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The linear-combination-of-atomic-orbitals self-consistent field ab initio Hartree-Fock method previously presented
[Int. J. Quantum Chem. 17, 501 (1980)] is here applied to diamond. Using a minimal basis set, total, binding, and
correlation energy, equilibrium lattice constant, bulk modulus, band structure, population analysis, x-ray factors,
and directional Compton profiles have been calculated. The results are compared with those previously obtained
with Hartree-Fock and local-exchange Hamiltonians. A comparison is made for some properties with results for

graphite obtained using the same approximation.

1. INTRODUCTION

In a preceding work," hereafter referred to as I,
we presented an ab initio linear-combination-of-
atomic-orbitals self-consistent exact-exchange
Hartree-Fock (HF) method for the study of the
electronic properties of two- and three-dimension-
al periodic systems in their ground state. There
are essentially three reasons that suggest the use
of an HF Hamiltonian: First, it generally provides
a good description of the ground state and its prop-
erties; second, an extensive HF literature exists,
especially concerning atoms and molecules: de-
tailed information is thus available about the qual-
ity of the results to be expected with a given basis
set, and unambiguous reference data can be used
for differential quantities®; third, the HF solution
is, if not unique, the most natural starting point
for further improvements using many-body tech-
niques such as have been applied with success in
the study of molecular systems?® or, in a simplified
form, of periodic structures.* Our method was
first tested with monolayers of graphite and hex-
agonal boron nitride (see Ref. 5, hereafter re-
ferred to as II) the computational problems were
discussed, and it was shown that satisfactory re-
sults can be obtained for some ground-state prop-
erties, even with a minimal basis set.

In this work we present the results for diamond,
which allows very accurate comparisons to be
made with other gb initio calculations®'° and with
experimental findings."'"'® After recalling the es-
sential characteristics of the calculation method
the results are presented and discussed. They
concern total and binding energy, bulk modulus,
lattice parameter, population analysis, x-ray
factors, Compton profiles, and band structure.
The possibility of correcting energy data by means
of a density-dependent correlation term is also
considered. In many cases a comparison with the
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corresponding results for graphite is performed:
it appears that while the method works well in both
cases, the basis set we adopted is particularly
well-suited for the more symmetric structure of
diamond.

II. THE CALCULATION METHOD

The calculation method has been described in
detail in I; we recall here only its most signifi-
cant aspects. The problem essentially lies in the
self-consistent solution of the matrix equations
FE)A[K) = S(k)A(k)E(k) one for each k sampling
point in the irreducible nart of the first Brillouin
zone (IBZ). F(k) and S(k) are the Fock and overlap
matrices in the basis set of the Bloch functions ob-
tained from the atomic orbitals in the zero cell by
applying the projection operator of the translation
group, corresponding to the k irreducible repre-
sentation; A(k) and E (k) are the eigenvector and
eigenvalue matrices. The general element of F(k)
can be written, indicating by H the one-electron
part of the Hamiltonian:

F12<E>=Zeik'gp%2
=3
—Zelk g<<X1|H|X2>+ E Hl 4D§,2,3,4)-

1,3,4

(1)
Here 1,2, 3,4 are general basis functions indices,
g41 i are translation vectors of the direct lattice,

=y, (T-g£-3,) is the atomic orbital with index 2,

belongmg to the atom identified by fractionary
translation vector §, in the § cell. II,, , is a pseu-
dodensity matrix defined as follows for a closed
shell system:

H;, 4=2 j;Bz dk exp(il?- T) 2 agki('l;.)aﬁ(ﬁ)el(e}? - Ei(ﬁ)) ’
1
(2)
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where © is the step function. a,; and €; are ele-
ments of the A and E matrices, respectlvely, and
€z is the Fermi energy. The quantities Da 1 ap-
pearing in Eq. (1) are symmetrized sums of two-
electron integrals which can be obtained as a lin-
ear combination, with coefficients depending on the
point group of the crystal (see I), of the Coulomb
and exchange sums:

-Z(xlx Blymym Ty 1 Z(xi’xé“lxzxm”)
(3)

In summary, according to our scheme, symmetry
is fully exploited in the preliminary part of the
program, when preparing the symmetrized D& !
quantities. In the self-consistent step it is then
possible to be confined in the irreducible part of
the Brillouin zone by using the pseudodensity ma-
trix II!, thus avoiding the necessity of reconstruct-
ing the eigenvectors throughout the BZ.

When applying the above scheme, one must deal
with infinite sums over direct lattice vectors, as
shown in Eqgs. (1) and (3). Since individual terms
in these sums can be far from negligible even for
vectors of large modulus, the truncation criteria
must be very carefully designed in order to reach
a good convergency with minimum computational
effort. Three such criteria have been adopted in
our work:

(i) Exclusion of interactions between negligible
pseudocharges. The general two-electron Coulomb
integral in Eq. (3) of the form

(x1x§lx§"x‘“”)

- = > > = = 1
=ffdr dr'xl(f_sl)xz(r—g—sz)‘m
XXSG'—KI—§3)X4G'—ITI—I—§4). 4

The densities of the two interacting pseudocharges
at T and T’ vanish exponentially with increasing
values of | +§, — s1| and |T+8, -8,|, respectively.
In the sums over g and T we have therefore re-
tained those § and 1 values which are associated
with pseudocharges above a certain tolerance. A
similar criterion has been adopted by Euwema

et al.” in their HF calculations. The same criter-
ion provides a limit to the sum over § in the one-
electron Hamiltonian [see Eq. (1)] and to the sum
over in in the exchange term.

(i) Taking into account the shovt-vange charac-
ler of exchange interactions. The above criterion
is unable to limit the sum over 1 and & g in the ex-
change term; in fact, in exchange integrals, the
distance |# +1+8, -& - Ezl determining the entity
of the pseudocharge at ¥/, may be near zero for
arbitrarily large values of |1|. However, if the
sums over 1 and & g are effected by including in
succession complete stars of all symmetry-related
lattice vectors, the short-range character of the
exchange interactions comes immediately to light.
In fact, when multiplying these sums by II; , [in
the reconstruction of F&, see Eq. (1)] or by II%, ,
(in the calculation of total energy), interference
effects rapidly destroy the overall contribution of
outer stars. The data reported in II and similar
tests performed with diamond have shown that if
we limit exchange sums over Tandg g to three com-
plete stars, the error in total energy is less than
0.001 a.u.: such an error has been taken as a
standard to fix the level of the different approxi-
mations in the present computations.

(iii) Multipolar expansion of Coulomb interac-
tions. We must finally discuss the criterion adopt-
ed to truncate the sums over @ in the Coulomb
term [see Eq. (3)]. To this purpose we first asso-
ciate to each shell A of atomic orbitals on a given
atom in the general i cell a charge distribution de-
fined according to a Mulliken partition of the total
charge:

pr.m(F) = ; Z:P;,4x3<?'-ﬁ—§3)x4<?'—xﬁ-i-a).
3 4,
(5)

Due to the localized character of atomic orbitals,
such a distribution is localized around the mth
cell; at an external point ¥, the potential it cre-
ates can be evaluated by means of a multipolar
expansion, - In a preceding work,'” it was shown
that such a partition of the charge makes the mul-
tipolar expansion rapidly convergent, so that only
dipole terms need to be retained:

Vx,%@)=fﬁ'Px,rT1-(?')/|-f‘—;'|ﬁqxl? —-m =&+ TEF R -8 [P =Va s (). (6)

Using Egs. (5) and (6), the set of all Coulomb inte-
grals associated with the indices 3 €, 4, 1 (with

" fixed 10 2§, m) is substituted by the one-electron
integrals:

HiE,(0, ) = (x7 VA, 7 1XE) ™

r
In II it was shown that calculating Coulomb inter-

actions by means of Eq. (7) when |f|>10 a.u. in-
volves errors in total energy which are less than
0.001 a.u. in the case of graphite; note that in that
case the first nonzero term that is neglected is a
quadrupole term, while for diamond it is an octu-
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_ pole term. In suminary, Coulomb interactions
are evaluated exactly for small |#|; in the sur-
rounding region Eq. (7) is used up to a given dis-
tance (|t |<M; for diamond M=13.4 a.u.); Cou-
lomb terms from the external region are neglected
for what concerns their influence on eigenvectors,
while their contribution to energy is evaluated by
introducing a Madelung term relative to a system
of point net charges 6, =g\ —Z,. For diamond, of
course, net charges are zero and the Madelung
term is absent. From the above description, it is
evident that all quantities of interest are calculated
in direct space and the transformation from F& to
F(k) [see Eq. (1)] is performed just before the di-
agonalization. On the contrary, many authorg?:'8"2°
represent all quantities, in particular basis func-
tions and Coulomb and exchange potentials, in re-
ciprocal space so that their sums are extended to
all translation vectors of the reciprocal lattice.
The speed of convergency is surely different with
the two approaches, but it depends on many fea-
tures of the system under study (number of basis
functions to be used, degree of localization of val-
ence electrons, number of core electrons, etc.),
so that we do not think it possible to claim at this
time the absolute superiority of either approach.

The computations to be presénted in the following

were performed using a minimal basis set [five
atomic orbitals (AO) per carbon atom], each AO
being an STO-3G, that is, a least-squares rep-
resentation of a Slater-type orbital as a sum of
three Gaussian-type orbitals.? The use of Gaus-
sian functions is known to simplify the evaluation
of one= and two-electron integrals, and it also
makes it possible to analytically perform all tests
associated with the truncation criteria and the eval-
uation of x-ray factors and Compton profiles.

III. RESULTS AND DISCUSSION
A. Binding energy and bulk modulus

Total energy was calculated for five different
values of the lattice parameter of diamond, in the
range 3.48-3.68 A. The calculated minimum lies
at 3.59 A, against an experimental value of 3.57
A.'® Euwema ef ql.,” using the HF method and a
basis set comprising 13 variational functions,
localized the minimum at 3.54 A. Zunger,® using
a local density method, obtained an equilibrium
distance of 3.66 A when including only the ex-
change pY/? term, and of 3.58 A when a correla-
tion term was added to the Hamiltonian, When
comparing the latter results with the good per-
formance of HF exact-exchange noncorrelated cal-
culations, we find a confirmation of the fact that
in local density Hamiltonians the correlation term
contains an important contribution which partly

corrects the shortcomings of the local exchange
term.

As is well known (see Ref. 2 and related work),
using a minimal STO-3G basis involves an ap-
preciable error in total energy because of the lim-
ited variational freedom, but especially because
of the poor representation of the peak of 1s core
functions near the nuclei. So, our total energy
per cell is 74,874 a.u. against a value of 75.71 a.u,
as obtained by Euwema.?! However, bond energies
can be accurately calculated because the errors
associated with core functions are entirely trans-
lated from isolated atoms to compounds. By mak-
ing reference to the atomic energy of carbon, cal-
culated with the same basis set,? we obtain a bind-
ing energy of 5.69 eV per atom against an experi-
mental value of 7.62 eV.® Two slightly different
binding energies are reported in the two Euwema
papers” ?'; the more recent estimation is 5.03 eV.
The evaluation of this quantity by Zunger® is diffi-
cult because of the lack of an atomic reference
term, which would require a spin-polarized cal-
culation; the author reports three values: 11.92,
5.7,7.8 eV, the first referring to a nonpolarized
atomic calculation, the other two based on private-
ly communicated spin-polarized atomic energy
data. The difference of 1.93 eV between experi-
mental binding energy and that resulting from our
calculation is considerably less than that reported
for graphite in II (2.48 eV per atom); as a result,
the calculated diamond structure appears to be
more stable than that of graphite, contrary to ex-
perimental evidence. Two other results are in-
dicative of the fact that the present basis set is
more adequate for diamond than for the lamellar
structure of graphite: First, the error in equi-
librium distance is appreciably different in the
two cases (0.56% and 2.4%, respectively); second,
the virial coefficient for diamond is by 5X10™*
nearer to 1 than that for graphite. From these
observations and from a comparison with Euwema’s
results we derive the belief that the basis set we
used is substantially adequate for diamond, and
that most of the difference between calculated and
experimental binding energies is attributable to
correlation effects. The coefficient of the second-
order term of the best-fit parabola to the energy-
versus-distance data is 0.55 a.u.” corresponding
to a bulk modulus of 5.9X10'2 dyn/cm? to be com-
pared with an experimental value of 4.42X 102
dyn/cm? as obtainable from the elastic constants??
according to the formula B=(C,, +2C,,)/3. Of the
other authors that have performed diamond cal-
culations, only Surratt, Euwema, and Wilhite®®
report a computed value of the bulk modulus,
which was comprised of between 4.4 and 4.6X 10*2
dyn/cm®. Such an excellent agreement with ex-
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periment is perhaps partly fortuitous: HF cal-
culations of molecules usually involve appreciable .
errors in force constants (of the order of 20%)*:%5;
an uncertainty in Euwema’s energy data is related
to a correction those authors must add to compen-
sate for a loss of translational symmetry due to
their truncation criteria; still, the evaluation of
the quadratic coefficient is a very delicate task,
since it involves energy differences of a few thou-
sandths of a.u. To this purpose, when repeating
with higher accuracy the data for graphite re-
ported in II, we obtained the same values for the
equilibrium distance and the corresponding energy,
but the computed force constant for the C-C bond
changed from the reported value of 13.6 to 7.9
mdyn/A, against an experimental value®® of 8.5
mdyn/A.

B. Correlation energy

The correlation energy E, represents only a min-
or part (0.5%) of the total energy of diamond, even
if it appreciably contributes to binding energy.

The HF electronic distribution should therefore

be adequate for calculating E, a posteriori (that is,
outside the self-consistent process) using a density
functional technique. Among the many proposals,
the local exchange and correlation functional pro-
posed by Gunnarsson and Lundqvist (GL)*" for spin-
polarized systems has provided good results for a
number of ground-state properties of atoms and
molecules, in particular, their total energy. How-
ever, it is well known that such success is partly
due to a happy cancellation of errors in the ex-
change and correlation terms, since this functional
and similar ones® overestimate E,*°"! by as much
as 100%. It is for this reason that Stoll, Pavlidou,
and Preuss (SPP)® have recently proposed the fol-
lowing functional to calculate E, with HF atomic
and molecular densities:

E§”=f(p++p-)€c(p+,p-)df
~ [peor,00d7 - [ p_c ., 007, ()

where €,(p,, p.) is the GL correlation function for
a spin-polarized system. The first term is there-
fore EGL, which is the approximation for E as
proposed by GL; the other two terms represent
the correlation energies of the two pure spin sub-
systems, which are subtracted in order to pre-
serve only the correlation of motions between elec-
trons of different spin. In this way, most corre-
lation effects should be taken into account at least
for systems of limited dimensions®; in fact, for
such systems, there are no long-range correla-
tions, while in an HF solution electrons of the

same spin are kept away by the exchange inter-
action. For a closed-shell system, Eq. (8) be-
comes

E?’=fp[€c(p/2, p/2)—60(0,9/2)]d75fp€2(p)d7.
(9)

It is interesting to compare the values of
€,(0/2;p/2) and €.(p) at different densities (see
Table I). It clearly shows that in a closed-shell
system, no matter how complicated the electronic
density function is, the SPP expression for the
correlation energy will lead to a result that is
about one-third of that obtained according to GL.
Starting from the HF charge density we have eval-
uated the two functions. The integration was per-
formed numerically. Within a sphere surrounding
the nuclei and containing exactly two electrons,
the distribution was assumed to be spherically
symmetric and 700 sampling points were taken
along the radial axis. Within the residual volume
of the irreducible part of the elementary cell, the
integral was effected by a random sampling tech-
nique (4000 points); the error in the calculated
correlation energies may be estimated to be of
the order of 0.1 eV. The value obtained using the
SPP functional is of 4.95 eV per atom from which
the atomic correlation energy calculated in the
same approximation must be subtracted, which is
practically coincident with the experimental one.3*
As a result, a contribution to binding energy of
0.73 eV per atom is obtained, which is less than
half the expected value. On the contrary, by sub-
tracting from the calculated ES value of 13.45 eV
the experimental atomic correlation energy, one
obtains a contribution to binding energy of 9.2 eV
per atom, If, however, we take as a reference
the atomic correlation energy calculated in the
same approximation,® a value of 1.3 eV is ob-
tained. While the latter result is better than the

TABLE I. Values of the correlation energy density
functions for a closed-shell system, €,(0/2, p/2) ®Ref.
27) and €/(p) (Ref. 32), as a function of the electronic
density p. 7, is defined as usual [r,= (%-ﬂp)'“ 8. Al
quantities are in atomic units.

P Vg € € € /€y
10* 0.062 -0.326 -0.123 2.65
10% 0.134 -0.275 -0.103 2.66
10 0.288 —0.226 —0.084 2.68

1 0.620 -0.177 —0.065 2.71
101 1.337 -0.131 —0.048 2.75
102 2.879 —0.090 - —0.032 2.81
10-8 6.204 —0.057 -0.020 2.87
104 13.365 —0.033 —0.011 2.94
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FIG. 1. Total charge density in diamond (—) and"
graphite (---) along the bonding (a) and antibonding (b)
directions. p and 7 are in a.u.

SPP one, it is dubious that a difference between
largely overestimated values may in general pro-
vide reasonable results, In summary, it appears
that the modification to the GL formula suggested
by SPP is in the correct direction, but perhaps
too drastic. It is possible that further work at a
molecular scale will eventually lead to an effec-
tive expression to be used also with HF solutions
for nonconducting periodic systems.

C. Population analysis and charge distributions

Diamond and graphite lend themselves particu-
larly well as covalent systems to a population an-
alysis according to Mulliken. The six electrons
of each carbon atom are subdivided into a proper
atomic population (4.87 electrons for diamond,
4.76 for graphite) and a bond population. Each
bond between nearest neighbors contains 0.74 and
0.96 electrons in the two cases; the two popula-

tions are in a proportion which is very near to the
theoretical % value estimated according to a clas-
sical valence-bond scheme. The higher charge
density along bonds in graphite is evident from
Fig. 1: at the midpoint between nearest neigh-
bors it is 0.27 e/(a.u.)® for graphite and 0.24
e/(a.u.)? for diamond; note also that in both
cases the density falls practically to zero in the
direction opposite to bonds. The antibonding char-
acter of the non-nearest-neighbor interactions is
revealed by the negative bond populations with sec-
ond and third neighbors. A final observation con-
cerns the hybridization ratios, that is, the ratio
between p and s electrons in tetrahedral and plan-
ar hybrids of diamond and graphite: they are 2.4
and 1.7, respectively, to be compared with the
values of 3 and 2 corresponding to pure sp® and
sp® hybrids.

D. X-ray structure factors

The x-ray-structure factors computed in this
work are presented in the third column of Table
II. The experimental data,'®''* corrected for the
effect of isotropic thermal vibration with a Debye-
Waller parameter B=0.2007,'® are given in col-
umn 2. The HF results of Euwema ef al.,”*? the
“p'3 exchange” data of Heaton and Lafon,® and
the local spin-density ones of Zunger and Free-
man® are shown in columns 3-6. In column 7, the
structure factors obtained from a superposition
of atomic HF charge distributions'® are finally
given. The last row supplies the agreement fac-
tor!® corresponding to each calculation:
R=37|Fep =F oory| /7 | Fexpe| . The excellent qual-
ity of Zunger and Freeman’s data® is not related to
the presence of a correlation term, since their
noncorrelated Hamiltonian performed nearly as

TABLE II. Experimental and calculated x-ray factors for diamond.

Hartree- Hartree-~ Local Local exch. Atomic
nel Expt.? Fock” Fock © exchange ¢ and correl. ® superp. ?
111 3.321 3.274 3.298 3.349 3.281 3.056
220 1.972 1.925 1.931 2.023 1.995 1.951
311 1.663 1.659 1.671 1.748 1.692 1.755
222 0.144 0.088 . 0.086 0.075 0.139 0.000
400 1.480 1.5635 1.545 1.590 1.493 1.555
331 1.579 1.533 1.527 1.564 1.605 1.509
422 1.443 1.443 1.417 1.452 1.408 1.430
511 1.418 1.386 1.401 1.392 1.391
333 1.418 1.382 1.394 1.392 1.391
R 0.023 0.024 .0.028 0.015 0.051

2References 13 and 14.
® Present work.
¢References 7 and 21,
dReference 10.
¢Reference 8.



well, but is due, in our opinion, to the correct-
ness of the formal scheme and to the quality of
the basis set, which is a decisive factor for the
detailed description of electron density distribu-
tions. In this respect, it is surprising that our
results are better than previous calculations?!:*°
using much richer basis sets; it is possible that
some deficiencies of those calculation schemes,
especially concerning translational invariance,
are made evident when calculating this kind of
Fourier transform. All results here reported
relating to low-index reflexes are, of course,
better than those obtainable by simple super-
position of atomic distributions; for higher in-
dices, the structure factors are associated with
the distribution of core electrons and only the qual-
ity of the atomic basis set becomes important.

E. Compton profiles

We have calculated Compton profiles for dia-
mond, using the impulse approximation® along
five directions for which experimental data are
available'!* '%; use of a Gaussian basis set makes

such a computation very fast. Our results, to-
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gether with those of Wepfer ef al.,3¢ also obtained
with an HF method, and with the experimental ones
by Weiss and Phillips,'! are reported in Table IIL,
The two calculated data are very similar with an
overestimation at low moments with respect to
experiment, more markedly so in our case; this
general behavior is observed also in the local ex-
change data by Heaton.'® Such a similarity of re-
sults with different approaches to, and a different
extent of the basis sets might suggest that the
main source of discrepancies is attributable to
the use of the impulse approximation. More in-
teresting characteristics of the different compu-
tations are revealed by the differential curves,
measuring the degree of anisotropy of moment
distributions. In Fig. 2 such data are reported
for the present and previous®: %3 theoretical
calculations, together with recent accurate ex-
perimental results'? concerning the anisotropy of
distribution of momenta.!’ It is still not clear
how much the quality of the results depends on the
extent of the basis set and on the type of Hamil-
tonian that has been employed. In particular the
importance of including correlation interactions

TABLE III. Experimental and calculated Compton profiles J(g) along five directions. Val-

ues of J and g are in atomic units.

hkl q Experimental 2 Hartree-Fock® Hartree-Fock ©
0.0 2.09 2.22 2.18
0.4 1.91 2.05 2.05
100 0.8 1.46 1.54 1.55
1.2 0.86 0.88 0.88
1.6 0.47 0.46 0.46
0.0 2.05 2.09 2.08
0.4 1.89 1.99 1.97
111 0.8 1.50 1.62 1.64
1.2 0.88 0.97 0.97
1.6 0.47 0.45 0.45
0.0 2.11 2.19 2.21
0.4 1.93 2.00 1.96
110 0.8 1.44 1.55 1.58
1.2 0.91 0.98 0.98
1.6 0.47 0.42 0.43
0.0 2.04 2.13 2.12
0.4 1.91 2.00 1.99
211 0.8 1.48 1.61 1.62
1.2 0.89 0.94 0.95
1.6 0.47 0.44 : 0.44
0.0 2.02 2.12 2.12
0.4 1.92 2.00 1.97
221 0.8 1.49 1.60 1.62
1.2 0.87 0.97 0.97
1.6 0.47 0.43 0.44

2Reference 11.
® This work.
¢Reference 36.
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L r X K r

FIG. 3. Self-consistent band structure of diamond.
The symmetry type of the eigenvectors at L, I', and X
points is reported.

in moment distribution calculations (which might
justify the good performance of Zunger’s method)
has been debated®’*: from very accurate atomic
calculations with atomic systems ,*? it comes out
that correlation is extremely important for open-
shell systems, much less for closed ones, thus in-

3\
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_
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FIG. 2. Anisotropy of the Compton profiles for dia-
mond. ¢ and AJ are in a.u. Q represents the experi- 3'50 T 36 T
mental data (Ref. 12); HF calculations, this ) .60 o
work; ---- HF calculations (Ref. 36); -+-+~+local ex~ a(A)
change calculations (Ref. 10); =« - +local exchange and FIG. 4. Hartree-Fock eigenvalues as a function of

correlation calculations (Ref. 8). lattice constant.
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creasing the difference between experimental and
calculated data. Calculations are in progress with
other systems (graphite, silicon, and aluminum)
which will permit us to judge on a wider basis the
quality of the information obtainable with our meth-
od about this important observable quantity.

F. Band structure

The diamond band structure is shown in Fig. 3;
its qualitative features are very similar to pre-
vious results.’®’® On the other hand, it is known
that HF bands are wider by a factor 1.5 to 2 with
respect to “experimental” ones, as obtained from
optical excitation data. So, the calculated I',;—T';;
gap is 13.9 eV, practically coincident with that
reported by Euwema,” against an experimental
value of 5.4 eV (Ref. 40); the total calculated and
experimental®!'*? valence bandwidths are 37 and

21-24 eV, respectively. Recently, Brener* has
corrected HF bands for diamond’ to take correla-
tion into account; his results are encouraging and
indicate that an a posteriori correction on HF
bands can introduce substantial improvements. In
Fig. 4 we finally report the variation of eigenvalues
at special k points with the lattice parameter. The
behavior is very similar to that published by Sur-
ratt et al.?®: the valence eigenvalues are slightly
lowered with decreasing pressure (with the only
exception of I"; and L,) and conduction levels are
lowered at a much higher rate, so that the overall
effect is a narrowing of the gap and an overall com-
pression of the band structure. In Zunger’s work®
such effect is enhanced because of the fact that in
his computation valence levels are increased with
increasing pressure.
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