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Systematization of the stable crystal structure of all AB-type binary compounds:
A pseudopotential orbital-radii approach
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We discuss the role of the classical crossing paints of the nonlocal density-functional atomic pseudopotentials in

systematizing the crystal structures of all binary Aft compounds {with A +8}.We show how these pseudopotential
radii (r, } can be used to "predict" the stable crystal structure of ail known {565}binary compounds. We discuss the
correlation between [ r, ) and semiclassical scales for bonding in solids.

I. INTRODUCTION

Our experience in understanding the occurrence
of a large variety of crystal structures in nature
has been traditionally expressed in two general
frameworks: var iational quantum mechanics and
a semiclassical approach. The bulk of our ex-
perience in understanding the structural prop-
erties of molecules and solids from the quantum-
mechanical viewpoint is expressed in terms of
constructs originating from the calculus of varia-
tion: total energy minimization, optimum sub-
spaces of basis functions. , etc. In this approach,
one constructs a quantum-mechanical-energy
functional representing the Born-Oppenheimer
surface of a compound; its variational minimum
in configuration space (RQ is then sought, usually
by first reducing the problem to. a single-particle-
like Schrodinger equation. The elementary con-
structs defining this energy functional —the inter-
electronic effective potential V„(r,r') and the
electron-core potential V„(r,B)—can be treated
at different levels of sophistication (e.g. , semi-
empirical tight-binding, Thomas-Fermi, Hartree-
Fock, density-functional, pseudopotential, etc.).
Similarly, a number of choices exist for the wave-
function representation (e.g. , the Hloch and mo-
lecular -orbital representations or the Wannier
and valence-bond models, etc.). This approach
has become increasingly refined recently, pro-
ducing considerable detailed information and
insight into the electronic structure of molecules
(e.g. , Refs. l and 2) and simple solids (e.g. , Ref.
3).

The semiclassical approach to crystal and mo-
lecular structure, on the other hand, involves
the construction of phenomenological scales
("factors") on which various aspects of bonding
and structux'Rl chal Rctex'istics Rl e measured.
These include chemical, crystallographic, and
metallurgical constructs, such Rs the electro-
negativity, the geometry and size factors, the
coordination-number factor, the average -electron-

number factor, the orbital-promotion-energy
factor, etc.' These factors are then represented
by various quantitative scales (bond-order, ele-
mental work-function, ionic, metallic, and co-
valent radii, electronegativity scales, etc.) that
are used to deductively systematize a variety of
structural properties. Such intuitive and often
heuristic scales have had enormous success in
rationalizing a large body of chemical and struc-
tural phenomena, often in an ingenious way. ' '
More recently, these semiclassical scales have
been used in quantitative models, such as the
semiempirical valence force field method"" and
Miedema's heat-of-formation model, ' where the
remarkable predictive power of these approaches
has been demonstrated over large data bases
(literally hundreds of molecules and solids).

Even before the pioneering studies of Gold-
schmidt, Pauling, and others, it was known

thermodynamically that the structure -determining
energy &E, of most ordered solids is small com-
pared to the total cohesive energy &E,. Measured
heats of transformation and formation data, ""
as well as quantum-mechanical calculations of
stable and hypothetical structures, indicate that
&E,/bE, can be as small as 10 s-10~. This poses
an acute difficulty for variational quantum-me-
chanical models. The elementary constructs of
the tluantum-mechanical approa. ch, V„(r,r') and

V„(r,R), are highly nonlinear functions of the
individual atomic orbitals that interact to form
the crystalline wave functions (due to both the
operator nonlocality of V„+V„and their self-
consistent dependence on the system's wave func-
tions). Conseciuently, the structural energies
&E, become inseparable from the total energies
&E,. One is then faced with the situation that the
complex sneak interactions, responsible for stabi-
lizing one crystal structure rather than another,
are often masked by errors and physical uncer-
tainties in the calculation of the s A ong Coulombic
interactions in the total interaction potentials
V„(r,r') and V„(r,R). Even though &E, can be
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calculated using quantum mechanics with the aid
of large computers (for sufficiently simple sys-
tems), it is notable that the extent and complexity
of the information included in V„(r,r ) and

V„(r,R) far exceeds that required to characterize
a crystal structure. For example, although the
12 transition meta. ls Sc, Ti, V, Cr, Fe, Y, Zr,
Nb, Mo, Hf, Ta, and W have distinctly different
quantum-mechanical effective potentials and are
characterized by systematically varying cohesive
energies &E„,all of them appear in the same
'bcc crystal form as elemental metals.

Despite this, the crystal structures of a number
of elemental solids have been successful. ly de-
scribed by simple quantum-mechanical approach-
es. These include the work of Deegan et a/. " in
which the stable phase of the elemental transition
metals was correlated with the sum of single-
particle band energies of model fcc and bcc den-
sities of states, as well as the density-functional
pseudopotential approach of Moriarty" in which
a pseudopotential perturbation theory and a lin-
earized exchange and correlation superposition
approximation were used to calculate binding and
structural energies of a number of non-transition-
element solids. The pseudopotential formalism
has also been used by Inglesfield" to calculate the
alloying behavior of a number of binary systems,
emphasizing the electrochemical charge -transfer
energy which is described in terms of the dif-
ference in the elemental screened pseudopoten-
tials.

A number of other approaches have been used
to calculate formation energies of binary alloys,
neglecting the structural-energy contributions
&E,. These include the tight-binding approaches
of Friedel, "Cyrot and -Cyrot-Lackmann, "
Hodges, "Pettifor, "and Varma" in which the
shift in the alloy d-band density of states with
respect to that of its constituent elemental metals
is correlated with the heat of formation. The
various contributions to this energy difference
are calculated by moment approaches and charge-
transfer effects are either approximated simply"'
or argued to be small. " The chemical-potential
method of Alonso and Girifalco" focuses on the
positive contr ibution to the formation energy aris-
ing from the elimination of the density mismatch
at the cell boundaries of the constituent elemental
metals and the negative contribution originating
from a chemical-potential equalization through
charge transfer (described by the nonlocality of
the atomic pseudopotentials).

These approaches have successfully described
the dominance of the d-electron contributions to
the regularities in elemental crystal structures
and cohesive energies and some of the systematics

of compound heat of formation. However, they
have not isolated the key physical factors under-
lying the structural regularities of nonelemental
comPounds (i.e. , AB with A wB) It. appears that
at present, the quantum-mechanical approach
seems to lack the simple transferability of struc-
tural constructs from one system to the other, as
well as the Physical t~ansPaxency required to as-
sess the origin of structural regularities. The
semiclassical approach, on the other hand, con-
centrates on the construction of physically simple
and transferable coordinates that may systematize
directly the trends underlying the structural ener-
gies &E,. The major limitations of the semiclas-
sical approach seem to lie in the occurrence of
internal linear dependencies among the various
structural factors (e.g. , orbital electronegativity
and orbital promotion energy), as well as in the
appearance of a large number of crystalline struc-
tures placed within narrow domains of the phen-
omenological structural parameters (e.g. , Moos-
er-Pearson plots for nonoctet ~ compounds or
diagrams of the frequency of occurrence of a given
structure versus average electron-per-atom ra-
tio). Even so, the semielassieal approaches pro-
vide valuable insight into the problem because they
point to the underlying importance of establishing
system-invariant energy scales (e.g. , eleetro-
negativity, promotion energy) as well as length
scales (e.g. , covalent, metallic, and ionic radii).

For the 50-60 non-transition-metal binary
octet compounds, the problem of systematizing
the five crystal structures (NaCl, CsCl, diamond,
zinc blende, and wurtzite) has been solved through
the use of the optical dielectric electronegativity
concept of Phillips and Van Vechten. " This con-
cept diagrammatically displays periodic trends
when transferable elemental coordinates are used.
Such diagrammatic Pauling-type approaches are
extended here to include intermetallic transition-
metal compounds (a total of 565 compounds).

In this paper, I show that the recently developed
first-principles nonlocal atomic pseusopotentials
provide nonempirical energy and length scales.
By using a dual and transferable coordinate sys-
tem derived from these scales, one is able to
topologically separate the crystal structures of
565 binary compounds (including simple and tran-
sition-metal atoms) with a surprising accuracy.
At the same time, these quantum-mechanically
derived pseudopotentials allow one to conveniently
define the elementary constructs, V„(r,r') and
V„(r,8), and use them in detailed electronic-
structure calculations for molecules, solids, and
surfaces. As such, this approach may provide
a step in bridging the gap between the quantum-
mechanical and semiclassical approaches to elec-
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tronic and crystal structure.
The success of this approach in correctly "pre-

dicting" the structural regularities of as many as
565 binary compounds using elemental coordinates
that pertain directly only to the s and P electrons
(and only indirectly to the d electrons through the
screening potential, produced by them) presents
a striking result: It suggests that the structural
pprt AE, of the cohesive energy may be do-
minated by the s-p electrons.

This points to the possibility that, while the
relatively localized d electrons determine both
central cell effects (such as octahedral ligand
fiel'd and Jahn-Teller stabilizations) and the reg-
ularities in the structure-insensitive cohesive
energy &E, of crystalline and liquid alloys, the
longer range s-P wave functions are responsible
for stabilizing one complex space-group arrange-
ment rather than another. There is a striking
resemblance between this result and the semiclas-
sica, l ideas indicating a correlation between the
stable crystal structure of transition-metal sys-
tems and the number of s and P electrons, put
forward by Engel'4 "in 1939 and subsequently
greatly refined by Brewer. " In the Engel-Brewer
approach, the d electrons play an important but
indirect role in determining the energy required
for exciting the ground atomic configuration to one
that has available for bonding a larger number of
unpaired s and P electrons. The Engel-Brewer
approach has enabled the extension of the Hume-
Bothery rules to transition-metal systems simply
by counting only the contributions of s and P elec-
trons, and at the same time it has explained the
stabilities of the bcc, hcp, and fcc structures of
the 33 elemental transition metals, the effects
of alloying in multicomponent phase diagrams, as
well as pressure effects on crystal-structure
stabilities, phenomena yet to be tackled by varia-
tional quantum. -mechanical approaches.

These conclusions on the crucial stmctm. a/ roles
played by the s and P coordinates should be con-
trasted with the contemporary quantum-mechanical
resonant tight-binding approaches suggested first
by Friedel" for elemental transition metals and
recently extended to compounds by Pettifor, "
Varma, "and others. These approaches emphasize
the exclusive role of d electrons in determining
cohesive prop exti es.

The plan of this paper is as follows: in Sec. II,
we introduce the pseudopotential concept and show
how it can be used in general to define atomic
parameters that correlate with crystal structures.
In Sec. III, we discuss the properties of the first-
principles atomic pseudopotentials within the den-
sity-functional theory of electronic structure. In
Sec. IV, we then show how thege atomic pseudo-

potentials can be used to define intrinsic core
radii that correlate with a large number of elec-
tronic and structural properties of crystals. These
radii are then used to systematize diagrammatical-
ly the stable crystal structure of 565 binary AJ3
compounds.

II. PSEUDOPOTENTIALS AND STRUCTURAL
SCALES

Although traditionally the inner core orbitals
and the outer valence orbitals are treated on an
equal footing in variational calculations of the
electronic structure of atoms, molecules, and
solids, it was recognized as early as 1935 that
a large number of bonding characteristics are
rather insensitive to the details of the core
states. "'2' This relative insensitivity is a man-
ifestation of the fact that the interaction energies
involved in chemical-bond formation (10 -10 eV),
banding in solids (1-25 eV), or scattering events
near the Fermi energy (10 '-10 ' eV) are often
much smaller than the energies associated with
the polarization or overlap of core states. Many
methods treating the quantum structure of bound
electrons, nucleons, and general fermions have
consequently omitted any reference to the core
states, variationally treating only "valence" states
[Huckel, complete neglect of differential overlap
(CNDO), tight-binding, Hubbard models, optical
potentials in nuclear physics, effective potentials
in Fermi-liquid theories, empirical valence po-
tentials in atomic physics, etc. j. Clearly, how-
ever, if no constraints are placed, such a varia-
tional treatment will result in an unphysical lower-
ing of the energy of the valence states into the
"empty" core ("variational collapse" ). Much of
the empirical parametrization characteristic of
such methods is implicitly directed to avoid such
a pathology. It was first recognized, however, by
Phillips and Kleinman" that the price for reducing
the orbital space to valence states alone can be
represented by an additional nonlocal potential
term (pseudopotential) in the Hamiltonian.

Although the pseudopotential concept has offered
great qualitative insight into the nature of bonding
states in polymers and solids (e.g. , Ref. 30), its
calculation in practical electronic-structure ap-
plication has generally been avoided. "" Instead,
it has been replaced by a local form with dispos-
able parameters adjusted to fit selected sets of
data (semiconductor band structures, Fermi sur-
face of metals, atomic term values, etc.). Since
the valence electronic energies near the Fermi.
level are determined (to within a constant) by
relatively low-momentum transfer electron-core
scattering events (~ q ~

= 2k~), it has been possible
in the past to successfully describe the one-elec-
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tron optical spectra and Fermi surface of many
solids assuming pseudopotentials that are trun-
cated to include only small momentum components
(i.e. , smoothly varying in the core region in con-
figuration space). The freedom offered by the
insensitivity of the electronic band-structure dis-
persion relation &,.(k) to the variations of the
psdueopotential in the core region has been
exploited to obtain empirical potentials converging
rapidly in momentum space and hence amenable
to electron-gas perturbative theories'4 and plane-
w'ave -based band -structure calculations. "~'

These soft-core empirical pseudopotentials have
produced the best fits to date for the observed
semiconductor band structures, "and their descen-
dants, the soft-core self-consistent pseudopo-
tentials, have yielded the most detailed informa-
tion on semiconductor surface states. " The in-
sensitivity of c&(k) to the high-momentum compo-
nents of the pseudopotential has prompted an
enormous amount of literature in w'hich different
forms for the potential have been suggested (empty
cores, square wells, Gaussian-shaped, etc. ) all
producing reasonable fits to the energy levels
near the Fermi energy. Since, how'ever, these
pseudopotentials were fitted predominantly to en-
ergy levels in atoms and solids (and were not con-
strained to produce physically desirable wave
functions) they often yielded systematic discrep-
ancies with experiment or all-electron calcula-
tions of the bonding charge density in molecules
and solids. "" Such discrepancies result from
the fact that higher-momentum components (e.g. ,
~q~ —Gkz in crystalline silicon), not included in
ener gy-level-fitted soft-core pseudopotentials,
are of importance in determining the directional
distribution of the bonding charge density. The
striking success of the empirical pseudopotential
is that it made it possible to reduce the informa-
tional content of the often complex electronic
spectra of semiconductors to a few (usually three
to five) nearly transferable elemental parameters
(empirical pseudopotential form factors). The
implied locality of the pseudopotential, as well
as its truncation to low-momentum components,
however, has limited its chemical content to re-
flect predominantly the low-energy electronic
excitation spectrum rather than explicit structural
and chemical regular ities.

Recently, Simons" and Simons and Bloch have
observed that there exists at least one class of
s true tulsa fly significant empir ical pseudopotentials
containing very-high-momentum components (i.e. ,

~
q

~

» 2k+, or hard-core pseudopotentials). The
general form of a screened pseudopotential is:

[We use a capital V(r) to denote solid-state po-
tentials, while v(w) will denote atomic or ionic
potentials. ] Here V'„"(r) is the bare pseudopoten-
tial acting on the lth angular momentum wave-
function component, and V„,[n(r)] is the Coulomb,
exchange, and correlation screening due to the
pseudocharge density n(r). For the simple case
of one-electron ions, chosen by Simons and Bloch,
the screening potential reduces to zero. The bare
atomic pseudopotential (),',"()) was then assumed
to take a simple hard-core form:

())( ) g())(/) g // gg (2)

where Z„ is the valence charge and the parameter
B, is adjusted such that the negative of the orbital
energies a„, obtained from the pseudopotential
equation:

[-2&„'+v'„",(r) ])I)„)(~) = & „,)I)„,(r )

match the observed ionization enei gies of one-
electron ions such as Be", C", 0", etc. These
hard-core pseudopotentials are characterized by
an orbital-dependent crossing point r', at which

v,",I(r', ) =0. These orbital radii then possess the
same periodic trends underlying the observed
single-electron ionization energies through the
Periodic Table. The remarkable feature of these
radii is that they form powerful structural indices,
capable of systematizing ihe various crystal phases
of the octet' 8' "non-transition-metal com-
pounds. " Such structural plots have been extended
by Machlin, Chow, and Phillips4' very success-
fully to some 45 nonoctet (non-transition-metal)
compounds.

The realization that these empirical orbital
radii are characteristic of the atomic cores, and
as such are approximately transferable to atoms
in various bonding situations, has led to the con-
struction of a number of new phenomenological
relations of the form G =f(r', ), correlating phys-
ical observables G in condensed Phases with the
orbital radii of the constituent free ions. Some
examples of 6 are the elemental metallic work
functions, the melting points of binary compounds,
and the Miedema coordinates treated by Chelikow-
sky and Phillips. " What has been realized is that
the characteristics of an isolated atomic core,
reflected in the spectroscopically determined l-
dependent turning points r', contain the fundamental
constructs describing structural regularities in
polyatomic systems. '" This ean be contrasted
with phenomenological electronegativity scales
that are based on observables pertaining to the
polyatomic systems themselves, such as the
thermochemical Pauling scale, the dielectric
Phillips-Van Vechten scale, and the Walsh scale.

Since the general atomic pseudopotentail v,",I (r)
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of Eq,. (1) can be reduced to a simple form with
v, =0 only for single-electron stripped ions, the
empirical Simons-Bloch orbital radii can only
be used for atoms for which str ipped-ion spectro-
scopic data exist. This excludes most transition
elements, which form a wealth of interesting inter-
metallic structures. Yet, even so, the extraction
of a bonding scale from data on ions that lack any
valence-valence interactions (e.g. , C" and 0",
representing chemical affinities of C and 0) may
distort the underlying chemical regularities. " In
addition, the restriction to single-electron species
means that the post-transition-series atoms (e.g. ,
Cu, Ag, Au or Zn, Cd, Hg) are treated as having
only one and two valence electrons, respectively,
much like the alkali and alkaline-earth elements,
respectively. "~'. However, the increase in melt-
ing points and heats of atomization and the de;
crease in nearest-neighbor distances in going
from group IIB to IB metals (e.g. , Zn-Cu, Cd
-Ag, and Hg -Au), as compared with the opposite
trend in going from group IIA to L4 (Ca -K,
Sr-Rb, and Ba-Cs), completely eliminates any
possibility of Cu, Ag, and Au having effectively
a single -bonding electron. Similar indications on
the extensive s -d and P-d hybridization are given
by the large bulk of photoemission data on Cu and
Ag halides. " In keeping with the single-valence-
electron restriction, one is also forced to define
the d-orbital coordinate of the post-transition
elements from the lowest unoccupied rather than
occupied d orbital (i.e. , 4d for Cu and Zn, 5d for
Ag and Cd). This may be reasonably faithful to
the chemical tendencies of post-transition ele-
ments with sufficiently deep occupied d orbitals
and sufficiently low unoccupied d orbitals (e.g. ,
Br, Te, I), but it is questionable for the elements
with occupied semicore d shells in the vicinity of
the upper valence band (e.g. , CdS and ZnS). These
pathologies can be corrected by empirically ad-
justing the valence charge Z„ in Eq. (2) for these
elements. " Finally, the simple pseudopotential
of Eq. (2) is not suitable for electronic-structure
studies, as indicated by Andreoni et al. ,"*"be-
cause the wave functions of Eqs. (2) and (3) are
severely distorted relative to true valence orbitals
by the unphysically long-range r ' tail. This has
been corrected by Andreoni et al. by replacing
the long-range 8,/r' term in Eq. (2) with an
A, e~'"/r' term, with the additional parameter
y, fixed to fit the orbital maxima. This leads to
a new set of renormalized orbital radii differing
considerably from the Simons-Bloch set.

One is hence faced with the situation that the
soft-core empirical pseudopotential", can be used
to successfully fit the low-energy electronic band
structure of solids, but it lacks the structurally

significant turning points (i.e. , v,«(x) =0 only at
r = ~); whereas the empirical Simons-Bloch" "
potentials do not yield a quantitatively satisfactory
description of the electronic structure but do yield
the correct structural regularities. The approach
that we have taken to remedy this situation is to
construct a pseudopotential theory from first
principles. The first-principles approach allows
for the regularities of energy levels and wave
function to be systematically built into the atomic
pseudopotentials, without appealing to any ex-
perimental data. Because no resort is made to
simple, single-electron models, transition ele-
ments can be treated as easily as other elements,
without neglecting the interactions between valence
electrons or assuming that the highest-occupied d
levels belong to a chemically passive core. Fur-
thermore, since the bare pseudopotential v' "(r)
and the screening v, [n(r)] are described in terms
of well-defined quantum -mechanical constructs
(such as Coulomb, exchange, and correlation
interactions, Pauli forces, and orthogonality
holes) both the failures and the successes of the
theory could be analyzed.

III. FIRST-PRINCIPLES DENSITY-FUNCTIONAL
PSEUDOPOTENTIALS

A. Properties of the density-functional pseudopotentials

The first-principles atomic pseudopotentials
discussed here are derived from the spin-density-
functional formalism. ' " They were first derived
by Topiol, Zunger, and Hatner""' for the first
row atoms and further extended by Zunger and
Zunger and Cohen. ' " Details of the method of
constructing these pseudopotentials, as well as ap-
plications, have been previously discussed. ""
Here we briefly summarize the results and es-
tablish the notation to be used below.

Qne starts with the all. -electron (ae) single-
particle equation for a polyatomic system in a
density-functional representation (in which core
and valence wave functions are treated on the
same footing). In this approach, the effective po-
tential V;;,(r) is given as a sum of the external po-
tential V,„,(r) (e.g. , the electron-nuclear attrac-
tion potential) and the interelectron screening
potential V [p, +p„]. The latter is a functional
of the core (c) and valence (v) charge density
p(r) =p, (r) +p„(r) and includes the interelectronic
Coulomb V„[p(r)], exchange V„[p(r)] and correla-
tion V [p(r)] potentials. "'" The eigenstates
[(,(r)] of the all-electron single-particle equation:

(-—,'&'+V, ,(r)+V [p (r) +p (r)]}g~(r) =e~g~(r) (4)

are normally constrained to be orthogonal (and
therefore have nodes) and form the basis for ex-
panding the self-consistent charge density
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p(r) =+Jg
~
|l'y(r)

~

In the pseudopotential representation, one seeks
to replace the external potential V„,(r) by a pseu-
dopotential V„(r,r') such that the lowest eigen-
states y&(r) have properties of valence, rather
than core wave functions. The pseudopotential
single-particle equation is hence:

-', v' + V (r, r') + Vt' [n(r)]}y,(r) =~p, (r), (6)

where the valence screening V," [n(r)] has the
same functional form as V [p(r)], except that
it is a functional of the (valence) pseudo-charge-
density n(r) =Z&(y~(r) ~'. Since no core states
appear below the valence states X&(r), one is free
to construct X&(r) as nodeless.

One cari either attempt to calculate the pseudo-
potential V„(r,r') directly for the molecule or
solid of interest (i.e. , orthogonalized plane-wave-
type pseudopotentials), or first to calculate it
for a convenient fragment (e.g. , atoms, ions) and
approximate V„(r,r') by suitable functions of such
transferable quantities v„tr, r'). The success of
the latter approach hinges on the degree of state
independence that can be built into the fragments
pseudopotential v (r, r'): an atomic pseudopoten-
tial is useful only to the extent that it continues
to produce chemically and physically accurate
energies and wave functions even when the atom
is placed in bonding environments (e.g. , mole-

cules, solids, surfaces) which differ considerably
from that characteristic of the species used to
construct the pseudopotential (e.g. , free atoms
or ions). The imposition of explicit physical con-
straints on the pseudo-wave-functions g&(r) leading
to an approximately energy-and state -independent
(and hence transferable) atomic pseud6potential
is central. to the present approach. """ No such
considerations were taken in constructing the
previous empirical or semiempir ical"' "
pseudopotentials.

The total pseudopotential V„(r,r') for the poly-
atomic system is constructed as a superposition
of atomic pseudopotentials v'"(r)P, (where the
spatial nonlocality is replaced by an angular mo-
mentum dependence through the projection oper-
ator P, )

V„(r,r') =Q v,',"(r -R„)P, (6)
Rtf

over atoms at sites H „. The superposition ap-
proximation in Eq. (6) as well as the construction
of v,',"(r) as approximately energy independent
are controlled approximations: They can be tested
and verified a Posteriori in the quantitative man-

.55 ~ 56

To construct v,',"(r) we specialize the all-elec-
tron (Eq. 4) and pseudopotential [Eq. (6)] single-
particle equations to atoms:

f- —2V'„—(Z, +Z„)/r+l(l+1)/2r'+v„[p, (r)+p„(x)]+v„[p,(x)+p„(r)]+v [p(r)+p„(x)])g„,(r)=c„,rJi„,(r) (7)

f ——,'&'„+v "(r)P, +l(l +1)/22 +v„[n(r)]+v„[n(r)]

+~ [~(~)l)X.((~)=~.,X.,(~), (8)

where v„, v„, and v denote atomic screening
potentials and V'„ is the radial Laplacian. We now
seek to solve Eqs. (7) and (8) for the unknown
pseudopotentials v'"(r), subject to a number of
physically motivated constraints. In contrast to
the empirical pseudopotential method, "v" (r) in
Eq. (8) is not determined by fitting the energies
6„7 to experiment, leaving the wave function X„7
to be implicitly and arbitrarily fixed by such a
process. Instead, we first construct physically
desirable pseudo-wave-functions X„, and then solve
for the pseudopotential v,',"(r) that will produce
these wave functions together with the theoretical-
ly correct orbital energies &„7 =e„7 from the single-
particle equation (8).

We first require that the pseudo-wave-function

X„,(r) be given as a linear combination of the
"true" all-electron core and valence orbitals of
Eq. (7):

- (9)
n'

I

Since the pseudo-wave-functions b„,(r)fare now
the lowest solutions to the (Hermitian) pseudo-
Hamiltonian [Eq. (8)], they will be nodeless for
each of the lowest angular symmetries. The co-
efficients {C'„'„].will be chosen below to satisfy
this condition. In a single-determinant represen-
tation, the mixing of rows and columns as given
in Eq. (9) leaves the energy invariant. We then
require' that the orbital energies &„7 of the pseudo-
potential problem equal the "true" valence orbital
energies z„, of Eq. (7). The first condition [Eq.
(9)] assures us that the pseudo-wave-functions are
contained in the same core-plus-valence orbital
space defined by the underlying density-functional
theory; the second (a„,= &„,) ensures that the spec-
tral properties derived from the pseudopotential
single-particle equation match those of the valence
electrons as described in the all-electron problem.

Without specifying at this stage tPe choice of
the unitary rotation coefficients (C„"„'.), Eqs. (7)-
(9) can be solved to obtain the atomic pseudopo-
tential v",,'(r) in terms of (C'„'„'.) and the known
quantities defining the all-electron atomic Eq. (7):
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Z& PZ,
v,'."(r) = l(rr(r) — )I+]-—'+v..[p,1+v, lp. l+v Ip, ])r(v, lp. +p„]-v,lp, l
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+Iv tp, +p„l-v Ip. l —v Ip.1]+Iv.,fp. l —v.,]v]I+ v. lp. ] —v„]v] + v Ip„]-v fv]),

where the "Pauli potentiairr U, (x) is given by

p„,c'„'„',0„,(~)

and the core, valence, and pseudocharge densi-
ties are given as

P.(&) =g ~ g (~)
~

'.

p.(r) =g-I p.",(r) I',

The atomic pseudopotential in Eq. (10) has a
simple physical interpretation. The "Pauli po-
tential" U, (r) is the only term in n ' (r) that de-
pends on the wave function it operates on (i.e. ,
"nonlocal"), whereas all other terms in Eq. (10)
are common to all angular momenta (i.e., "local" ).
For atomic valence orbitals that lack a matching
l component in the core, the all-electron valence
orbitals g"„,(x) are nodeless, hence X„,=g"„, and,
from Eq. (11), U, (x) =0 for such states. In these
eases, the pseudopotential is local and purely
attractive due to the dominance of the all-electron
term, -(Z, +Z„)/x. In all other cases, U, (x) is
positive and strongly repulsive, but confined to the
atomic-core region. U, (x) replaces the core-
valence orthogonality constraint and is a realiza-
tion in coordinate space of Pauli's exclusion prin-
ciple. Its precise form depends on the choice of
the mixing coefficients fC'„'„).j and is discussed
below. We see that the pseudopotential nonlocal-
ity, often neglected in the empirical pseudopo-
tential approach emerges naturally in this form-
ulation from the quantum shell structure of the
atom. Similarly, Phillips's pseudopotential ki-
netic-energy cancellation theorem" is simply
represented as a cancellation (or over-cancella-
tion) between the nonclassical repulsive Pauli
potential and the core-valence Coulomb attraction
-Z„/r [Eq. (10)].

The second term in Eq. (10) represents the
total screened potential set up by the core charge
density p, (r). It approaches -Z,/x at small dis-
tances and decays to zero exponentially at the
core radius (with a characteristic core screening
length) due to rapid screening of the core point
charge Z, by the core electrons. The third and
fourth terms in Eq. (10) represent the nonlinearity

l

of the exchange and correlation potentia1. s, respec-
tively, with respect to the interference of p, and

p„. They measure the core-valence interactions
in the system and are proportional to the pene-
trability of the core by the valence electrons.

The fifth term in Eq. (10) is the Coulomb ortho-
gonality hole potential. It has its origin in the
charge fluctuation &(x) =p„(r) —n(x) that results
from the removal of the nodes in the pseudo-wave-
functions [i.e. , the transformation in Eq. (9)].
The electrostatic Poisson potential set up by &(x)
is then given by the fifth term in Eq. (10). Finally,
the last two terms in Eq. (10) represent, respec-
tively, the exchange and correlation potentials
set up by this orthogonality hole charge density
&(~).

The form of the first-principles pseudopotential
in Eqs. (10) and (11) makes it easy to establish
contact with the successfully simplified early
empirical pseudopotentials. Hence, for example,
in the Abarenkov-Heine" model potential it was
implicitly assumed that a pseudopotential cancel-
lation between a repulsive Pauli force and an at-
tractive Coulomb potential -Z„/r exists, but in-
stead of calculating this cancellation, its net
result was assumed to take the form of a constant
v(„"(y) =A, for r smaller than some model radius
R, ( inside the core), with e,') )(x) = -Z„/r for
r & R,. Abarenkov and Heine's empirical constants
A, may be identified in the present formulation
with the volume integral of [U,(r) -Z„/r] from the
origin to R, (neglecting all but the first term in
Eq. 9). Similarly, Ashcroft" has suggested an

empir ical "empty-core" pseudopotential, postulat-
ing that the net result of the cancellation between
U, (r) and —Z„/r inside the core region is zero.
Indeed, for a sufficiently large core radius (i.e. ,
of the order of Pauling's ionic radius), such a
simple model well represents v(,"(r) in Eq. (10).

Up to this point, we have not yet specified the
form of the transformation coefficients in Eq. (9)
determining the precise relationship between the
pseudo- and true wave functions. Clearly, one
would like to constrain the pseudo-wave-function
in Eq. (9) to be normalized. In addition, the re-
laxation of the orthogonality constraint may be
exploited. to construct y„,(x) as nodeless for each
of the lowest angular states, permitting thereby
a convenient expansion of the pseudo-wave-func-
tions in spatially simple and smooth basis func-
tions. Even so, y„,(r) is underdetermined: There
are an infinite number of choices of (C'„"„.] leading
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to normalized and nodeless g„,(r). This is a
manifestation of the well-known pseudopotential
nonuniqueness. . The resolution of this nonunique-
ness is precisely the point at which one applies
ones physical intuition (and physical prejudices).
Note, however, that in the present approach, any
of the infinite and legitimate choices of(C'„'„'.)
permits a rigorous digression from the pseudo-
wave-function to the true valence wave function:
the choice of a linear form for y&(r) Eq. (9) allows
for v,',"(r) to be computed from an arbitrary set
(C'„'„'.] and for the resulting pseudopotential in

Eq. (10) to be used to greatly simplify the calcu-
lation of the electronic structure of arbitrary
molecules or solids [Eqs. (5) and (6)]. Vpon com-
pletion, one can simply recover the true wave
function through a core orthogonalization:

q, (r) =—
i~X, (r) — g,. i

y',.)q;. (r))l,
( r

(15)

given the known core states g',. (r). This property
is not shared by other pseudopotentials""'" which
are modifications of the density-functional pseudo-
potential scheme. "" The choice of the transfor-
mation {C„"„',] has, however, a direct bearing on
the transferability of the atomic pseudopotentials
from one system to another as well as on the
degree to which the true valence wave functions
can be reproduced without resort to core ortho-
gonalization.

Our choice 'of wave-function transformation co-
efficients" "" is based simply on maximizing
the similarity between the true and pseudo-orbitals
[within the form of Eq. (9)] with a minimum core
amplitude, subject to the constraints that y„,(r)
be normalized and nodeless. This simple choice
produces highly energy-independent, and thus
transferable, pseudopotentials. At the same time,
the imposed wave- function similarity leads to
pseudo-wave-functions that retain the full chemi-
cal information contained in the valence region of
the true wave functions. Details of the numerical
procedure used to obtain {C„"„',], as well as nu-
merical tests demonstrating the extremely low
energy dependence of the associated pseudo-
potentials, are given elsewhere. "~"

The general small-x expansion of the pseudo-
orbital can be written as:

limy„, (r) =A,r""+A,r"""+A 0"". (14)
Q

The choice of g) 2 leads to a minimum core-
amplitude pseudo-wave -function with its attendant
maximum similarity to the true valence wave func-
tion. Inserting (14) into (11) and (10) leads, for
any g& 2, to

limv (r) =~-—+( j) @ +v
~Q f J.

Hence, the Simons-Bloch~' "empirical pseudo-
potential [Eq. (2)] is recovered as the small-r
limit of the first-principles pseudopotential. We
hence see that the imposition of a maximum wave-
function similarity condition within the orbital sub-
space spanned in Eq. (9) leads to a repulsive and
short- ranged Pauli potential U, (r) C.ombining
such a positive U, (r) with the negative core-attrac-
tion term Z„/-r in Eq. (10) leads necessarily to
characteristic crossing point v,',"(r', ) =0 at r =r',
On the other hand, the choice g =0 leads to a soft-
core pseudopotential [lim„„,v,',"(r) = const]. The
associated pseudo-wave-function is now finite
at the origin, leading necessarily to a reduced
similarity between the true and pseudo-wave-
functions in the chemically relevant valence re-
gion. In general, no crossing point r', occur at
this limit. Our choice of the wave-function trans-
formation in Eq. (9) produces, therefore, unique .

pseudopotentials by going to the extreme limit of
wave-function similarity that is possible within
the underlying density-functional orbital space.

Other possibilities for choosing pseudo-wave-
functions exist and are discussed else-
where. """" These procedures involve various
ways of constructing pseudo-wave-functions includ-
ing components lying outside the density-functional
orbital sPace [unlike Eq. (9)] and do not maintain
physically transparent analytical forms such as
in Eqs. (10) and (ll). Hence, to distinguish them
from the present density-functional pseudopoten-
tials, we refer to these as "trans-density-func-
tional" (TDF) pseudopotentials. " We restrict
ourselves in what follows to the conceptually
simpler density-functional pseudopotentials.

The approach described above for constructing
orbital-dependent pseudopotentials can easily be
extended to spin- and orbital-dependent poten-
tials. " This generalization is simple, and we will
not describe the details here.

Figure 1 depicts various components of the 1=0
atomic pseudopotential in Eq. (10) for Sb. The
curve labeled (1) is the Pauli term U, (r), the
curve labeled (2) shows the Coulomb attraction
-Zgr, and curve (3) represents screening (terms
2-6 in Eq. 10). Finally, curve (4) shows the
total pseudopotential. First-pr inciples atomic
pseudopotentials were generated for 70 atoms
with 2 &Z & 57 and 72 &Z &86 (i.e. , the first five
rows).

A notable feature of these potentials is the oc-
currence of a crossing point v,',"(r', ) =0 at r =r',
From Eqs. (10) and (11), it is seen that, physi-
cally, this point is where the repulsive Pauli
potential is balanced by the Coulomb attraction

Z„/r, renormal-ized by the screened core poten-
tial, exchange-correlation nonlinearity, and the
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FIG. 1. Components of the atomic pseudopotential
v~', ~(x) [Eq. (10)] for l=0 of the Sb atom: (1) Pauli po-
tential U)(r), (2) the Coulomb attraction-Z„/r, (3) core
screening, and (4) the total pseudopotential. pp and p
denote the points of crossing and minimum, respectively.

Coulomb and exchange-correlation orthogonality
hole potentials.

It seems somewhat puzzling at first sight that
pseudopotentials of free -electron-like metals
such as Na, Al, and K may have large momentum
components or even a hard core, because the
nearly-free-electron (NFE) model seems to have
worked so well for these materials. However, the
successes of the NFE model may have been over-
stated, in view of the fact that wave-function-
reLated ProPerties of the free-electrom metals,
such as the shape of the optical conductivity, "
the metallic ground-state charge density and form
factors" (compare, however, with the nonlocal
pseudopotential calculations of Refs. 68 and 69),
as well as the properties of impurities in metals, "
are poorly reproduced by local and weak pseudo-
potentials. Moreover, the occurrence of rather
complex crystal structures involving "simple"
free-electron atoms (semimetals such as the
B32 structure of LiAl, Laves phase materials
such is K,Cs, the existence of the compound
NaK, but not NaK or NaK„etc. ), as weQ as the
existence of stable multiple valencies of these
systems (e.g. , AlF vs AlF„etc.) cannot be under-
stood in terms of local NFE pseudopotentials.
Hence, although such weak and NFE pseudopoten-
tials had to be assumed for many elements (in-
cluding even groups IIIA -VIA atoms) for the very
popular low-order perturbation theories to be
valid, the underlying assumption —that the com-
plex chemistry of the related compounds could
be understood in terms of weak and isotropic
perturbations of a homogeneous electron gas—

seems naive.
Using the calculated atomic pseudopotentials

of Eqs. (10)-(12), we now define the crossing
points using the ground-state screened atomic
pseudopotentials v,",,'(r):

v„,(r) = v,„(r)+-- —,—+v„[n]+v„[n]+v [n]
(() (() I(t + I)

(16)

( t)(

Here v'„",(r) is the total effective potential ex-
perienced in a ground-state pseudoatom by elec-
trons with angular momentum /. These form the
structural indices {r(), which we use in connection
with predicting the stable crystal structure of
compounds. Table I gives the {r,j values of the
VO elements for which the density-functional
pseudopotential equations have been solved. We
have not included the heavier elements since the
present pseudopotential theory is nonrelativistic.
In what follows, we will hence not discuss the
structural stability of lanthanide and actinide
coDlpounds.

In developing the density-functional pseudopo-
tentials, we have tacitly assumed a specific parti-
tioning of.the atomic orbitals into core and va-
lence. In the present theory, core orbitals are
those appearing as closed-shell states in the rare-
gas atom of the preceding raw in the Periodic
Table. Note, however, that although w'e may
understand the low-energy electronic excitation
spectra of a compound such as Znse by assuming
that the Zn 3d orbitals belong to a passive core,
such an assumption may be invalid in intermetallic
compounds, where the Zn Sd orbitals can be in
near resonance with the d orbitals of another
element. Given the fact that any such delineation
into core and valence is merely based on an arbi-
trary assumption on the passivity of certain or-
bitals to chemical interactions of interest, one
may ask whether structurally meaningful orbital
radii can be extracted froxn a pseduopotential
scheme.

In fact, the choice of the orbital radii from the
screened pseudopotential [Eq. (16)],rather than
from the bare pseudopotential v,',"(r) in Eq. (10)
(e.g. , Refs. 39, 40, 48, and 49), is based precisely
on an attempt to avoid such a nonuniqueness. Al-
though the bare pseudopotential of Eq. (10) has
the form

v'"(r) =U((r) +f(Z„Z„,p„p„,n),
the screened pseudopotentia, l can be written as

'V( )=rU, ( )+gr(Z, t .+(o„) (18)

Note that whereas U((r) [Eq. (11)]depends only
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TABLE I. Classical crossing points of the self-consistently screened nonlocal atomic pseudopotentials (including the
centrifugal term), in a.u. The core shell is defined in each case as the rare-gas configuration of the preceding rovy.
The Kohn and Sham exchange is used.

Atom yd Atom f'd

Li
Be
B
C
N

0
p
Ne

Na

Mg
Al
Si
P
S
Cl
Ar

K
Ca
Sc
Tx
V
Cr
Mn
Fe
Co
Ni
Cu
ZQ

Ga
Ge
As
Se
Br
Kr

0.985
0.64
0.48
0.39
0.33
0.285
0.25
0.22

1.10
0.90
0.77
0.68
0.60
0.54
0.50
0.46

1.54
1.32
1.22
1.15
1.09
1.07
0.99
0.95
0.92
0.96
0.88
0.82
0.76
0.72
0.67
0.615
0.58
0.56

0.625
0.44
0.315
0.25
0.21
0.18
0.155
0.14

1.55
113
0.905
0.74
0.64
0.56
0.51
0.46

2.15
1.68
1.53
1.43
1.34
1.37
1.23
1.16
1,10
1.22
1.16
1.06
0.935
0.84
0.745
0.67
0.62
0.60

2.43

0.37
0.34
0.31
0.28
0.26
0.25
0.23
0.22
0.21
0.195
0.185
0.175
0.17
0.16
0.155
0.15
0.143
0.138

0.71

Sr
Y
Zr
Nb

Mo
Tc
Bu
Rh
Pd
Ag
Cd
In
Sn
Sb
Te
I
Xe

Cs
Ba
La
Hf
Ta
W

Re
Os
Ir
Pt
Au

Hg
Tl
Pb
Bi
Po
At
Rn

1.42
1.32
1.265
1.23
1.22
1.16
1.145
1.11
1.08
1.045
0.985
0.94
0.88
0.83
0.79
0.755
0.75

1.71
1.515
1.375
1.30
1.25
1.22
1,19
1.17
1.16
1.24
1.21
1.07
1.015
0.96
0.92
0.88
0.85
0.84

1.79
1.62
1.56
1.53
1.50
1.49
1,46
1.41
1~37
1.33
1.23
1.11
1.00
0.935
0.88
0.83
0.81

2.60
1.887
1.705
1.61
1.54
1.515
1.49
1.48
1.468
1.46

1.34
1.22
1.13
1.077
1.02
0.98
0.94

0.633
0.58
0.54
0.51
0.49
0.455
0.45
0.42
0.40
0.385
0.37
0.36
0.345
0.335
0.325
0.315
0.305

0.94
0.874
0.63
0.605
0.59
0.565
0.543
0.526
0.51
0.488
0.475
0.463
0.45
0.438
0.425
0.475
0.405

on orbitals with angular momentum l, the valence
pseudo-charge-density n(x) [Eg. (12)] depends on
all orbitals that are assigned as valence states.
Consequently, for example, if the Zn 3d orbitals
are assumed to be a part of the core, the bare

pseudopotentiaf v,',"(r) for s and p electrons is dif-
ferent than if the d electrons were assigned to the
valence. In contrast, it follows from Eq. (18) that
the screened pseudopotentiaf v'„",(r) for I =0, I is
invariant under such a change in the assignment
of the d electrons. Our definition of the structural
indices r, is therefore independent of the assign-
ment of orbitals g„',,(r) from other angular shells
as core or valence. Also note that the definition
of orbital radii from the screened pseudopotentials
of Eq. (16) permits a direct inclusion of electronic
exchange and correlation effects in the structural
coordinates r, (see Ref. VI), whereas the semi-

classical electron concentration-factor' is rep-
resented simply by Z„.

8. Simple universal form the density-functional
pseudopotentials

The idea of atomic radii is not new in pseudo-
potential theory (see Sec. II). The basic thrust of
the pseudopotential concept is to transform the
chemical picture of the existence of an orbitgl
subspace of nearly chemically inert core states
into a delineation either in configuration sPace or
in nzonzenturn spgce of a core region of the poten-
tial (with its attendant cancellation effects between
orthogonality repulsion and Coulomb attraction)
and a valence region (with its weaker effective po-
tential). What is new in the present approach is
that whereas in the empirical pseudopotential
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methods the radii were imposed extraneously,
either explicitly~'6" ' ' ' or implicitly, "'"the
present theory provides them as a natural finger-
print of the internal quantum structure of the free
atom. In the empirical approa, ch, the radii are in
turn transferred from various sources (Pauling
ionic radii, fitting energy eigenvalues to atomic
term values, optical ref lectivity of semiconductors,
or the Fermi surface of metals, etc. ), such that
although a desired fit to selected experimental ob-
servables is a.chieved, the underlying electronic
and structural regularities may be obscured by
fitting to different physical properties or by pos-
tulating certain arbitrary analytic forms for
v "'(r).

Given that the analytic form of the pseudopoten-
tial in the present approach is not assumed but
rather emerges as a consequence of requiring a
maximum similarity between the all-electron and
psdueo-wave-functions in the tail region, it how-
ever is possible to deduce g posts'ou a universal
analytic form through a fitting procedure. Such a
fit can be done in two different ways: either em-
phasizing a high numerical accuracy for the fit
(and hence using rather complicated or many fit-
ting functions) or by using a physically transpar-
ent fitting function, sacrificing to some extent the
numerical accuracy but obtaining the correct xeI, -
ulgxities of the pseudopotentials. This has been
attempted by Lam et al. '4 using the simple form:

v i)(r) ~g-c2, r ~e-c3rC Z Z
(19)

The eoeffieients (C„, C», and C,j are tabulated
by Lam et gl. Although more complicated forms
than Eq. (19) have also been used, "Eq. (19) re-
veals a very important characteristic of the density
functional pseudopotentials: To within a reason-
able approximation, the constants Cii C2i and

C, are linear functions of the atomic number, i.e. ,

C» =a, + b,Z, C» = c,+d,Z, C, = e +fZ . (20)

This constitutes a signif icant reduction in the
number of degrees of freedom required to specify
the potential and reveals the regularities of the
periodic Table through the coordinates (Z„Z„).
This can be contrasted with the empirical pseudo-
potential approach in which such regularities are
often obscured by fitting certain atomic pseudo-
potentials to optical data, "whereas others are fit
to metallic Fermi-surface data and the resistivity
of metals" or to atomic term values. ,

""'"
The existence of a simple linear scaling relation-

ship in Eqs. (19) and (20) establishes a mapping of
Mendeleyev's classical dual coordinates Z, and
g„characterizing the digital structure of the per-
iodic table, into a more refined quantum-mechan-

ical coordinate system, r,(Z„Z„), r (Z„Z„), and

r~(Z„Z„). Given the fact that Mendeleyev's dual
coordinates (Z„Z„)are already suggestive of
broad structural trends (e.g. , the AB compounds
with Z„"=3, Z~=5 tend to form zinc-blende struc-
tures for large Z,"'~ values, while compounds with
g„"=1, g~ = 7 tends to form rocksalt structures,
etc.), it is only reasonable to expect that with
their present resolution into anisotxoPic orbital
components, far more sensitive structural coor-
dinates can be achieved.

The density- functional atomic pseudopotentials
have been previously used for self-consistent
electronic- structure calculations. These include
applications to diatomic molecules [0, (Ref. 77),
Si,, (Ref. 78)], tetrahedrally bonded semiconduc-
tors such as Si (Refs. 58 and 79), Ge (Ref. 58),
and GaAs (Ref. 80), elemental transition-metal
solids Mo (Refs. 81 and 82) and W (Ref. 82), the
relaxed GaAs (110) surface (Ref. 80), as well as
to the prediction of the cohesive energies, bulk
modulii and equilibrium lattice constant of Si (Ref.
83), Mo, and W (Ref. 82). Very good agreement is
obtained with the available experimental data per-
taining to ground- state properties.

IV. TRENDS IN ORBITAL RADII

A. Chemical regularities

We have argued that the classical turning points
x, of the screened density-functional ztomic
pseudopotentials form a useful elemental distance
scale for solids. One may then ask if indeed such
atomic quantities retain their significance in the
solid state. To answer this, we have performed
a self-consistent band-structure calculation for
bcc tungsten using our atomic pseudopotentials. .

This is done by assuming that the crystalline
pseudopotential V"'(r) is a superposition of the
atomic pseudopotentials v,',"(r) [Eq. (6)], but the
screening V," [n] is calculated from the self-con-
sistent Bloch wave functions of the solid" (rather
than from atomic orbitals). The resulting band

structure, Fermi surface, and optical spectra are
in very good agreement with previously published
results. One can now use the self-consistent crys-
talline charge density n(r), calculate the Coulomb,
exchange, and correlation screening in the solid,
and extract from that the screened solid-state
pseudopotentials V,",~&(r) [Eq. (1)] and their classi-
cal turning points. Obviously, such a solid-state
screened potential has a different form in the dif-
ferent crystalline directions [h, k, l], resulting in
spatially anisotropic orbital radii r, [k, k, l j. Fig-
ure 2 shows the crystalline tungsten pseudopoten-
tial (dashed lines) as well as the three components
of the screening (evaluated with respect to the
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Fermi energy~ xn e so,th solid. Although the screened
otentials show a pronounced directionalpseudopo en ia s ~

ii l in in the corecharacter, the solid-state radii, lying ~n e
region of the a oms, st show only a small directional
anisotropy: x0 =. . . 1r [lllj = 1.279 +0.002 a, .u. , ro[001

1 0 2 6 0 ~ ~ P 0 ~ ' e ~. 14 0 002 a.u. and x [110]=1.256+0.0 a.u. ,
d ith the isotropic atomic value x0=

a.u. and the average crystalline value of 1.2 a.u.
ith res ectThe near invariance of these radii wi resp

to the chemical environment should bbe contrasted
with the pronounced dependence of ththe classical
crystallographic radii" on chemical factors (co-
ordination number, valency, p's in state, etc.).

Inspection o eof the atomic pseudopotentials imme-
diate y revel mls some clear regularities. -This may
be appreciated from Fig. , w3 which shows the
radius x, 'at w xch' h the l =0 pseudopotential has
its minimum, p ol tted against the depth of the

W . The column structure of the
Periodic Table is immediately apparen .
upper left corner of the figure, we see elements

low and extended pseudopotential; these elements
are indeed the least electronegative in the first
five rows of the Periodic Table. In the lower righ
corner, we find elements such as F and Q, which
are characterized by very deep and localized
pseudopoten ia s;t l . these are indeed the most elec-
tronegative elements. C lea y,rl as the electro-

tivit is a measure of the power of an atom tonega ivy y i
nt and atgain ex ra et electrons from its environmen

the same time keep its own electrons, such a pro-
pensity is re ec e infl t d the potential-well structure

I ntrast with the thermochemical or
dielectric electronegativity scales, however, e
present orbital radii define an gnisotropi c (or i-
dependent) electronegativity scale.

%e see in F~g.i . 3 that the first-row elements are
ents thehat separated from the other elements, esomew se

mi ht haveformer having deeper potentials than mug
been expecte rom ed f xtrapolating the data for other
rows. ls pTh henomenon, resulting from a weak
pseudopo en ia it t' 1 kinetic-energy cancellation for
first-row elements, is also clearly reflected in
the thermochemical stability of the corresponding

ounds. As we move from the right to the. leftcompoun s. s w

i . 3 that theof the Periodic Table, one sees in Fig. a
n can be well.elements belonging to a given column ca

characterized by their potential radii alone, the
potential depth being nearly constant. Thzs seems
o be the basis for the success of the empty-core

pseu opo en id t ntials" postulated for simple meta1. s, in
which v x xs assumassumed to be zero within a sp ere
of radius R„. n isIn this approach only the variation
in B,„within a column in the Periodic Table was

and structural data-for the corresponding me-
tals. jn fact one finds that these empiricay
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FIG. 4. Correlation between Ashcroft's empty-core
pseudopotential radius and the p-orbital radius of the
present density-functional screened pseudopotential
(Table I).

empty-core radii used to fit resistivity data may
be identified, within a linear scale factor, with
the y screened pseudopotential coordinate (Fig.
4). Whereas the alkaii elements are characterized
predominantly by a single coordinate (Fig. 3), in
line with their free-electron properties associated
with a shallow pseudopotential, the elements to
their right are characterized by a dual-coordinate
system. The regularities in these dual coordinates
also reQect well-known chemical trends: For ex-
ample, the tendency towards metalization in the
C —Si -Ge- Sn —and Pb series is represented by
the increased delocalization and reduced depth in
their pseudopotentials, etc.

Having discussed the periodic trends exhibited
by the atomic pseudopotentials, we now turn to
their significance in the establishment of elemen-
tary distance and energy scales, which are quan-
tum-mechanical extensions of similar semiclas-
sical scales discussed in the Introduction.

Figures 5 and 6 display the multiplet-average
experimental ionization energy E, of the atoms, "
plotted against the reciprocal orbital radius x,'.
For each group of elements, we show two lines:
E, vs r,' and E~ vs x~'. The striking result is that
the theoretical x,' is seen to form an accurate
measure of the experimental orbital energies and
hence can be used as an elementary orbital-de-
pendent energy scale, much like Mulliken's electro-
negativity. Indeed, since x,' is a measure of the
scattering pow er of a sc reened ps eudopotential
core towards electrons with angular momentum /,
it naturally forms an electronegativity scale. There
is an interesting relation between this picture and
Slater's concept of orbital electronegativity within
the density-functional formalism. " In his ap-
proach, the spin-orbital electronegativity X,. is
defined as the orbital energy &,. of the density-
functional Hamiltonian, which in turn equals the
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FIG. 5. Correlation between the observed lth orbital
multiplet-averaged ionization energies E& and the re-
ciprocal orbital radius g, (Table I) for the polyvalent
elements.

derivative of the total energy E with respect to
the ith orbital occupation number: X,. = c,. = BE/Bn,
In the limit where E is a quadratic function of n, ,
this orbital electronegativity reduces to Mulliken's
form. This definition is based on the notion that a
chemical reaction takes place when electrons will
flow from the highest occupited orbitals of a reac-
tant to the lowest unoccupied orbitals with which a
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FIG. 6. Correlation between the ground-state (E~) and
excited-state (E&) orbital ionization energies of the alkali
atoms and the corresponding reciprocal orbital radius

(Table I).
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FIG. 7. Radial z-type all-electron wave functions for V and Nb. x ~ denotes the position of the outer orbital maxima,
is the screened pseudopotential radius, and d~ is the average node position. Note that y~ is pinned inwards of the

last node and outwards of d~.

finite overlap occurs. Since the present x,' coor-
dinate scales approximately with the orbital energy
&„ the former coordinate is a realization of
Slater's electronegativity in a pseudopotential re-
presentation.

The orbital radii r, also form an interesting
distance scale." Consider an all-electron valence
atomic wave function such as the 4s and 5s orbitals
of V and Nb, respectively, depicted in Fig. 7.
These wave functions have their outer maxima at
the points denoted by z and have a number of
nodes inwards to y . An algebraic average taken

for all node positions in each wave function shows
that these average positions (denoted by d, ) are
pinned at a certain distance from the pseudopoten-
tial orbital radius x, . Figure 8 shows the average
node position d, of the outer all-electron s-type
valence orbital plotted against x„and Fig. 9 shows
similar results for d orbitals (only the first and
last element of each row are denoted by the chemi-
cal symbol). We find that the orbital radius r,
scales linearly with the average node position,
where the row-dependent scale factor increases
monotonically with the position of the period in the
table of elements (e.g. , the scale equals 1.0, 1.5,
2.0, 2.3, and 2.7 for periods 1-5, respectively).
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FIG. 8. Correlation between the average node position
in the valence all-electron g wave function and the
screened pseudopotential radius y, (Table I). The first
and last atom of each row are denoted by chemical sym-
bols.
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FIG. 9. Correlation between the average node position
in the valence all-electron d wave function and the
screened pseudopotential radius ~„(Table I) for the
4d elements.
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FIG. 10. Relation between Pauling's tetrahedral radius
and the s-orbital radius of the screened pseudopotential
(Table I).

FIG. 12. Correlation between Pauling's univalent radii
R„and the total s -p screened pseudopotential radius
8,= r,+ x&. Only the first and last elements in each row
are denoted by the chemical symbol. Note the nonmono-
tonic break in p„and p, occurring at the end of the Bd
transition series.

It is seen that the orbital radii x, form, therefore,
an intrinsic length scale in that they carry over
from the true wave functions the information on
the average node position. Hence, the dual coor-
dinates (x„x,'j satisfy the semiclassical ideas
underlying many successful structural factors' '
in forming elementary energy and length scales.

An additional intriguing feature of these orbital
radii is their simple correlation with pauling's
tetrahedral radii. ' As seen in Fig. 10, the tetra-
hedral radii can be identified with the x, coordin-
ate to within a row-dependent scale factor.

While the individual y, and z~ radii measure the
effective extent of the quantum cores of s and p
symmetry, the sum ROA=xsA+~pA provides a mea-
sure of the total size of the effective core of atom
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1'IG. 11. Relation between Pauling's univalent radii
and the total s-p screened pseudopotential radius g
= x&+ xs. Note that this p scale separates the univalent
radii into a group of predominantly s-bonding elements
(full circles) and s-p bonding elements (full triangles).

Figure 11 depicts RA versus Pauling's unival-
ent radii for the first three periods of the table of
elements, whereas Fig. 12 shows their explicit
correlation. A similar correlation exists with
Gordy's covalent radius. " R,"closely follows the
regularities of the univalent radii, including their
discontinuity at the end of the transition elements.
Examination of Fig. 11 reveals that the present
R,A coordinate provides a natural separation of
pauling's univalent radii into those that pertain to
atoms sustaining s-p covalently bonded compounds
and those in which the s electrons largely dominate
the structural properties. It is remarkable that
the orbital radii derived from a pseudopotential
formulation of gtomic physics provide such a close
reproduction of the length scale derived experimen-
tally from solid-state physics (e.g. , the empty-core
radii in Fig. 4, and Pauling's tetrahedral and uni-
valent radii in Fig. 10 and Figs. 11 and 12, re-
spectively).

We have concentrated in this section on revealing
the most significant correlations between the or-
bital radii and some transferable (rather than
compourid-dependent) semiclassical coordinates.
We will not describe correlations with compound-
dependent physical properties (e.g. , melting points,
deviations from ideal cia ratio in wurtzite struc-
tures, elastic constants, etc. ) not only because
this may be too excessive, but also because we
believe that many more such interesting correla-
tions are likely to be discovered in the future.
Such correlations between atomic fx,}values and
physical properties GA"~, GA~, etc. , may not only
serve to systematize those properties but could
also point to the underlying dependencies between
the seemingly unrelated physical observables
GA~) GAa~ etc.h)
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B. Screening length and orbital radii

One can view the quantity x,' as being an orbital-
dependent screening constant pertinent to the
scattering of valence electrons from an effective
core. For the nontransition elements, one finds
(cf. Fig. 13), as expected, that r, ' falls off mono-
tonically with decreasing valence charge Z„, re-
flecting a more effective screening. However, for
the 3d, 4d, and 5d transition series (Fig. 14), one
finds two distinct behaviors: Although x~' is a
simple, monotonic function, both z,' and r&' show
a break at the point where the d shell is filled.
This is intimately related to a similar trend in the
orbital shielding constants Z*, calculated by Cle-
menti and Hoetti" as a rigorous extension of Sla-
ter's screening rules. As seen in Fig. 15, the
reciprocal screening lengths (Z,*) ' for the non-
transition elements follow a regular monotonic
trend, but those from the 3d transition series
(Fig. 16) show a characteristic break around
Cu-Zn, much like the corresponding reciprocal
radll t )

This dual behavior of x, ' separates the predom-
inantly d-screening domain of the transition el.e-
ments from the s-p screening domain of the post-
transition elements. Note that r, ' and Z*, show
uniquely this dual behavior, whereas most chemical
and physical quantities are simple monotonic func-
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FIG. 14. Regularities in the orbital electronegativity
parameters y", (Table I) for the 3d, 4d, and 5d transition
series. Note the linearity of the y& scale compared with
the br~ak in the r, and r& scales.
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tions of the atomic position in these rows. It is
interesting to note that such effects are clearly
manifested by s and p coordinates rather than by
the d coordinate. This has a central role in the
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two rows.
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FIG. 15. The regularities in the reciprocal s-orbital
shielding constants (Ref. 88) (Z~) for the nontransition
elements, compared with the screened pseudopotential
radii y'~.
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structural significance of the s-p coordinates even
for compounds containing transition elements.

C. Comparison with other orbital radii

Figure 17 compares the empirical stripped-ion
radii of Simons and Bloch (SB}with the present
theoretical values of the density-functional orbital
radii for the 41 nontransition elements calculated
by SB. The latter set has recently been corrected

I I i I -I I I I I I I I

3.0 —
o e=

for the post-transition elements4' relative to the
set used by Chelikowsky and Phillips ' and Mschlin,
Chow, and Phillips. ~ Figure 1V includes the cor-
rected values (e.g. , the 1=0 crossing point radii
for Cu, Ag, and Au are 0.38, 0.44, and 0.41 a.u. ,
instead of 0.21, 0.22, and 0.13 a.u. , respective-
ly~'4'}. These large corrections change quantita-
tively some of the results of these previous au-
thors in analyzing the nonoctet crystal structures,
regu, larities of melting temperatures, as well as
the decomposition of Miedema's heat-of-formula-
tion model into elemental orbital radii.

Figure 18 compares the recent orbital radii
developed by Andreoni, Baldereschi, Biemont,
and Phillips (ABBP; Refs. 48 and 49}with the
present orbital radii, for the 27 nontransition ele-
ments calculated by ABBP. The ABBP radii are
obtained from a two-parameter fit of both the
Hartree-Fock stripped-ion ortibal energies as
well as the peak position of the orbital wave func-
tions. The values for the eight 3d transition ele-
ments given by ABBP are not included in Fig. 18
since, as indicated by these authors, and as we
confirm, they are not as reliable.

It can be seen that although the empirical SB
radii correlate overall with the present radii, the
scatter is fairly large. In particular, the SB
scheme predicts y, «x~ for the first-row elements,
whereas the present and the ABBP scheme, which
attempt to reproduce both energies and wave func-
tions, show x, &r~. The ABBP radii correlate well
with the present radii" for the 27 nontransition
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FIG. 17. Correlation between the Simons-Bloch
empirical orbital radii rP and the present screened
pseudopotential density-functional radii P& (Table I)
for the 4l nontransition elements given by Simons and
Bloch. The L = 1 coordinates of the first-row elements
and the &

= 0 coordinate of Au showing the largest spread
are denoted by their chemical symbol.

pp I I I I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1A 1.6 1.8 2.0 2.2 2.4 2.6

r, " ta.u. j

FIG. 18. Correlation between the Andreoni, Balder=
eschi, Biemont, and Phillips (Ref. 48) orbital radii

and the present screened pseudopotential density-
functional radii y&

F (Table I) for the 27 nontransition
elements given by ABBP.
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elements. Other plots (e.g. , correlation of
r-~

~

or ~r,"+x~
~

between the various schemes)
lead to similar conclusions.

V. APPLICATIONS TO PREDICTION OF CRYSTAL
STRUCTURE OF 565 BINARY COMPOUNDS

A. Structural plots

The orbital radii (y,) derived here can be applied
to systematize the stable crystal structure of corn-

pounds in the same way as discussed by St. John
and Bloch, ' Machlin et al. ,~ and Zunger and
Cohen. " Having, however, the orbital radii of
all atoms belonging to the first five rows in the
Periodic Table, the present theory can be applied
to a far larger data base of crystals (565) than has
been attempted previously (50-80 compounds).

Our first step was to compile a list of binary A.B
compounds whose atoms belong to the first five
rows of the Periodic Table. We were interested

TABLE II. AB crystal structures used in the structural plots. When two entries appear
for the number of compounds, the first indicates the number of suboctet compounds and the
second denotes the number of nontransition element superoctet compounds.

Stncktu rb eri chte
or Pear son symbols

Space
group Unit cell Prototype

Number of
compounds

B1
B2

. B3

a4

Em3m
Pm3m
E43m
P63mc
Ed3m

Octet

cubic
cubic
cubic
hexagonal
cubic

NaC1
CsCl
ZnS
ZnO
diamond

65

29
11
4

Total

B1
B2
B8g
B10
B11
B16
B19
B20
B27
B31
B32
B33
B35
B37
Ba
cp64
j'zP24

L10
m C24
mC32
mP16
mP32
oC16
oC16
oC48
oI8
oP1 6
tI8
tI32
tI32
tI64

Fm3m
Pm3m
P63/mme
I4/nmm
P4/nmm
Pnma
Pmma
P2(3
Pnma
Pnma
Fd3m
Cmcm
P6/mmm
I4/mcm
P6m2
P43n
P63/mme
P4/mmm
C2/m
C2/c
P3(/c
P2( /n
Cmcm
Cmca
Cmc2g
Immm
P2&2&2&

r4/mmm
I4) /a
I4/mcm
I4&/acd

Nonoctet

cubic
cubic
hexagonal
tetragonal
tetragonal
orthorhombic
orthorhombic
cubic
orthorhombic
orthorhombic
cubic
orthorhombic
hexagonal
tetragonal
hexagonal
cubic
hexagonal
tetragonal
mono clinic
mono clinic
mono clinic
mono clinic
orthorhombic
orthorhombic
orthorhombic
orthorhombic
orthorhombic
tetragonal
tetragonal
tetragonal
tetragonal

NaC1
CsCl
NiAs
PbO
CuTi
GeS
CuCd
FeSi
FeB
MnP
NaTl
CrB
CoSn
SeTl
MoP
KGe
LiO
GuAu
AsGe
NaSi
AsLi
NS

Nang
KO
SiP
HbO
NaP
HgC1
LiGe
TlTe
NaPb

33+8
122+ 2
62+ 3
0+2

7
0+7

11
17
16
30

7
41

3
0+3

6
3

27
0+4

1

0+5
1
1

0+1
4
6

0+3
1

0+1
7

453
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R"s-
~(

"rr"+) —(re+re) ~,

R '= (r,"-r"
~

+ ~r'- r'~ . (21)

Here, R" is a measure of the difference between
the total effective core radii of atoms 4 and B
(i.e. , size mismatch), whereas R,"s measures the
sum of the orbital nonlocality of the s and p elec-
trons on each site. Using the definition (Eq. 21)
and the values of the orbital radii given in Table I,
we construct R," vs R," maps for the binary corn™

in the most stable crystal form of each compound
and in a structure that appears in the phase dia-
gram at (or close to) a 50 at. %-50 at. % composi-
tion. We started the compilation by reviewing
standard tables, """as well. as a number of
basic papers (e.g. , Befs. 96—99), which give use-
ful tables for particular structures. Whenever we
have identified in this literature either a conflict
in, assigning a crystal structure or expressions of
doubt as to the identification of the structure, oc-
currence of other structures at somewhat different
pressures or temperatures, substantial deviation
from 1:1stoichiometry, etc. , we have made use
of a computer-assisted literature search to find
the original papers for the compounds in question.
In this way, we have surveyed some 180 refer-
ences. We have identified from standard sources
as well as from an extended computer search a
total of 565 binary AB compounds that are near-
stoichiometric, ordered, and formed from atoms
belonging to the first five rows of the Periodic
Table. Their distribution among the various crys-
tal structures is given in Table II. The compounds
included are listed in Appendix I according to their
structural groups.

This data base of 565 binary compounds exhibits
an enormous range of physical, structural, and
chemical. properties. Using the terminology of the
semiclassical structural factors, one notes the
large range of conductivity properties spanned by
these compounds (insulators, semiconductors,
semi-metals, metals, superconductors), the elec-
tronegativity difference between the constituting
atoms (covalent versus highly ionic), coordination
numbers (12 to 2), relative ionic sizes of the A and
the B atom, bonding type (covalent, ionic, metal-
lic, etc.), range of heats of formation (=1-150
kcal/mole), electron-per-atom ratios (=1.5 to
8-9), etc. Given this distribution of the 112 octet
compounds and 453 nonoctet compounds into 5 and
31 different crystal structures, respectively ex-
hibiting a diverse range of properties, we now ask
how well can the atomically derived orbital- radii
scheme explain such a distribution.

We construct from the s and p atomic-orbital
radii the dual coordinates for an AB compound as:

4.0

3.5-

B2

3.0 -g

2.5-

2.0-

4 0
lK

1.5-

1.0-

0.5-

0.0-

0.0

o +&
~b

84
8 0(

0
o~ o.88 I

op as o

bb
b b

bbb
A4

I

0.5

R (a.u. )

I

1.0

FIG. 19. Structural separation plot for the 112
binary octet compounds A~B' ~, obtained with the
density-functional orbital radii, with

B"s=
)

(r'+ r ) (r,'+ r,')~, —

a,"'= fH-r,'f+ /r,'-r,'f.

pounds. Such maps are shown for 112 octet com-
pounds in Fig. 19 and for 356 of the nonoctet com-
pounds in Fig. 20. (Since the symbols in Fig. 20
are crowded, if any two overlapped they were
artificially moved to show them separately).

We identify each structure by a different symbol
and search in the R," -R,"~ plane for the smallest
number of straight lines, enclosing minimal areas,
best separating the different structures. In some
cases, there exists a unique solution to this topo-
logical problem; in other cases (e.g. , B33 and the
cP64 and tI64 structures), there are a number of
permissible solutions. However, in these cases it
seems to make little difference which line is
chosen. While we could have lowered the number
of "misplaced" compounds by using more complex
lines, we feel that the more stringent criterion of
using straight lines provides us with a better chance
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of assessing the true success of the method.
The remarkable result of these plots is that with

the same linear combination of atomic otbital-
xadii, most of the structures to which the 468 com-
pounds appearing in these plots belong can be
separated. The relative locations of the structural
domains seems chemically reasonable. Hence,
the 827 833 (coordina-tion number CN=7) is inter-
mediate between the 81 structure (CN =6) and the
82-I.le structures (CN = 8). The mostly metallic
nonoctet compounds appear separate from the non-
metallic regime to the right (cP64, tI64, mc32,
mP16, oC16), etc. Within single structural groups
one similarly finds a chemically reasonable order-
ing of compounds, e.g. , polymorphic compounds
(such as SiC) appear near border lines, zinc-
blende-rocksalt pairs that intertransform at low
pressure appear along the I33-B1 separating line,
etc. Note that even the wurtzite-zinc-blende
structures, which only differ starting from the
third-nearest neighbors, are well separated. How-

ever, there are a number of crystallographically
closely related structures that overlap: I am un-
able to separate the nonoctet crystal type CsC1
(82) from the CuAu (I.le structure), the NiAs type
(BS,) from the MnP type (831), and the CrB type
(833) from the FeB type (827), etc. For clarity
of display, I show the extra 81 compounds separa-
tely in Fig. 21, however, using Precisely the same
sePaxating lines as used fox all other nonoctet
compounds (Wg. 20).

It is not surprising that some of these structural
pairs overlap. For instance, the B27 and B33
str'uctures have a common structural unit consist-
ing of a row of trigonal prisms of atom g stacked
side by side and centered by a zigzag chain of B
atoms. "'" The structural similarity between CsC1
(82) and CuAu (Llu) has been discussed by Hume-
Hothery and ~ynor, ' the relation between the NiAs
(88,), MnP (831), and the FeSi (820) structures
by Schubert and Eslinger, "and that between the
CsC1 (82), AuCd (819), and Cu Ti (Bll) by Pear-
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pounds. All the superoctet compounds (a total of
34) could be separated clearly as well (Fig. 22 and
discussion below). This illustrates the predictive
ability of the present approach.

If one is to consider the pairs of related crystal
structures mentioned above as belonging to single
generalized structural groups, the total number
of misplaced compounds (5 octet and 32 nonoctet)
forms only 7% of the total data base of binary
compounds. The present theory is hence more
than 90/o successful.
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FIG. 21. Structural separation plot for the 81 binary
nonoctet compounds, obtained with the density-functional
orbital radii, with

son. ' In fact, examination of the thermochemical
data (Refs. 12 and 13 and references therein) in-
dicates that if a certain compound exists in two of
these related structures at somewhat different
temperatures, the difference in their standard
heats of formation is often as small as 0.3 kcal/
mole. (For example, AgCd in the B19 structure
has AH=0. 094+0.004 eV, whereas the B2 struc-
ture has a heat formation of 0.080 + 0.004 eV. )
Also, some of these presently unseparated struc-
tures indeed appear as mixtures when prepared
from the melt (e.g. , as noted by Hohnke and
Parthe, ""'both the B27 and the 833 structures
are frequently found in the same arc-melted but-
tons of these compounds).

Since the publication of a preliminary report of
this work, "which included 495 compounds, we have
been made aware of the crystal structures of 54
more octet and suboctet compounds as well as 16
new superoctet compounds (i.e. , a total of 565
compounds). We find that the lines separating the
structural domains of the octet and suboctet com-
pounds need not be changed relative to their pre-
vious assignment" to incorporate the 54 new com-

The compounds that are misplaced in the pre-
sent theory (i.e., their (8",s, B",s} coordinates
place them in a differerit structural domain than
that reported in the literature surveyed) are listed
in Table III together with their {B",s, A", s} coordi-
nates. In cases where a compound appears in
overlapping domains or close to a border line, we
indicate all the pertinent structures. Given their
(8",s, R",s} coordinates, the reader can conve-
niently identify them on structural plots.

The list of misplaced compounds shows a num-
ber of interesting features. At least two com-
pounds, CuF (Table III, No. 1) and FeC (No. 16),
reported to have the B3 (Ref. 90) and B1 (Ref. 92)
structures, respectively, probably do not exist at
all [for CuF see Ref. 100; for FeC, Ref. 101(a)].
Their misplacement in the present theory is
hence a gratifying feature. Similarly, while
OsSi (No. 11) is sometimes reported to have the
82 structure" and appears in our plots in the
B20 domain (No. 11 in Table III), it is known to
actually have the B20 structure and appears in
B2 only with impurities. ' 'b' In addition, the
compound PtB (No. 18 in Table III) which has been
reported to have the NiAs (B8,) structure" and

is placed-in our plots in an entirely unrelated
structural domain, has been found to have an
anti-¹As structure. '"+' ¹Y(No. 30) was re-
ported in 1960 [Ref. 93(b), p. 678] to have the
orthorombic &27 structure, in conflict with the
prediction of the present scheme, while in 1964
[Ref. S3(c), p. 561] it was concluded, that it is
actually monoclinic with a P2,/a space group. It
seems that no clear identification for this struc-
ture is yet available. While Hfpt (No. 21) is
identified in most sources as having a 833 ortho-
rhombic structure, a deformed B2 modification
has also been reported [e.g., Ref. 93(c), p. 419].
Similarly, AuBe (No. 15) has been reported in
1947 to have the B20 structure [e.g. , Ref. 93(b),
p. 83] while in 1S62 [e.g. , Ref. 93(c), p. 64] it has
been identified as tetragonal. AuLa (No. 29) has
been reported to transform from its high-temper-
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TABLE III. Compounds which are misplaced in the
present theory (out of a total of 565).

Expected
Compound structure

Structural
domain(s) in
which it is

found

gAB

(a.u.)

gAB

(a.u. )

1. CuF
2. MgS
3. BeO
4. Mg Te
5. MgSe

B3
Bl
84
84
Bl

Octet

Bl
B3
Bl-B3
Bl-B3
Bl-B3-B4

1.635
0.93
0.615
0.36
0.745

0.375
0.25
0.305
0.32
0.285

1. CoAl
. 2. FeAl
3. NiAl
4. CoGa
5. FeGa
6. NiGa
7. NiIn
8. MnIn
9. CoPt

10. TiAl
11. OsSi
12. CoBe
13. MBe
14. NaPb
15. AuBe
16. FeC
17. TiB
18. PtB
19. IrPb
20. AgCa
21. Hfpt
22. ¹iHf
23. NiLa
24. NiZr
25. PtLa
26. RhLa
27. Zr Pt
28. PdLa
29. AuLa
30. NiY
31. PtY
32. LaCu

82
B2
B2
B2
B2
B2
B2
82
Ll p

Ll p

82
82
82
@64
820
81
Bl
BS)
88(
B33
B33
B33
833
B33
B33
833
B33
833
B27-B33
B27
B27
827

Nonoctet

BSg-B31-B20
BSi-B31-820
BS)-B31-B20
BSg-B31-820
BSg-B31-B20
B81-B31-B20
BSg-B31-B20
BSi-B31-B20
BSg-B31-820
BS(-B31-B20
BSg-B31-820
BSg-B31-820
B33-827
B2 Llo B32
Bl-B33-827
Bl-BSg-B31
Bl-B33-827
Bl-B33-B27
8Si-B31-B2
Bl-Llp

Llo
B2-Llp
B2-Llo
B2-Llp
B2-Llp
B2 Ll p

B2-Llp
B2-Llp
B2-Llp
B2-Ll

p

B2-Llp
B2-Llp

0.345
0.435
0.505
0.325
0.415
0.485
0.13
0.17
0.68
0.905
1.23
0.94
i.37
0.56
1.58
1.47
1.785
1.905
0.538
0.625
0.21
0.73
0.90
0.645
0.38
0.56
0.125
0.63
0.42
0.76
0.24
1.04

0.315
0.345
0.395
0.355
0.385
0.435
0.43
p.41
0.40
0.415
0.37
0.38
0.49
0.52
p 44
0.35
p 445
0.385
0.478
0.645 .

0.53
0.57
0.59
0.555
0.55
0.63
0.515
0.62
0.57
0.56'
0.52
0.61

ature B33 form to a low-temperature $27 form
(both orthorhombic) at about 660 'C, while in 1963
[Ref. 93(c), p. 73] it is indicated to have the
cubic B2 form. It is hence clear that for some of
the misplaced compounds, it is not yet obvious
whether their misplacement is real. For the
other compounds appearing in Table III, their
misplacement in the present phase diagrams is
real and brings up a number of interesting ob-
servations.

The octet compounds MgS and MgSe have a

NaC1 (Bl) structure but appear in our plot in the
ZnS (B3) domain, near the B1 border. Experi-
mentally (e.g. , Ref. 102) it is found that the (nor-
malized) free energy of the B3 B-1 phase transi-
tion for these compounds is nearly zero.

A large number of the other misplace com-
pounds have unusual properties. Two such groups
of compounds show systematic unusual proper-
ties: the six Al and Ga compounds wit/ the mag-
netic 3d transition elements (CoAl, CoGa, FeAl,
FeGa, NiAl, and NiGa) and the group of ten CrB
and three FeB structures (AgCa, HfPt, ¹Hf,
¹La,MZr, PtLa, RhLa, ZrPt, PdLa, and AuLa,
and NiY, PtY, and l,aCu, respectively).

The first group has the CsCl (B2) structure but
appears in the present theory in the domain of the
%As-MnP-FeSi structures. Their electric and
magnetic properties have been studied intensively
in the last few years (e.g. , Refs. 103-110). It
appears that these compounds are stabilized by
the presence of defects, and they have a large,
stable range of composition (45 at. %-55 at. %%uo),

wjth abrupt changes in many physical properties
near stoichiometric composition. Susceptibility
measurements as a function of magnetic field
show ferromagnetic impurities and antistructure
defects in such materials. More importantly, a
slight nonstoichiometry often leads to the forma-
tion of local magnetic moments. These results
indicate (e.g., Ref. 110) that such slightly off
stoichiometric materials are in effect spin-
glasses at low temperatures. Their magnetic be-
havior is intermediate between that of the inde-
pendent magnetic-impurity problem (Kondo effect)
and that characteristic of antiferromagnetic or
ferromagnetic systems having long-range order
due to strong magnetic interactions. It is inter-
esting to note that this subgroup of compounds
exhibiting stable intrinsic defects leading to mag-
netic moments, are displaced in the structural
plots from the largely nonmagnetic B2 domain to
the B8, region in which many of the stoichiometxic
alloys have permanent local moments. There are
indications that this subgroup of compounds have
certain structural anomalies: Many authors re-
port that the B2 aluminides could not be obtained
as a single phase, and in diffraction the B2 pat-
tern could not be separated from other diffraction
lines not belonging to this structure. " It was sug-
gested (Schob and Parthe )'7 that many of these
compounds are only metastable in the 82 struc-
ture. In a recent diffraction study'" it was dis-
covered that strong distortions occur around the
Co sublattice sites in CoGa due to intrinsic vacan-
cies. Similarly, a recent calculation'~'b' of the
ordering energy in FeGa using a Bragg-Williams
model, yielded very small interaction parameters
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of 0.049 and 0.03 eV (i.e., -2 —lkT) for first and
second neighbors, respectively. It is intriguing
that the present orbital-radii scheme has the
ability of identifying such unusual phenomena in
a few of the 122 tabulated B2 nonoctet compounds.

Our scheme suggests that similar irregularities
may occur in NiIn and TiA1 and perhaps even in
CoBe, but to a much smaller extent, since these
compounds are only marginally misplaced in the
present theory. Indeed, the absorption spectra of
MIn in the 0.7-5.5-eV range'" indicate almost
no change with composition in its Drude regime as
well as above it, suggesting a constant number of
electrons per cell due to the defect structure.
This suggests that many of the unusual magnetic
and structural properties found in the FeAl, FeGa,
CoAl, CoGa, NiAl, ~NiGa group may also be found
in NiIn.

The second large group of misplaced compounds
(numbers 20-32 in Table III) form a distinct
structural group. Schob and Parthd, " Hieger
and Parthe, " and Hohnke. and Parthd""' have
indicated that all CrB (B33) and FeB (B27) com-
pounds can be separated into two groups: group I,
in which a transition-metal atom combines with
an s-p element (B, Si, Ge, Al, Ga, Sn, or Pb,
and group II, in which a transition element from
the third or fourth group combines either with
another transition element from group 8 or from
the Cu group. It was found that the individual
trigonal prisms in both the FeB and the CrB
structures have different relative dimensions
in groups I and II. In particular, group I of the
CrB structure shows a "normal" a/c ratio greater
than 1, but group II compounds show a compressed
prism with a/c&1. Only three compounds belong-
ing to group I (HfA1, ZrA1, and YAI) have a/c & l.
We find that all of the CrB and FeB compounds
that belong to group II are misplaced by our theory
into the bordering CsCl domain, whereas the
three group-I compounds that have a/c &1 (much
like group-II compounds) are correctly placed.
Hence, the present approach is sufficiently sen-
sitive to separate the true physical irregularity
even when simple structural factors such as the
a/c ratio lead to the wrong conclusion. From the
results of the present approach, it would seem
that group-II compounds of the FeB and CrB
structures shouM properly be identified as a
separate group. As a result, if the errors made
by the present theory for the latter group of com-
pounds, as well as the errors in the 1-8 (Table
III) local-moment materials are regarded as
systematic irregularities, the remaining true
errors amount to only 2%%uo of the total data base.

The placement of a number of B33 and B27
orthorhombic compounds in the CsC1 (82) region

of the present structural plots has an interesting
implication on their electronic structure. The
cubic B2 structure of intermetallic compounds
containing a magnetic element is stabilized by a
partial ionic character and equiatomic composi-
tion. The experimental proof for that is given by
the fact that the 82-type FeTi compounds has an
almost vanishing atomic moment for Fe, indi-
cating an ionic electron transfer which leads to a
nearly zero spin polarization. Any deviation from
stoichiometric composition leads to lattice dis-
tortions and defect structures attempting to ac-
commodate the local magnetic interactions.
Hence, the normally B2 compounds FeAl, FeGa,
NiAl, NiGa, CoA1, and CoGa may be distorted
by off-stoichiometry and are indeed displaced in
the structural plots. Similarly, some, of the B2-
displaced B33 compounds (e.g. , Table III No. 24,
NiZr) do exist in a B2-type phase" +' but may
be distorted to a orthorhombic 833 phase due to
off-stoichiometry. Simultaneous measure me nts
of the composition dependence of the Curie point
and structural distortions may elucidate this
point.

The remaining misplaced compounds may also
have unusual properties; NaPb (No. 14) has an
unusual structure with 64 atoms per cell resem-
bling a molecular crystal with interacting Pb4
tetrahedra"' and IrPb (No. 19), according to
Miedema's model, ' has a positive heat of forma-
tion of about 1 kcal/mole. Similarly, AgCa
(No. 20) has been recently discovered'" to be one
of the only known glass-forming materials that
do not contain a transition or actinide el.ement. It
has also been noted4' that the ratio of anion-anion
to cation-'anion distances in AgCa is almost an
order of magnitude smaller than in all other non-
transition-metal B33 compounds, and that unlike
the latter group of compounds it has catalytic
properties in redox reactions.

CoPt (No. 9) has a tetragonal I 1, structure but

is displaced in the structural plots into the B8,
domain, much like the FeAl, FeGa, CoA1, CoGa,
NiAl, ¹Gagroup. By quenching and annealing it
below its order-disorder temperature in the pres-
ence of a magnetic field, it develops a uniaxial
magnetic anisotropy leading eventually to a sin-
gle-ordered system having its tetragonal axis in
the direction of the applied magnetic field. '~

This material forms an excellent digital magneto-
optic recording system. "' Among its other
structural peculiarities'" it has been noted"' that
the c/a ratio calculated from the position. of the
main diffraction lines is considerably different
from the c/a ratio evaluated from the superlative
lines, suggesting that this crystal actually con-
sists of domains of different long-range order and
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hence different tetragonalities.
It is interesting to note that the present scheme

also predicts unusual electronic ProPerties of
compounds belonging to the same structural
group. For instance, the B2 compounds CsAu and
RbAu that appear in Fig. 20 as isolated from the
other 147 B2+I-10 suboctet compounds have semi-
conducting properties while all other suboctet
compounds belonging to these structures seem to
be metals. A recent calculation of the electronic
band structure of CsAu (Ref. 119) has indicated
that if relativistic corrections are neglected,
Cshu appears to be a metal, which disagrees with
experiment, whereas the inclusion of relativistic
effects lowers the Au s valence band to form a
semiconductor. It is remarkable indeed that such
complicated electronic-structure factors are re-
quired in quantum-mechanical band-structure cal-
culations to reveal the unusual semiconducting be-
havior suggested here simply by the atomic-or-
bital radii.

lf the predictive power of the present orbital-
radii scheme in relation to unusual electronic
properties is not accidental, it would be inter-
esting to speculate on its consequences. One
would guess, for instance, that all suboctet non-
transi gi on-element compounds having /"„~ larger
than roughly 0.7 a.u. are nonmetals. This includes
not only the known nonmetallic compounds belong-
ing to the LiAs group (KSb, NaGe, NaSb, but not
LiAs) and the KGe group (CsGe, CsSi, KGe, RbGe,
and RbSi whereas KSi is a borderline case), but
also the tf64 (NaPb) group (CsPb, CsSn, KPb,
KSn, RbPb, and RbSn, but not NaPb), the B2
compounds LiAu and LiHg, the I1, compound
NaBi, the 0C'16 compound NaHg, and the mC32
compound NaSi. In the sequence of alkali-gold
compounds LiAu, NaAu, KAu, RbAu, and CsAu,
one would similarly predict that the transition
between metallic and insulating behavior occurs
between NaAu and KAu.

Another demonstration of the usefulness of the
present approach in systematizing properties
within a given structural group is the application
to the c/a axial ratio of the NiAs compounds. The
measured axial ratios of the $8, compounds of
Ti, V, Cr, Mn, Fe, Co, and Ni with S, Se, Te,
As, Sb, and Bi show very large variations around
the "ideal" value of c/a = 1.633 (ranging from 1.95
for TiS to 1.25 for FeSb). Defining the deviation
from this value as 4=c/a —1.633, one immedi-
ately recognizes that the known semiconductors
in this group have mostly 4&0, whereas the me-
tallic NiAs compounds usually have 4&0. One
then finds, using the ionicity coordinate B, , that
compounds with B,"~&0.9 a.u. have 4&0 as the
size mismatch of the effective cores

) (r~+&, )

—(r~~+r, ) ~
is too large to accomodate an ionic

structure. ¹S(with 4=0.073 and ft~s=1.08) is
the only exception to this rule. A similar corre-
lation of 4 with 8,"~ exists for the wurzite B4
compounds, ""although the range of 4 is an or~
der of magnitude smaller than it is in the B8,
compound s.

C. Superoctet compounds and additional structural plots

The relative orientation of the structural do-
mains in Figs. 19-21 suggest that no single co-
ordinate will suffice to produce a complete topo-
logical separation between all structures. Since,
however, the area of the 8", vs B~ plane seems
to be more or less bound (e.g. , = 3 a.u. ' in Fig.
20), when extra compounds are added (i.e., com-
pare the 495 compounds included in Ref. 57 with
the 559 compounds in Figs. 19-21), it is likely
that the two-dimensionality of this finite A", ~-B~~
space will eventually preclude the delineation of
further structures. One may hence expect that for
some critical number of structures and com-
pounds, a third coordinate may be needed. Such
a generalized multidimensional resolution of
structural groups may also resolve some of the
remaining discrepancies in the present theory.
Our present approach, however, is aimed at
demonstrating the extent of structure delineation
possible with the minimum number of two coodi-
nates using the. simplest possible separating lines.

One simple example for an additional coordinate
is the classical~ valence-electron concentration
(VEC), measuring for the binary AB system the
total number of valence electrons Z"+ Zs [cf.,
Eg. (10)] in the compound. In the semiclassical
approaches to structure it is known that whereas
the VEC value alone does not separate different
crystal structures, compounds with the same
valence-electron number often belong to the same
broad structural groups. One can use this addi-
tional coordinate together with our orbital radii
to obtain a better structural resolution of the
marginally resolved structures, and at the same
time provide a clear structural delineation of all
sujexoctet (i.e., Z~+Z„& 8) compounds. As with
the suboctet compounds, no previous approach has
succeeded in systematizing these complex crystal
structure s.

We find that while the definition of the structural
coordinates R",s and 8,"s [Eq. (21)] used for the
octet (Fig. 19) and mostly suboctet (Figs. 20 and
21) compounds yields an overal separation also
of the superoctet compounds, a more sensitive
delineation is obtained with the slightly modified
coordinates 8, = Jr~a —r~~~ and B2=(&, ) sug-
gested by Littlewood. "' Here, A, is a measure
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FIG. 22. Structural separation plot for the 34 super-
octet compounds A B + with valence electron concen-
trations (VEC) equal to 9 [Fig. 22(a)] and 10 fFig. 22(b)].
The structural groups are defined in Table III and in

AppendixA. The symbolR[Fig. 22(b)] denoted arhombo-
hedral structure. In the 91 domain of Fig. 22(b) we have
also included the compounds with VEC= 9, 11 (see text).

of the P-orbital electronegativity difference be-
tween atoms & and B, while 8, measures the s-p
nonlocality on the two sites. The reason that
~r~s r-~~ forms a better structural coordinate for
superoctet compounds is that these systems in-
volve relatively heavy atoms (e.g. , Pb, Sn, Bi,
Tl, Hg) for which the s electrons are paired and

strongly bound relative to the p electrons. Hence,
these semicore s orbitals become chemically in-
active and only the contribution of the p electrons
needs to be included in the electronegativity
parameter 8,.

Figures 22(a) and 22(b) shows structural plots
for the superoctet compounds with nine and ten
valence electrons, respectively. Since there are
only a few 91 super octet compounds, we have
included those with VEC=9 (SnAs), VEC=10 (PbS,
PbSe, PbTe, and PbPo) and VEC=11 (BiSe, BiTe)
on the same plot in Fig. 22(b). Figure 22 includes
18 compounds which have appeared in the previous
nonoctet plots (Figs. 20 and 21): B87 (lnTe,
T1Se, T1S), mC24 (GaTe, GeAs, GeP, SiAs), B16
(GeS, SnS, GeSe, SnSe, InS), pseudo-B8, (GaS,
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FIG. 23. Miedema plot for nonoctet compounds. R2 is the difference in the effective elemental workfunctions,
R2=l P& —Pgl; while R~=ln~~ -nsV l, where n is the cell boundary density (Ref. 91.
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GaSe, Ge Te, SnTe, InSe), and the orthorhombic-
ally distorted B1 compound TlF. It is seen that
the seven different structures of the VEC=9 com-
pounds, as well as the six different VEC=10
structures, are very clearly resolved, the only
exception out of these 34 compounds being the B37
compound TlS which is marginally displaced into
the neighboring hP8 hR2-domain [Fig. 22(a)].

It is important to emphasize that the ability to
separate structures shown by the present orbital
radii (Figs. 19-21) is far from being trivial or
accidental. This is demonstrated in Figs. 23-25,
where structural plots are presented for some of
the nonoctet compounds using different coordi-.
nates. We use Miedema's' coordinates, 8,= ~P„*

-eel and &.= In~"'-u~s"'~ in Fig. .», ~h~~~
P„* and n„*'~s are the effective elemental work
function and chill-boundary density to the power of
1s. Those coordinates were extremely success-
ful in predicting the signs (and often the magni-
tudes) of the heats of formation of more than 500
compounds. ' In Fig. 24, we present a Mooser-
Pearson4 plot, where A, is the elemental electro-
negativity difference, and 8, is the average prin-
cipal guantum number. In Fig. 25, we give a plot

using Shaw's parameters, "where R, is the ele-
mental electronegativity difference and R, =a (Z„
+ Zs)/[a (tt„+ns)]', where Z„and ri„are the
atomic number and the principal quantum number
of the outer valence orbital, respectively.

In a Miedema plot (Fig. 23), one notices a rough
separation of the Bl and B8, structures (CsAu and
HbAu appear, as in our case, at high AC*,
dais'~'), whereas most other structures are
nearly indistinguishable. This illustrates the
great diQiculty in carrying the success of a theory
that predicts global binding energies &$0 into the
prediction of st uctural energies ~, (cf. Sec. I).

The Mooser- Pearson plot for these compounds
(Fig. 24) appears visually as if only 104 com-
pounds (i.e., isolated points) are plotted. In fact,
it includes 360 compounds belonging to 14 dif-
ferent structures. This strong overlap of dif-
ferent structures on the same (R„Bs) coordinate
reflects the insensitivity of the scale to separating
such structures. A somewhat better separation
is evident using Shaw's parameter (Fig. 25), but
the overlap of different structures is still ex-
tremely large.

It is likely that one could construct first-prin-
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FIG. 24. Mooser-Pearson (Ref. 4) plot for 360 nonoctet compounds. Rt=
l Xz —Xs l; Rt s(nz+ ns), =where Xz and

n~ are the elemental electronegativity and principal quantum number of the outer orbital, respectively.
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ciples atomic pseudopotential using somewhat
different procedures than have been used here
(Sec. III A) for defining the pseudo-wave-func-
tions. While this would result in a different set of
orbital radii, they wi11 most likely scale with
the present set of radii. Consequently, one may
expect that the systematization of the crystal
structures, based on such radii, will be essen-
tially unchanged.

D. Discussion

As indicated in the Introduction, the success of
the s and p orbital-radii shceme in correctly pre-
dicting most of ihe structural regularities of &B
compounds suggests that the stmctmral part ~,
of the cohesive energy may be dominated by s-p
electrons, even in transition-metal systems. The
effect of the d electrons then enters indirectly via
the screening term in Eq. (16). This points to the
possibility that while the localized d electrons
determine central-cell effects and hence also the
regularities in the structure-insensj. tive part ~,

of the total cohesive energy ~=~,+ ~, (with
LREc» ~,), the longer-range s-p wave functions
are responsible for the stabilization of a certain
complex space-group arrangement over another. "
This may seem as a somewhat surprising result,
in view of the fact that the resonant tight-bi. nding
models" '~ have explained the periodic trends
in 4$, of both elemental and alloyed transition-
metal systems by considering changes in the rec-
tangular distribution of the one-electron d energy
levels alone. The two views need not, however,
be contradictory. This point is discussed below.

The analysis of molecular and crystal binding
in variational quantum-mechanical theories in
terms of the predominance of a certain subset of
wave functions with a well defined (majority) ang-
ular symmetry (e.g., s, P, and d), is inherently
qualitiative. In fact, while the systematic errors
introduced by such, approximations are often
small enough on the scale of ~c (so that trends
in global cohesive energies ~ may be repro-
duced), they are frequently of the order of 4E,
itself, or even larger. For example, the analysis
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of the computed formation energy ~ of NiAl in
terms of the differences 4, in the one-electron d
orbital (l =2) energies of the compound and the
elemental solids, 'shows that 4, differs by 30%
from 4H. Such theories will be appropriate for
px'ed'. CQ.Q~ trends in stx"QctUrz). I, enex'gles only xn

the rare event where the structural energy ~,
is much larger than about 20/g of the global bin-
ding energy.

%hereas the su~:ia3ionaL total energy of a poly-
atomic system is not even decomposable into
atomic site and angular momentum compounds,
under suitable approximations the final total
energy (i.e., the negative of one-half the kinetic
energy) is amenable to such a partitioning. How-
ever, in cases where such a decomposition has
been a.ttempted, ' one has obtained the somewhat
counter intuitive result that changes in the (outer)
core orbitals in forming the solid from atoms are
mainly responsible for the cohesion.

Such results have encouraged the utilization of
the difference in the sum of one-electron energies
h, =Z, &~«~-Z, a", , -Z, cs, between the compound
&8 and its constituents & and 8, as a measure of
the cohesive or formabon energy of &S. Thxs
permits the decomposition of binding energies
into angular components, from which one may
hope to a,ssess the dominance of a certain term.
While it was long known that Z,h, rarely shows a
minimum as a function of structural coordinates
unless g, are empirically parametrized (as in the
extended Huckel method (e.g., Hef. 122 and ref-
erences therein), Hudenberg'" has discovered
the remarkable result that gt equi/ib~ium, the
total Hartree-Pock energy of a molecule equals
approximately the sum of one-electron energies:
Esp= kgZg &g, where k~ ls 811 empirical fac'tor.
This energy relation is based on an earlier dis-
covery by Politzer' showing that &sr=&2(V„
+2V„,), where V„and V,„are, respectively, the
electron-nuclear and nuclear-nuclear potential
energies and A, = -,'. These new energy relations
have been recently investigated in great detail in
the chemical literature. '" '" The picture that
emerges from these studies is that: (i) The er-
rors made in approximating the total energy by
sums of all of the occupied one-electron energies
is very large on the scale of binding energies ~,
let alone molecular conformational (i.e., struc-
tural) energies DE,. Even the trends (i.e., dif-
ferential errors) in going from one system to the
other are often obscured by such approximations,
unless the constants k, and k2 are fine-tuned to
take different values for atoms in different chem-
ical enviroments. (ii) Whereas the Politzer-
Hudenberg relations are valid only at the equilib-
rium geometry, additional corrections for non-

equilibrium terms still fail to make these energy
relationships useful for finding approximate ge-
ometries of molecules. Despite such gross in-
accuracies, it would seem that further analysis
along these lines (e.g., Hef. 126) may be used to
isolate:kn the future the major orbital contribu-
tions to binding energies.

The realization that simple differences in the
sums of all occupied one-electron energy levels
do not form an adequate measure to the chemical
trends apparent in the total energy leads to two
possible extensions. In the first approach"' one
represents the total energy as a sum of all oc-
cupied orbital energies plus an empirical classi-
cal strain-energy term which is adjusted to pro-
duce a minimum of the total energy at the observ-
ed structural parameters. %bile this strain-
energy term is small, it is crucial for physically
meaningful predictions for the structure depen-
dence of the total energy. Its inclusion, however,
no longer permits the decomposition of the total
energy into angular momentum components.

The second approach assumes that the total heat
of formation scales with the difference &, between
the one-electron energy levels of the compound
and its constituent elemental solids, but only a
single l component (e.g. , d) is isolated as rele-
vant for this scaling relation. 2' '4 The latter part
of this statement is crucial: if one attempts, for
instance, to approximate the trends in the heat of
formation of compounds made of a transition and
a simple element by p, + &, + &, rather than by &,
alone, no meaningful correlation is found'"
%illiams et al.' ' have suggested an explanation
for this scaling relation in terms of a near can-
cellation between the attractive Madelung inter-
atomic potential and the repulsive intra-atomic
Coulomb potential. If such a cancellation were to
be exact, trends in &, alone would parallel those
obtained from variational total-energy calcula-
tions. The basis of this approach is that whereas
the Madelung term V„ lowers (raises) the energy
of states which occur predominantly on the neg-
atively (positively) charged sublattice in an A'B
compound, charge transfer to the negatively
charged species raises its intra-atomic Coulomb
energy with respect to that of the positively
charged species. Similar ideas where previously
tested for simple binary compounds"' by calcu-
lating the sums [~„'(q)+V'„(q)] and [as(q)+ V„(Q)],
where g„' and a~™ are orbital energies of species
with formal charge Q and V„', V„are the
Madelung potentials at the respective atomic site.
By varying Q, it was observed that indeed a large
cancellation occurs between z' and V'„, but that
the residue of this cancellation is as large as
10-209o of a„or V„, and hence significant on the
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scale of structural energy hE, . A similar result
was recently reported'-3' for NiAl.

One would therefore conclude that from the
schemes proposed so far for decomposing binding
energies into angular momentum contributions, it
is impossible to deduce the dominance of any par-
ticular interaction (i.e. , d or s-P) in determing
structural re gularitie s.

The lack of contradiction between Friedel's
resonant tight-binding model and the significant
structural role assigned to the s-p coordinates in
the present model becomes obvious in considering
the contributions entering the for, mer theory: it
may be that in binary &8 compounds with large
differences in the constituent d-band energies,
&~W) +E~(B), the s-P contribution to the struc-
tural energy ~, is indeed dominant. If AE, is
derived primarily from Brillouin-zone -induced
changes in the gaps E» and these gaps can be
divided into two groups Egz and Esp (nonexis-
tent in rectangular (f density of states models), ~7 2~

then the dominant structural role of s-p electrons
becomes evident if covalent hybridation leads to
Es~z «E~sz~&E~(A) -E~(B). E~~ is then expected
to scale with A", much like the heteropolar
gaps.

The relationship between the structural stabil-
ity of a polyatomic system and the degree of re-
pulsiveness of the effective atomic cores of the
constituent atoms has been discussed in 1948 by
Pitzer" in a remarkable paper preceding all
pseudopotential theories. While one might have
thought then naively that the electron-core attrac-
tion term Zgr w-ould lead to a strong penetra-
tion by valence electrons of the core regions of
neighboring atoms, Pitzer has realized that the-

core electrons set up a repulsive potential with a,

characteristic radius inside which such a penetra-
tion is discouraged. Hence, the triple-bond ener-
gy of N=N is much higher than that of P-P (and
the bond length in N=-N is significantly shorter
than in P=-P) because the repulsive core size of
nitrogen is so much smaller than that of phos-
phorous. Smilarly, the occurrence of multiple
chemical bonds with first-row elements as com-
pared with the rare occurrence of such bonds (with
a small bond energy) with heavier atoms has been
naturally explained in terms of the large repul-
sive core size of the latter elements. In addition,
PItzer noted that whereas Pauling' has suggested
that single bond energies (e.g. , N-N) should be
roughly & of the tetrahedral bond energy (e.g. ,
C-C), in fact the ratio of the two is closer to z.
This discrepancy was simply explained"4 by the
fact that the change from the bond angle of 90'
characteristic of p-type single bonds, to a tetra-
hedral angle of 109.5' minimized in the latter case

the overlap with the repulsive core.
In the present orbital-radii approach, these

ideas are realized in a simple manner. To first
order, the change in energy per atom introduced
by incorporating an atom in a polyatomic system
is proportional to:

()Z- Qa, fap, (r)[((,(r)+ ~(rl]dr, (u)
l

where hp, (r) is the lth component of the charge
redistribution, U, (r) is the Pauli repulsive poten-
tial [Eq. (11)], 0(r) is the l-independent part of
the atomic pseudopotential [Eq. (10)], and 4, are
constants. The first bp, (r)U, (r) term in E(l. (22)
leads to a repulsive and angular-momentum-de-
pendent contribution (for electron-attracting
species) while the second term is isotropically
attractive (for similar atoms). Neglecting for
this simple argument the nonlinear dependence of
the charge-density redistribution 6p, (r) on U, (r),
one notes that Pitzer's ideas on the destabilizing
role of large-core atoms, as well as the relative
stability of structures that minimize such repul-
sions through conformational changes in bond
angles, are directly maninfested in Eq. (22). One
could further note that charge-redistribution ef-
fects occurring predominantly outside the pseudo-
potential core [where U, (r) =0] do not contribute
to such strongly directional repulsive terms. It
would seem reasonable that the dominance of the
centrifugal barrier at small distances from the
origin will cause the charge-redistribution ef-
fects in the high angular momentum components
of the density to be confined to regions outside
U, (i.e., r&r, ). This simple picture clearly in-
dicates the important structural role played by
the r, and r~ coordinates, as compared to higher
angular momentum orbital coordinates.

VI. SUMMARY

It has been demonstrated that the pseudopoten-
tial theory in its present nonempirical density-
functional form is capable of providing transfer-
able atomic pseudopotentials v(,"(r) that can be
used both for performing reliable quantum-me-
chanical electronic-structure calculations"" "
and for defining semiclassical-like elementary
length and energy scales (r,]. The resulting radii
correlate with a large number of classical con-
structs that have been traditionally used to sys-
tematize structural and chemical properties of
many systems. At the same time, the orbital
radii derived here are capable of predicting the
stable crystal structure of the 112 octet com-
pounds (Fig. 19), 419 suboctet compounds (Figs.
20 and 21), and 34 superoctet compounds (in Fig.
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22) with a remarkable success, exceeding 95 lo.
The compounds for which the present theory does
not predict the correct crystal structure are ana-
lyzed and found to be largely characterized as de-
fect structures with many unususal electronic,
magnetic, and structural properties.
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APPENDIX

This appendix presents an alphabetic list of the
stable structures of the binary AB compounds
whose atoms belong to the first five rows of the
Periodic Table. The headings include the stzuk-
turberichte symbol (or Pearson's symbol, if
the former is unavailable), the space-group nota-
tion, and the crystal type, respectively. A single
asterisk indicates that there exists an uncertainty
in assigning the structure. due to off- stoichiometry,
superstructures, possible metastability, existence
of a defect structure or a distorted structure. Two
asterisks indicate that there exists another com-
peting phase adjacent to it in the phase diagram.
Structures not plotted in Figs. 19-22 are denoted
by square brackets. For nontransition- element
systems we indicate if the compounds are super-
octet (A«B" «) We do n.ot include in our list the
hydrides (there is no hydrogen pseudopotential),
some oxides and sulphides which do not occur in
their stable form as monomeric binary compounds
(SiO, SiS, etc.), or binary systems which form
continuous solutions or yet unknown structures.

The assignment of a compound as "octet" or
"nonoctet" is sometimes arbitrary. Hence, the
rocksalt-type MX compounds with M =La, Sc, or
Y (d'S') and X=0, S, Se, Te (S'P') are sometimes
assigned in the literature as nine-electron nonoctet
systems, while frequently the d' electrons of the
group-IIIB element are considered as "chemicall. y
inactive, " leading to the assignment of these com-
pounds as "octet" or "pseudooctet. " We have listed
these compounds under octet, although this clas-
sification does not alter the quality of separation in
the structural plots. The same considerations ap-
ply to compounds such as MnS, MnSe, and MnTe
which can be considered as pseudo-octet if the
five d electrons of Mn are taken as "inactive. "

For some compounds it is difficult to establish
from the existing literature which structure out of

B2, Pm3m, CsC1 type

CsBr, CsCl. , CsI.

B3', F43m, ZnS type

AgI, AlAs, AlP, AlSb, BAs, BN**, BP, Bepo,
BeS, BeSe, BeTe, CSi**, CdPo, CdTe**, CuBr,
CuC1, CuI**, GaAs, GaP, GaSb, HgTe** (also
B9), InAs, InP, InSb**, MnSe**, ZnPo, ZnS**,
ZnSe**, ZnTe**.

B4, P63mc, ZnO type

AlN, BeO, CdSe**, CdS**, GaN, HgSe** (also 89),
HgS** (also 89), InN, MgTe, MnS, ZnO**.

C, Ge, Si, Sn.
A4, Fd3m, diamond type

Ngnoctet compounds

Bl, Fm3m, NaC1 type, suboctet

CoO**, C rN, C rO, FeC **, FeO**, Hf8, HfC,
HfN, MnO**, MoC**, NbC, NbN*, NbO*, NiO**,
ScC, TaC*, TaO, TcN*, TiB, TiC*, TiN*, TiO*,
VC, VN*, VO*, WC**, WN*, ZrB, ZrC, ZrN,
ZO, zp**, zs**.

Bl, Fm3m, NaC1 type, superoctet:

BiSe, BiTe, PbPo, PbS, PbSe, PbTe, SnAs (also
TlF**, an orthorhombically distorted 81 struclture).

B2, Pm3m, CsC1 type, suboctet

AgCd, AgLa, AgMg, AgSc, AgY*, AgZn, A1Sc,
AuMg, AuSc, AuY, AuZn**, BaHg, CaCd, CaHg,
CaIn, CaTl, CdBa, CdLa, CdSc, CdY, CoAl,
CoBe, CoCa, CoGa, CoHf, CoSc, CoZr, CrPt,
CsAu, CuBe, CuSc, CuY, CuZn*, FeA1, FeCa,
FeCo, Feoa, FeRh~, HfOs*, HgLa, HgSc, HgY,

two competing structures is the most stable, e.g. ,
AsCo in the B8, or B31 structures or RhSi in the
B20 and B31 structures. In all cases where such
a "metastability" exists, we find that either the
two structural groups are unseparable in the pre-
sent theory (e.g. , BS, and B31) or that the com-
pound occurs in our structural plots in the border
of the two competing structures (see text).

Octet compounds

Bl, Fm3m, NaC1 type

AgBr, AgCl, AgF, BaO, BaPo, BaS, BaSe, BaTe,
CaO, CaPo, CaS, CaSe, CaTe, CdO, CsF, HgPo,
KBr, KCl, KF, KI, LaAs, LaBi, LaN, LaO, LaP,
LaS, LaSb, LaSe, LaTe, LiBr, LiCl, LiF, LiI,
MgO, MgS**, MgSe**, NaBr, NaCl, NaF, NaI,
RbBr, RbCl, RbF~ -RbI, ScAs, ScBi, ScN, ScP,
ScS, ScSb, ScSe, SrO, SrPo, SrS, SrSe, SrTe,
YAs, YBi, YO, YN, YP, YS, YSb, YSe, YTe.
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InLa, IrA1, IrQa, IrSc, LaT1, LiAg**, LiAu*,
LiHg, LiPb*, LiTl, MgHg, MgLa, MgSc, MgSr*,
MgT1, MgY*, MnAu*, MnHg, MnIn, MnIr* MnPd,
MnPt**, MnRh*, MnZn*, NiAl, NiBe, NiQa,
NiIn**, NiSc, NiZn**, OsA1, OsSi**, PdAl*,
PdBe, PdCu, PdIn, PdLi, PdSc, PtSc, RbAu,
ReAl, RhAl, RhQa, RhHf**, RhIn, RhMg, RhSc,
RhY, RuAl, RuQa, RuHf, RuSc, RuTa*, SrCd,
SrHg, SrTl', TcHf, TcTa, TiCo, TiFe**, TiIr,
TiNi, TiOs, TiRe, TiRu, TiTc, TiZn, VMn, VOs,
VHu*, VTc, YIn, YTl, ZnLa, ZnSc, ZnY, ZrOs,
ZrPt**, ZrRu*, ZrZn.

TlBr, T1Cl

82, Pm3m, CsCI type, superoctet

810 (tP4)/nmm, PbO type, superoctet

PbO**, SnO**

Bl1, P4/nmm, CuTi type

HfAu, PdTa, TiAu, TiCd, TiCu, ZrAg, ZrCd.

816, Pnma, GeS type, superoctet

GeS, GeSe, SnS**, SnSe** (also InS, appearing in
the related OP8, Pnnnz structure. SnTe and QeTe
are rhombohedral).

819,Pmma, AuCd type

AuCd**, MgCd, MoIr,' MoPt, MoRh, NbPt, TiPb,
TiPd, TiPt, VPt, WIr**.

820, P2&3, FeSi type

AuBe, CoSi, CrQe, CrSi, FeSi, HfSb, HfSn,
MnSi, PdGa, PtAl, PtGa, PtMg, ReSi, RhSn,
RuQe, RuSi**, TcSi.

827, Pnma, FeB type

88&, P63/mmc, NiAs type

AuSn, CoS, CoSb, CoSe, CoTe, CrS*, CrSb,
CrSe, CrTe*, CuQe*, CuSn**, FeS**, FeSb,
FeSe**, FeSn**, FeTe**, IrPb, IrSb, IrSn, IrTe,
MgPo, MnBi, MnSb, MnSn, MnTe, NiAs, NiBi,
NiS**, NiSb, NiSe**, NiSn, NiTe**, PdBi~, PdSb,
PdTe*, PtB, PtBi, PtPb, PtSb, PtSn, PtTe,
RhBi, RhSe, RhTe, ScTe, TiAs**, TiP**, TiS**,
TiSb, TiSe**, TiTe, VP, VS, VSb, VSe, VTe**,
ZrAs*, ZrTe, [GaS** (hP8), GaSe** (hP8 and

hR2), InSe** (hR2) and InSn are superoctet sys-
tems appearing together with CuS**, CuSe**, and
TaSe** in somewhat related hexagonal structures].

831, Pnma, MnP type

AuGa, CoAs**, CoP, CrAs, Crp, peAs, Fep,
IrQe, IrSi, MnAs, MnP, MoAs, NiQe, NiSi**,
OsAs, OsP, PdGe, PdSi, PdSn, PtQe, ptSi, BhAs,
RhQe, RhSb, RhSi**, RuAs, RuP, RuSb, VAs,
WP.

832, Fd3m, NaT1 type

LiA1, LiCd, I.iQa, LiIn, LiZn**, Naln, NaT1.

B35, P6/mmm, COSn type

CoSn, FeGe, PtT1.

837, I4/mcm, SeTl type, superoctet

InTe, TlSe, TlS.

BI„P6m2, MOP type

MoP, OsC, RuC, TaN**.

cP64, P43n, KGe type

CsGe, CsSi, KGe, KSi, RbGe, RbSi.

fhPI2, P62m, NaO typei

CaAs, CaP, KS, KSe, NaO, NaS**, SrAs, SrP.

hP24, P6&/mmc, LiO type

LiO, NaS**, NaSe.

Llp, P4/mmm, CuAu type

CoPt, CuAu**, FeNi, FePd, FePt*, HfAg, I iBi,
, MgIn, MnNi, NaBi, NbIr**, NbRh*, NiPt, pdCd,
PdHg**, PdMg*, PdZn, PtCd*, PtHg*, Pt Zn**,
TiAg, TiAl, TiQa, TiHg, TiRh, VIr*~, ZrHg.

mC24, C2/m, AsGe type, superoctet

QaTe**, GeAs, GeP, SiAs.

NaSi.

mC32, CZ/c, NaSi type

833, Cmcm, CrB type

AgCa**, AlLa**, AlY, AuLa, BaGa, BaGe, BaPb,
BaSi, BaSn, CaGa, CaGe, CaSi, CaSn, CrB,
QaLa, GaY, HfAl, HfPt, MoB**, NbB, NiB, NiHf,
NiLa, NiZr, PdLa, PtLa, RhLa, ScGa, ScGe,
ScSi, SrQe, SrPb, SrSi**, SrSn, TaB, VB, WB**,
YGe, YSi, ZrAl, ZrPt. '

CoB, FeB, HfB, HfGe, HfSi, LaCu, LaQe, LaSi,
MnB, NiY, PtY, TiB, TiQe, TiSi, ZrQe, . ZrSi. ** I iSn.

fmP6, P2/m, I.iSn type j
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mP16, P2&/c, LiAs type

KSb, LiAs, NaQe, NaSb.

(oP16, Pbca, CdSb, superoctetg

CdAs, CdSb, ZnAs, ZnSb.

mP32, PZ&/n, NS type, superoctet

AsS**, AsSe**, NS, NSe, PS**.
tI8, l4/mmm, HgC1 type, superoctet

HgBr, HgC1, HgI.

NaHg.

oC16, Cmcm, NaHg type

LiQe.

tI32„ I4&/a, LiGe type

KO.

oC16, Cmca, KO type

KC, NaC.

(tl32, I4&/acd, NaC type

SiP.

oC48, Cmc2&, SiP type, superoctet

T1Te.

tl32, I4/mcm, TlTe type, superoctet

ol8, Itnmm, RbO type

CsO, CsS, RbO, BbS.

oP16, P2&2&2&, NaP type

KAs, KP, NaAs, NaP, RbAs, RbP.

tl46, l4&/acd, NaPb type

CsPb, CsSn, KPb, KSn, NaPb, BbPb, HbSn.

((?), Cmcm, T1I type, superoctet J

InBr, InI, T1I.
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