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Electron localization in crystals with quasiperiodic lattice potentials
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Anderson s locator perturbation theory, used in the study of localization in disordered systems, is applied to the
study of electron locahzation in tight-binding model lattices containing a periodic modulation potential
incommensurate with the crystal lattice. Numerical studies of the convergence of the resulting continued fraction for
the self-energy indicate that in one dimension there is a transition at a critical value of strength of the modulation
from all states localized to all states extended, unlike the disordered crystal case. Studies in two and three
dimensions show that there exists an intermediate range of modulation strength over which there can be mobility

edges separating localized and extended states. Specific application is made of the results in one dimension to a
system containing a superlattice modulation in one direction.

I. INTRODUCTION

Recently, Azbel' ha, s argued that the spectrum
of an electron moving in periodic potentials with
incommensurate periods is of the "devil' s-stair"
type, with both localized and extended states sepa-
rated by mobility edges. On the other hand, Au-
bry has argued, for a tight-binding one-dimen-
sional model with a sinusoidal potential incom-
mensurate with the lattice period, that the elec-
tronic states would be all localized for the sinu-
soidal potential strength greater than a critical
value and all Bloch-type extended states for
smaller values of this potential, with no mobility
edges. The present author argued' that the pho-
nons in Aubry's model are localized in wave-vec-
tor space for sufficiently weak sinusoidal potential
strength, implying that the phonons are not
damped, despite the fact that such a system lacks
translational symmetry, The arguments used in
that paper were based on Anderson's locator ex-
pansion, which is used in discussing localization
in the disordered-crystaj. problem. ' ' If the ar-
guments of this paper are applied in r space, they
imply that for sinusoidal potential stronger than a
critical strength all states are localized in r
space, in agreement with Aubry.

Reference 3, however, instead of using the re-
normalized perturbation theory, replaced the
mass-operator perturbation theory by a geometric
series, each term of which was the geometric
average of each term in the actual perturbation
theory. This is certainly not a valid procedure in
the limit in which the period of the sinusoidal po-
tential is much larger than a lattice constant, the
limit considered by Azbel. The reason for this
is that in such a limit the energy denominators,
associated with neighboring sites in the perturba-
tion theory, are nearly equal. Therefore, proces-
ses in which an electron moves back and forth
many times between neighboring sites will cause

the self-energy perturbation theory to diverge.
Such divergences were discussed in Refs. 4, 5„and
6. They do not imply the existence of a branch
cut in the self-energy, and they can be eliminated
by the Watson renormalization trick. ' "~' In
this article, the Watson procedure is applied to
this problem. In one dimension, the renormalized
perturbation theory for the self-energy leads to a
pair of infinite continued fractions. ' The conver-
gence of these continued fractions will be studied
numerically, and the results will be compared with
Azbel's and Aubry's results. The advantage of the
locator perturbation method over the method of
Azbel or Aubry is that it can be applied in higher
dimensions. In Sec. II, the tight-binding model
will be formulated, and it will be discussed in the
light of Azbel's theory. In Sec. III, convergence
of the continued fractions for the self-energy will
be discusse'd and Azbel's and Aubry's results will
be discussed in the light of these results. An ex-
tension of the present results to two and three di-
mensions will also be presented. In Sec. IV, ap-
plication of these results to real experimental
systems will be discussed.

II. THE TIGHT-BINDING MODEL

The model studied in this paper is a tight-binding
model whose Schrodinger equation is

f„„+f„,+ V(cosqn) f„=Ef„,
where f„ is the expansion coefficient for the tight-
binding function

q(~) =Q f„p(x -na),

where y is an atomic or Wannier function. %e
will be interested in the case in which q is an ir-
rational multiple of m. The dimensionless energy
and potential strength are assumed to be measured
in units of the intersite. hopping matrix element.
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Aubry' makes use of the transformation to a re-
ciprocal-lattice representation,

f QgenA )

which transforms Eq. (1) to

have a branch cut on the real energy axis." In
one dimension, when the Watson renormalized
procedure' is applied to this perturbation series,
the self-energy can be expressed in the standard
form, "

g„„+g„,+ V,'cos(pm+ k)g =E'g„, (4)

where E' = 2E/V, and V,' = 4/V, . By using a for-
mula for the exponential decay of a wave function
due to Thouless, Aubrey' shows that all solutions
to Eq. (1) are localized for V, & 2, and all solu-
tions to Eq. (4) are obviously localized if V,' & 2 or
Vo &2.

Azbel' discusses the Kronig-Penny model, but
his ideas can be applied to the present model. To
do so, we define a position variable r=qn and a
momentum operator p =iq(6/ar) and obtain a
Schrodinger equation

where

a„=(V, cosnq —E)(-1)".

g + ~ ~ ~

5 (7)

2 cos(p) f„+V, cos(r)f„=Ef„

whose "classical" (i.e. , q -0) trajectory is given
by

If we cut off the continued fraction after n terms,
it may be written as a ratio of polynomials

M(E) = 2(P„/Q„),

E=2 ocps+ V, cos(x), (6)
where P„and Q„satisfy the recursion relation, '

where p is a t..number. It is easy to show that for
V, & 2, all trajectories are jocalized orbits (in r).
For Vp & 2 there exist only localized orbits for
IEI & l2 —V, I

and only extended orbits for E
(l2 —V, , in the sense that an electron in a clas-
sically localized orbit moves in a finite closed or-
bit and an electron in an extended orbit travels
over the whole crystal. Azbel's analysis would
show that for small but finite q the localized orbits
are quantized and the states near the mobility
edge' can become broadened into narrow bands,
but the localized classical orbits far from the mo-
bility edge stay pretty much localized. Of course,
even the extended states must possess, for
any finite q, a gap at each energy, although
most of the steps will be infinitesimally small.
Most likely all but the largest band gaps will be so
small that Zener breakdown will occur for even
extremely weak fields. In this sense, such states
may be considered extended and able to conduct:
electricity. ' Thus, we conclude that Azbel's the-
ory predicts for the present tight-binding model
the occurrence of mobility edges near +(2 —V,).

III. LOCATOR EXPANSION THEORY OF
LOCALIZATION IN INCOMMENSURATE

SYSTEMS

The condition that the solutions to Eq. (1) be
localized is equivalent to requiring that the per-
turbation theory for the self-energy M(E) of the
Green's function for Eq. (1) converge for real en-
ergies, implying that the self-enexgy does not

P„=a„P„~+P„2,
Q„=a„Q„,+ Q„„

(10)

(11)

where P, =1 and Q, =a, . We say that M(E) con-
verges if

P„1lIIl

exists. It can be shown that'

Q„Q.-i }Q.Q.-i} ' (12)

imp]ying that the continued fraction converges if
D=

l Q„Q„,l

—~ as n approaches infinity. Con-
vergence of Eq. (7) was studied using this condi-
tion and numerically iterating Eq. (11). We have
iterated Eq. (11) up to n = 1000 and, in question-
able eases, as high as n=10000, usually stopping
the iterations when D reached 1000 or more, but
sometimes letting it reach 10000. In order to be
sure that the results were free of roundoff error,
runs were made with double and quadruple pre-
cision, and the results were compared. No sign
of roundoff error problems was detected.

In Table I we see the results of such runs for
both commensurate and incommensurate values of
q, for various values of V,. Vfe see that for V,
~ 2, all states are localized for the incommensu-
rate but not for the commensurate values. To il-
lustrate the difference between the results for
commensurate and incommensurate q, consider
q=m. For this commensurate case, Eq. (7) re-
duces to
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TABLE I. Denominators for continued fraction for x space self-energy for an 1100-term
(or fewer) continued fraction.

Vp Q„Q Comment

3.141 592 7

3.1 2.1

2.1
2.2
2.3
2.4
2.5
2.6
1.8
1,9
1.95
2.0
2.1
2.2
2.3
2.4
2.5
1.89
1.9
1.95
2.0
2.1

1100
1.231 588
1.000 876 2
0.234 062 42
0.123 734 828
5.667 279 34 x 10-

1110
1141
1330
1240
1,560
2232
2240
1302
1689
1367

7.956 89
2.558 672

1166
1214

Localized
Extended
Extended
Extended
Extended
Extended
Localized
Localized
Localized
Localized
Localized
Localized
Localized
Localized
Localized
Localized
Extended
Extended
Localized
Localized
All remaining
are localized

M= 2M,

where

M= 1

E+ V, —1/E —V, —M '

or

(E+ V,)M'-(E' V,')M+E —-V, =o.

%e see from the solution to this equation

that'll

possesses a branch cut in the range

V'&E'& V'+4. (14)

these are the band energies, and the remainder of
the energies fall in band gaps. For V, ~2. 1, we
see from Table I that there are no extended states
for the incommensurate-q case close to q = m.

For V, less than 2, there do apyear to be bands,
however. At this point there is one point which
must be clarified in this procedure. When Eg. (7)
diverges, we know that there are extended states.
When Eq. (7) converges, we could either have a
localized state or a gay at that energy. To deter-
mine whether or not we have a state in an energy
range for which Eg. (7) converges, we must ex-
amine the poles of the Green's function in wave-
vector space [i.e. , Kq. (4)]. To do this, we cal-
culate the energy denominator

D =E —V,' cos(k + qm) —M'(k, E)

as a function of energy E for several wave vectors.

If D yasses through zero at a certain value of E,
we conclude that there is a state at that energy; if
D has no zeros, we are in a gay. It should be
noted in applying this procedure that a change in
sign of D does not necessarily imply a zero at an
intermediate energy; it might instead imply that
D passes through infinity. Of course, at each en-
ergy and wave vector one must check to see that
the continued fraction used to calculate M'(k, E)
actually converged. Lack of convergence implies
a branch cut at that wave vector, which certainly
implies that there exist states at the energy in
question. For V, = 1.9, states were found .in this
way at discrete energies between E = 0 and 1.84,
and for E &2.0. Thus we conclude that there are
localized states, and hence mobility edges for
V, &2.

Let us now consider the low-q limit (i.e., Azbel's
"classical' limit' ). Studies of the convergence of
the self -energy for q = 0. 1 and V, = 1.0 are given
in Table II. A mobility edge is found at E=1.0 in
agreement with the predictions of the "classical
trajectories" discussed in Sec. II. Other such
studies with different values of V, confirm the fact
that a mobility edge appears to occur at

~
E

~

= ~2 —V, ( as predicted in Sec. II. In Table II,
the same study is also made for q=0. 1 and V,
= 0. 005. The energies E & 1.996 and near 1.99
(the regions where the real space self-energy con-
verged) were tested to see whether there existed
states at these energies or whether the energies
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TABLE II. Denominators for continued fraction for r
space self-energy for a 1100-term (or fewer) continued
fraction. I,

'* signifie s a 10 100-term continued fraction. )

Q„Q„ g Comment

0.1 0.005

0
0.3
0.5
0.7
1.0
1,1
1.3
1.6
1.8
2
2.2
0
0.2
0.5
0.7
0.9
1,0
1.2
1.5
1.8
1.9
1.98
1.988
1.989
1.g9
1.995
1.996
2.00

0.354 030 7
0.509 039 2
5.832 434 5
0.302 891 87
0.296 03

1434
2517
1284
3586
2916

. 1665
1,267 931 x 10"2

0.335 7g1 39
4.792 936 06 x 10
0.588 492 6
0.796 613 3

.0.995 106
0.749 582 98
0.249 959
4.140 527 7
0.775 996
8.579 779 39

55.273 8
*93.605 5

1131
5.062 358 4

1102
1233

Extended
Extended
Extended
Extended
Extended
Localized
Localized
Localized
Localiied
Localized
Localized
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Extended
Localized
Extended
Localized
Localized

I

were in gap regions. States were found at dis-
crete energies between 1,.996 and 2. 0, but none
were found around E = 1.99, indicating an energy
gap. Similar studies were made with other small
values of q and V, which also seem to indicate
that there are localized states and bands of ex-
tended states separated by gaps. This implies
that the mobility edge that occurs in the small-q
limit is due to low-order energy gaps coalescing
near the band edges as q -0, giving rise to many
very flat bands separated by many small-gap re-
gions in the small-q limit. The higher-order
gaps, which occur away from the band edges ra-
pidly decrease in size with increasing order, be-
coming negligiMe in the "classically accessible re-
gion. ' The implication is that it appears as if,
for small but nonzero q, there does not exist a
mobility edge. Rather, we get a collection of ex-
tremely narrow bands in the "classically inacces-
sible region. "

The incommensurate system described in this
article, like a disordered system, has no transla-
tional order. Unlike the disordered system, how-
ever, for which all states are localized in one di-

1

E-v(%+a, +%,)-M, , '" ' (16)

where included in the sum are only self-avoiding
random walks starting and ending on site R, and
where the Mf 2 3 „have the usual meaning of
being the sum of paths returning to site n without
passing sites 1, 2, . . . , n at any intermediate point
along the way. Because of the incommensurate
nature of the system, no two denominators will be
equal. ' Thus for almost all energies, there will
be no divergences of the perturbation theory for a
finite system; divergences only occur for an in-
finite system for which there are infinitely many
terms in the series. The possibility of divergence
of Eq. (16) for an infinitely large system may be
tested by examining the convergence of the geo-
metric series whose ratio is the geometric mean
of the reciproca, l of an energy denominator in Eq.
(16)." As is the usual procedure, the self-en-
ergies of the energy denominators of Eq. (16),
assumed to be well behaved and not having an ef-
fect on the convergence of Eq. (16), are neg-
lected. ' ' Then the geometric mean of an energy
denominator D(E) is defined by

(no(E( = —f d'(((n(z —U((() ~,

where the integral is taken over a volume 0 (5 is
treated as a continuous variable), where 0 is the
unit cell of potential v(R), i.e., the smallest vol-
ume over which v(K) takes on all its possible val-
ues once. Then, the geometric series that we wish
to examine is

mension, the incommensurate system appears to
have a sharp transition from a phase in which all
electric states are localized to one in which most
states are extended, as a. function of the strength
of the second periodic potential.

One of the advantages of the formulation of the
incommensurate lattice problem in terms of loca-
tor perturbation theory used in the Anderson lo-
calization problem is that the same method ean be
applied in two and three dimensions. Consider the
following two- or three-dimensional generalization
of the equation of motion [i.e., Eq. (1)]:

Z,f(H+%)+ v(%)f(%)=Ef(5), (15)

where 17 is any lattice vector, 'K is a near-neighbor
lattice vector, and v(5) is a periodic potential in-
commensurate with the lattice (i.e., having no
reciprocal-lattice vectors in common with the lat-
tice). Then, the perturbation theory for the self-
energy of the Green's function of Eq. (15) can be
written, using standard methods, ' as

1
M(f E)=Z Za g I
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E„[KD (E)]",
which converges for

D(E) &K,

(1S)

(19)

where K" is the number of self-avoiding walks of
n steps. To correct for the neglect of the self-
energy terms in the denominators, we replace K

by z, the number of near neighbors. ' This guar-
antees that for v(R) set equal to 0, the band edges
occur at +z, as they must in the tight-binding
model.

As an example, let us apply Eq. (19) to the two-
dimensional square lattice. The geometric mean
of the energy denominator is given by

a/2 O/o 27r 2r
lnD(E) = —, dx dy ln E —Vocos —x —V, cos —y

1 2f 2f
d6 dy Ini E —Vo cosy —Vo cos&

i(4w '

dy ln
1 lE —Vocos@) j ~ o &/2 pl 0+-', [(E —V, cosy) —V,'] ~' + —' ln —, (20)

where

cos y, = (E —V,) /Vo (21)

for E~ 0. For E=O, D(E)= V,/2, and Eq. (19)
shows that there are localized states for V, & 2z.
As E moves away from the center of the band,
D(E) increases, making it easier to get localized
states. Thus, from Eq. (20) we see that

V,/2 &D(E) &2V, . (22)

IV. APPLICATION TO AN EXPERIMENTAL SYSTEM

This implies that for z/2 & V, & 2z there exist mo-
bility edges (that is, there are localized states
nearer to the band edges and extended states near-
er to the band center). It is not difficult to show
that similar results occur in three dimensions.

In conclusion, the analysis presented here shows
that in one dimension there is a transition from all
states localized to most states extended, at a
critical value of V, . In two and three dimensions,
there is a critical value of V, above which all
states are localized. For smaller values of V„
there exists a range of values of V, for which
there are localized and extended states separated
by mobility edges. For smaller values of Vo, all
states are extended.

I

containing a periodic potential incommensurate
with the main lattice potential and comparable in
strength to the width of the conduction band. The
samples should be pure enough so that the effects
are not masked by localization effects due to im-
purities.

A system to which the one-dimensional results
should be applicable is a metallic or semiconduct-
ing system with a superlattice. " For example,
consider the following tight-binding model for such
a system:

Z~ f(5, +'K„z)+f(5„z + b) +f(5„z —b)

+ v(z)f(R„z) =Ef(H„z), (23)

where 0„ labels positions of sites in atomic planes
perpendicular to the modulation axis (the z axis),
K, labels near-neighbors in a plane, 0 gives posi-
tions of neighboring planes, and v(z) is the period-
ic modulation potential. The Fourier transform
in the H, coordinate gives

g(k, z+ b)+g(k, z —b)+ v(z)g(k, z)

=[E-e(k)]g(k, z), (24)

where

g(k, z) = Z„- e"'"~y(%„,z),

The present theory should be appropriate to
metallic systems, with charge-density waves, in
which the charge-density wave does not eliminate
the entire Fermi surface. This is the case in the
dichalcogenides, which are quasi -two-dimensional
systems. ' Most likely, however, the potential due
to the charge-density waves is not strong enough
to cause the predicted localization effects. As
suggested by Azbel, the mercury chain compounds
mould be good candidates for looking for such ef-
fects. '" In general, the effects discussed in this
article should be observed in any meta. llic system

e(k) = r~ e'"'".
From Eq. (1) and the previous section, we predict
that for potential v(z) stronger than a critical val-
ue there is localization perpendicular to the modu-
lation, meaning that the system becomes a two-
dimensional conductor. For weaker. v(z), there
could be apparent mobility edges (since the mod-
ulation potential v(z) has period much longer than
a lattice constant) for conduction perpendicular to
the modulation planes. Although in such super-
lattice systems the modulation potential is usually
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commensurate with the lattice potential, if its
period is many lattice constants long, it can be
considered incommensurate for all purposes.

Another important application of the one -dimen-
sional model is the application to an electron mov-
ing in a periodic lattice and in a magnetic field. '
The fact that Eq. (1) has a continuous density of
states in a regime in which the self-energy in k or
r space has branch cut, however, does not mean
that the discrete (and possibly "devil' s-stair-
type") spectrum predicted by Azbel for cyclotron
resonance, de Haas-van Alphen effect, etc. , does
not occur. Azbel's effects are simply restricted

to the region in which there are discrete states,
(i.e., Landau levels).
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