
est-neighbor contribution, and F,(2) is about 50%
larger than E4(6), at which the sums were trun-
cated in Ref. 8.

In light of the above remarks about the nearest-
neighbor contributions to E, being negative or very
small, the validity of another recent calculation of
E3 and E4 on alkali metals by Trivedi et gl." is
highly questionable. This is partly due to the use
of the nearest-neighbor model in the anharmonic
interactions and the leading-term approximation
in their calculations. The latter introduces 40%
error" in the calculation of E4. The worst part
of the calculation seems to be in misleading the
readership again on the issue of the sign of anhar-
monic contribution to C„. Although Cowley" has
clarified this point before, what Trivedi et al. call
a new method of calculating C„ is in fact the cal-
culation of C~ (which is always positive), yet Tri-
vedi et al." insist on using the same wrong argu-
ments. For a further detailed discussion of this
point we refer the reader to a forthcoming pub-

I

lication. "
Comparing now E,(s) and E,(Ewald) in Na and K,

we observe some correspondence between the re-
sults of these two methods of calculating E4. For
example, in Na, E4(Ewald) agrees exactly with
E~(s), where s = 18, at the 90-K volume. The
agreement between the two is almost exact at
160- and 361-K volumes with s= 1V and 10, re-
spectively. At the other two volumes referred to,
T = 5 and 293 K, E~(Ewald) and E,(s) differ by
about 1% where for the two volumes s= 22 and 21,
respectively.

In K, F,(Ewald) and F,(s) differ by less than 1%
in each case for the three volumes corresponding
to temperatures 9, 215, and 299 K, where for each
of these volumes s=15, 7, and 10, respectively.
The largest disagreement between F, (Ewald} and

F,(s) (s = 7) arises for the volume at 99 K. In this
case they differ by 3/p. It is clear from the above
discussion that F, (Ewald) and F,(s) are in agree-
ment with each other for "some" sheQ indix s, but
s changes with volume. Thus without a priori
knowledge of an exact value of E4, such as the one
obtained by Ewald procedure, one cannot decide
the shell index (s) at which the summation in Eq.
(5) should be truncated to obtain a correct answer
for E4.

Since we have examined in detail the accuracy of
the two-neighbor model by comparing E,(2) and
E,(23), it would be interesting to compare E,(2)
with E~(Ewald) for all the volumes at which we
have carried out our calculations of E4 for Na and
K. We find from this comparison that E,(2) and
E,(Ewald) are in good agreement in Na; they agree
to within 2% at 361-K volume and differ by 18/p at
5-K volume. However, in K the agreement be-
tween the two is very poor at all the volumes. The
percentage differences between F,(2) and E,(Ewald)
range from 56 to 254 corresponding to the vo1umes
at 299 and 9 K, respectively.

The good agreement between F~(2) and E,(Ewald)
in Na at 361-K volume is probably a sheer coinci-
dence because of the lack of similar agreements
either for the other volumes in Na or for any vol-
ume in K at which we have performed our calcu-
lations. Once again we find a two-neighbor model
not very reliable.

Finally we note here in passing that for Al
Koehler et gL' have compared their eighth-neigh-
bor anharmonic interaction real-space calculations
of 6 and I' with the reciprocal-space calculations
of b, and I' by Hogberg and Sandstrom. ~ They
have found some disagreements between the nu-
merical values of 6 and I' obtained by the two cal-
culations. However, the potential employed in the
two calculations is different and thus the compari-
son is not very meaningful.
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V. CONCLUSION

We have derived an alternative expression for
the quartic term of the Helmoltz free energy (E,)
in terms of the fourth-rank wave-vector-depen-
dent tensors. This expression is more appropri-
ate for the calculation of F, in metals. The nu-
merical values of F, for a range of volumes from
almost 0 K to the melting temperature in Na and
K obtained by the present method and the shell-
summation method, used previously by Shukla and
Taylor, ' are compared.

The numerical results of the two methods show
some correspondence with each other. However,
the shell index, where the sums can be truncated
in the previous method' in order to obtain the
agreement with the present method, is found to be
different for different volumes. This shows the
arbitrariness of the shell-summation method in
anharmonic calculations, because the present
method gives converged answers for F4 for differ-
ent volumes. The two-neighbor anharmonic inter-
action employed in a previous calculation4 is shown

to be unreliable.
We have also derived several sum rules for the

wave-vector-dependent fourth-rank tensors re-
quired in the calculation of F4. These sum rules
and the calculation in the Einstein approximation
provide some useful checks on the numerical re-
sults of F4. We have shown in the Einstein approx-
imation, the Coulomb term of the potential function
makes no contribution to F4. Thus F, is entirely
determined by the electron-ion term, which can be
easily calculated from a relatively simple expres-
sion. The numerical results of this latter indepen-
dent calculation can be checked against the compu-
ter program for the complete expression given by
Eq. (10) by setting all (u(q j) = tuz.

ACKNOWLEDGMENTS

The author gratefully acknowledges the help of
M. VanderSchans and S. Dey in computing the
Ewald results and M. VanderSchans in preparing
Fig. 1. The financial support of this project by
the Natural Sciences and Engineering Research
Council of Canada is acknowledged.

'T. R. Koehler, N. S.Gillis, and Duane C.Wallace, Phys.
Rev. B 1, 4521 (1970).

H. R. Glyde and R. Taylor, Phys. Rev. B 5, 1206 (1972).
M. S. Duesbery, R. Taylor, and H. R. Glyde, Phys.
Rev. B 8, 1372 (1973).
J.R. D. Copley, Can. J. Phys. 51, 2564 (1973).
S. H. Taole, H. R. Glyde, and Roger Taylor, Phys. Rev.
B 18, 2643 (1978).

R. C. Shukla, P.hys. Can. 28, 10 (1972).
~R. C. Shukla and Roger Taylor, Phys. Rev. B 9, 4116

(1974).
Rosemary A. MacDonald, Raymond D. Mountain, and'

Ramesh C. Shukla, Phys. Rev. B 20, 4012 (1979).
E. R. Cowley and R. C. Shukla, Phys. Rev. B 4, 1261
(1974).
Z. S. Basinski, M. S. Duesbery, A. P. Pogany, R.
Taylor, and Y. P. Varshni, Can. J. Phys. 48, 1480
(1970).
W. Ludwig, J. Phys. Chem. Solids 4, 283 (1958).
A. A. Maradudin, P. A. Flinn, and R. A. Cold-

well-Horsfall, Ann. Phys. (N.Y.) 15, 337 (1961).
R. A. Cowley, Adv. Phys. 12, 421 (1963).
R. C. Shukla and E. R. Muller, Phys. Status Sol-
idi B 43, 413 (1971).

~5%. Cochran, Proc. R. Soc. London Ser. A 276, 308 (1963).
ieM. Born and K. Huang, The Dynamical Theory of Cry-

stal Lattices (Clarendon, Oxford, 1954).
M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).
R. C. Shukla and L. Wilk, Phys. Rev. B 10, 3660 (1974).
D. J. Geldart and R. Taylor, Can. J. Phys. 48, 167
(1970).
P. Vashishta and K. S. Singwi, Phys. Rev. B 6, 875
(1972).
P. C. Trivedi, H. O. Sharma, and L. S. Kothari, Phys.
Rev. B 18, 2668 (1978).
E. R. Cowley, J. Phys. C 6, L125 (1973).
R. C. Shukla Phys. Rev. B (in press).

4T. Hogberg and R. Sandstrom, Phys. Status Solidi 33,
169 (1969).


