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As a model for the growth of silver aggregates on the surface of silver halide crystallites, we have studied the
following problem: Independent ions perform random walks on a closed two-dimensional lattice containing,
initially, one trap; when a walker reaches a site adjacent to a trap, that site itself becomes a trap. Several
simplifications are necessary and justifiable to enable us to use standard random-walk theory: they include replacing
the actual crystallite surface by a toroidal one, averaging over all starting points at an early stage, and replacing the
irregularly growing cluster by a simply shaped one. Upper and lower limits on the rate of cluster growth are

obtained, and results are fitted to experimental observations.

I. INTRODUCTION

The problem we should like to solve is the fol-
lowing: We are given a closed two-dimensional
lattice (such as the surface of a small crystal)‘
and particles are performing random walks on it,
hopping at prescribed times from the site they are
on to a nearest-neighbor site. One of the sites
on the lattice differs from the others in being a
“trap,” which means that when a particle steps
onto it, the walk ends, and the site from which the
particle stepped onto the trap becomes itself a
trap. The number of traps will thus grow as time
goes on, depending on the renewed supply of walk-
ers. We want to calculate the speed with which the
cluster grows.

The physical motivation for studying this prob-
lem is provided by recent experimental work'"
which deals with the formation of metallic silver
clusters on the surface of silver halide crystallites
by ions believed to perform a random walk there.
The physical phenomenon is, of course, basic to
the photographic process as well of intrinsic phy-
sical interest. Also, the general problem of the
formation of metallic clusters on a substrate is
one of the key issues in the study of catalysis.*

The concept of “trapping times” or “first pas-
sages”®® is a familiar one in random-walk theory;
however, there are sufficient complexities in the
present problem to put a complete solution well
beyond our reach, even though the solution to sev-
eral simpler problems is known either explicitly
or at least formally. Our aim will therefore be
to solve several related but simpler problems and
to demonstrate that the problem we are really
concerned with is bounded on one side or the other
by one of those. We will thus be able to get a
good idea of the nature of cluster growth even
though we cannot hope to get a direct solution.

One of the “simplifications” that we make almost
throughout this paper is the assumption that the
walk takes place on a lattice on the surface of a

torus rather than the surface of a cube or of a
sphere. The reader may wonder why a torus con-
stitutes a simplification over these other surfaces
but can be assured that, mathematically, it is for
the following reason. In the past, a considerable
number of problems, in solid-state physics as
well as in random-walk theory,”® have been solved
by the use of “cyclic boundary conditions,” condi-
tions which in effect amount to replacing a cubic
space in #» dimensions by an #-dimensional torus.
Under ordinary circumstances this is recognized
as a flaw which must and, in most cases, can be
shown to be of negligible effect. (For example,
when the size of the lattice approaches infinity,®

it is usually easy to show that the “cyclic boundary
conditions” do little harm.) Conversely, in these
“ordinary” problems it is recognized that the solu-
tions obtained with cyclic boundary conditions do
not approximate reality well when the total num-
ber of lattice sites is not large. For our problem,
we have therefore been able to make a virtue out
of this earlier necessity: Results which are valid
on toroidal surfaces not only exist and are ready
for our use, but they also are likely to be a much
better approximation to the closed surfaces we are
interested in than results for an infinite open plane
would be.

In Sec. II, we will discuss the single trap on a
torus, quote the formal expression for trapping
times and moments, and evaluate them. We will
also average these expressions over the starting
points. Section III is somewhat of a digression,
establishing a result that greatly simplifies the
later calculations: the fact that trapping times are
only weakly dependent on the starting points. In
Sec. IV the first two mean moments are evaluated
explicitly and an effective distribution function is
constructed from them. In Sec. V, we consider
two additional solvable models (in which traps are
located either randomly or along a straight line).
Section VI summarizes four solvable models that
we have obtained and establishes their relation to
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our physical problem; in Sec. VII the most inter-
esting two such models are evaluated in detail and
the physical conclusions drawn. Results are sum-
marized in Sec. VIII.

" II. A SINGLE TRAP ON A TORUS

We shall study random walks of a particle on a
two-dimensional lattice of N? sites (N in each di-
rection), with opposite ends identified; that is to
say, on two-dimensional toroidal surface. (Gen-
eralization to a surface of N; by N, sites would
not be difficult.) For computationé.l purposes, we
assume that all sites are alike—no traps are pre-
sent —but we will soon see that some results will
apply directly to a lattice with one trap. We de-
fine two related quantities: the probability f,(%)
that a particle starting at the origin(0, 0) at step 0
will step onto site X= (x,, x,) for the first time at
step #, and the probability p,(X) that such a parti-
cle will step onto X at step # (not necessarily for
the first time). The quantity f is the one of impor-
tance to our physical problem, for Z}nnfn(i) is
equal to the *mean trapping time” on a lattice
which has one trap, located at site X. It is the
quantity p, however, which can be calculated more
directly.

It is mathematically convenient to define generat-
ing functions for f and p:

P(%,8)=2_s",(%), (1)
n=0

F(&,5)=Y s",(%). 2)
n=l

(Note the different lower limits.) Once P and F
are known, the p and f can be recovered from (1)
and (2), but in fact this will not be necessary; F
alone will give us the information we need. F and
P are found to be related by

F(%,s)=[P(%,s) - 055]/P({,s) (3)

as is shown in Appendix A. P can be obtained by
finding the solution to the difference equation

pm-l(xl’xz) =§[pn(x1 + lyxz) +pn(x1 - lyxz)
+p,,(x1,xz+1)+pn(x1,x2—1)] (4)

obeyed by the probabilities p subject to the bound-
ary conditions

Dalxy + BN, x5+ RoN) =p (%, %,) (5)

(where &, k, are integers) which imply that we are
working on a toroidal surface, and the initial con-
ditions

Po(i) = 5::106:(20 (6)

which states that the walk starts at the origin.

The result is!®
) N-1 N-1

P(%,5)=N=2 3 o2 ¥/ N /(1 _s)) G

7120 7550
with
A =3(cos8, + cosb,),

6,=2mr,/N, 6,=2mr,/N, T=(r,7,);

(8)

the derivation is indicated in Appendix B.

The fact that P(X,s) diverges for s =1 implies
that 23p, is infinite —which is expected (because
in a finite lattice, any point will eventually be
visited an infinite number of times). However,
F(i,s):P(B’c,s)/P(f),s) must be, and is, finite.

While (7) formally evaluates F [via (3)] as well
as P, it does not reveal the functional dependence
of the trapping probability f on either time or
starting points very transparently. Accordingly,
we try to obtain a distribution function, and com-
pute the moments (i.e., the mean values of the
powers) of the trapping times as a first step. It
is now convenient to redefine p (%) [and £,(¥)] as -
the probabilities for [fix;st] passage from X to 0 at
step % (instead of from 0 to X). On account of the
symmetry of our lattice, this is a purely linguistic
change with no mathematical consequences.

The kth moment of the trapping time is defined
as

(R = 2 (%) . )

n=0
By differentiating (2) with respect to s and then
setting s equal to 1 we find

(X =FO(%,1), (10)
(X =FP (X, 1)+ py (D), (11)

where

F®(%,s)=d*F(%,s)/ds*.
Let us split off the singular part in (7),

P(%,s)=N"(1 -s)* +H(%,s)]. - (12)
where
HE,s)=2.0 e ™3/ /(1 _g3), (13)

where the prime indicates omission of point (0, 0)
from the summation. Then, for any X#(0,0), (3)
can be written

F(%,s)=[1+(1 -s)H(E,s)]/[1+ 1 -s)H(,s)].

For s close to unity we can expand the denominator
and obtain

F(X,s)=1- (1-s)K(X,s)

+(1-5)2H(D,s)K(X, s),
where
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K(%,s)=H(0,s) -H(X,s). (14)
Differentiating this yields the quantities on the
right-hand side of (10) and (11), which become

(R =[1+2HO, 1)) K(%,1)+ ZéigK(i,s) ol

(16)

We will also need the mean moments ﬁ, averaged
over all starting points X, ;=N -2'23,12),2 (%), In
Appendix C we find that the averages of the H(X,s)
terms are exactly zero, and only the H(?),s) terms
contribute. We therefore have

leH, (17)
T,=H(1+2 H)+27, (18)
with

A=3.2.'1/1-2),
IJ=32. 3 -0

Many of the expressions derived in this section
are evaluated by both exact and approximate
methods in Appendix D.

(19)

III. THE IRRELEVANCE OF STARTING POINTS

This section may seem peripheral to the main
trend of the paper, since it provides only a non-
quantitative insight into the functional dependence
of trapping times. In fact, the result we obtain
is essential towards allowing us to proceed furth-
er. What we show is that the trapping times do not
depend strongly on the distance of the starting point
from the trap.

Qualitatively, the essential result appears from
the approximate expression (D22) for the first mo-
ment (the mean trapping time) derived in Appendix
D:

1, (%) = (N?/m)[1n R? + 7] (20)

[where we have omitted terms O(N “?) in the brack-
ets]. The major qualitative conclusion—that de-
pendence is strong on the linear size N of the lat-
tice (quadratic) but weak on the starting distance
R from the origin (logarithmic) —is immediately
apparent. This is not only confirmed, but
strengthened by Fig. 1 which shows Eq. (20)
(solid curve) for fixed N=50 as well as some
points exactly computed by direct summation of
(19). [For example, the point shown at R=2 cor-
responds to starting point (x,,x,) =(2,0); that
shown at R=12.72=v162 to starting point (x,,x,)

Hi {x)
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FIG. 1. Mean trapping time versus starting point.
The straight line is the approximate analytical expres-
sion (20). The points are exact numerical values from
direct summation of (19): circles show starting points
along the axis (x,=0), squares show starting points along
the diagonal (x,=x;). Inboth cases, R=(x}+x})!/2,
The lattice size is fixed, N =50.

=(9,9).] The first observation is that (20) repre-
sents the data quite well except when |%| ap-
proaches N/2, for reasons given at the end of
Appendix D. In that region, the true points fall
below Eq. (20), making the R dependence even
flatter than logarithmic. We thus see that for any
given N, u,(%) will vary only slightly from N?-1
(as noted in Appendix D): by (N?/m)1ln(N?/2) at the
most.

The weakness of the x dependence of the trapping
time is more convincingly demonstrated by Fig. 2
which shows u, as a function of both starting point
and lattice size. The independent variable is N,
the linear size of the lattice, and three mean trap-
ping times are plotted: for starting point (5, 25)
=(1,0)—as close as you can come to the trap, by
Eq. (D12) (circles); for starting points (x,,x,)
=(N/2,N/2)—as far away as you can get from the
trap, by numerical evaluation of Eq. (15) via (14)
and (13) (squares); and the mean for all starting
points, Eq. (D18) (solid curve). The closeness of
the points for any given N will probably surprise
some readers. The “maximum?” trapping time is
almost indistinguishable from the mean trapping
time; the deviation of the minimum trapping time
from the mean, small as it is, must be further
discounted by noting that on a two-dimensional
surface, only few starting points are near the or-
igin (viz., the area element is 2mpdp, not 2wdp).
More qualitative discussion appears in Appendix
E.

In further work, deviations from the mean will
be of the essence; We will, for example, establish
a distribution for trapping times. What the work
of this section convinces us is allowable is, of
course, not to ignore the effect of different start-
ing points entirely, but to average over them be-
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FIG. 2. Average time to trapping for different start-
ing points. Circles: start at (1, 0)—nearest point.
Squares: start at (N/2, N/2)—most distant point.
Solid curve: averaged over all starting points.

fore computing such distributions rather than af- .
ter. This is fortunate, since otherwise enormous
complexity would have to be overcome to make
progress.

IV. SINGLE TRAPS: MEAN MOMENTS AND
EFFECTIVE DISTRIBUTION

Accordingly, the mean moments, averaged over
starting points, as given by (17) and (18) are the
only ones we will need. With (D18) and (D19) they
become, to sufficient accuracy,

%, =(2N2/m[In N+ 0. 306 39], (21)
= (8N*/7®)[InN)?+0.6126 In N + 0. 1486]

2
+%[31nN—0.4576], (22)

Next, we attempt to construct a distribution func-
tion g(¢) for the trapping time. This may seem
overly ambitious since we have only the first two
moments (instead of all of them); but we do have
additional information—viz., the distribution is
0 at £=0, approaches 0 slowly as {=, and has a
peak in between. It therefore seems plausible to
try a linear combination of functions "¢~ with

n=1. This turns out to be impossible because,

as shown in Appendix F, for any such function 1,/
U3 is smaller than 2, whereas (21) and (22) require
that this ratio be slightly but significantly larger
than 2. Now physically, that ratio is the “spread”
or variance, properly scaled, of the distribution.
Accordingly, we must look for a function with
greater variance. The functions ¢"2~*° have that
property and are in Appendix F shown to be suit-
able. The result is

gt)=(ar/e)(1+ gr)e™7", (23)
with

T=t/t, (24)

£=NZnN, (25)

®=917.63,

B=2.6465, (26)

y=49.29,

a function that is normalized, satisfies (21) and
(22), and has all other properties that can reason-
ably be demanded.

V. TWO ADDITIONAL MODELS

The two models considered in this section are
quite different from what is treated in detail in the
rest of the paper. This does not signal abandon-
ment of all the work done up till now, but merely
our interest, explained in Sec. I, in having dif-
ferent solvable models to compare the situation of
interest with.

A. Randomly located traps

We consider briefly a model* of randomly lo-
cated traps on a two-dimensional lattice. While
the model is most simply described on an infinite
plane, results will also apply to a good approxima-
tion to random traps on a torus if the torus is big
enough to contain more than just a very few traps.
The mean time to absorption is given by

T= 2 tq[ V() - Vit = 1)](1 — )7 ¢, (27)

t=l
where ¢ is the density of traps and V(#) the number
of distinct sites that would be visited in ¢ steps on
a lattice without traps. This quantity is given' by

V() =nt/Int . (28)

See Appendix G for details. (27) can be evaluated
by a combination of analytical and numerical meth-
ods; the result is shown in Fig. 3 (solid curve),

-A good analytical approximation to this is given by

the individual points shown in Fig. 3, which repre-
sent the equation
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FIG. 3. Trapping times for random traps on a square
lattice. See Sec. VA for details.

L,=(1/mg)[-lnmg +1 -C) (29)
with C=0.577216 (Euler’s constant).

B. Picket fence

Another useful solvable, though not directly ap-
plicable, model is the “picket-fence” model: a
line of adjacent traps completely encircling the
torus [Fig. 4(a)]. Figure 4 shows, and its caption
explains, that this is completely equivalent to in-
finite strips, a distance N apart, of adjacent traps
on a plane.. The solution to the latter problem is
known'?; the probability of absorption at step #,
averaged over starting points, is

N-1

p,=(2/N?) Z x"

7=1,3,5,...

(a)

O o)
(b)

(c)

(d)

FIG. 4. Picket-fence model: equivalence of two
realizations. (a) Line of traps on a torus. (b) Torus
has been cut along a meridian, and straightened. (c)
Torus has been cut again, along line of traps, and un-
rolled. (d) Strip extended to infinity to simulate the
original periodicity.

. . 2 e
with x=¢ /2" The mean absorption time is
therefore

o

ﬁlzz np,

n=l

2 o .
=Tz Z Z’nx".
N 7=1,3,5,000 M=

The 7 sum sums to 1/[2 sinh(r2a)]* where a =72/
8N? is small; hence only the first few terms in the
¥ sum contribute substantially, and these can be
approximated by the first term in their Taylor
series:

— 1 . -
#125‘1@0‘2 Z r

r=1,3,...

= 0.3332N2.

VI. SUMMARY OF DIFFERENT MODELS;
BRACKETS FOR REALITY

At this point, we have in effect obtained mean
trapping times for four situations (and more detail,
such as second moments, distribution functions,
etc., for some of them). They are worth sum-
marizing.

Model 1. A single trap on a torus, Eq. (21):

T,=(2N?/m[InN + 0. 306 39]. (31)

The density of traps is g=1/N?2,
Model 2. Randomly located traps on a plane or
torus, Eq. (29):

p,=@1/mg) -lnmg+1-C]J. (32)
Model 3. A picket fence of traps:
©,=0.3332N2, (33)

The density of traps is g=N/N2=1/N,

Model 4. Periodically repeated traps on an in-
finite plane (i.e., the traps form a simple cubic
lattice on an infinite plane, which is entirely equi-
valent to a simple cubic lattice on a large torus,
and also equivalent to a single trap located on a
smaller torus). The formula is quite the same as
in model 1, except that we must reinterpret N, the
linear size of the real torus, to N’, the linear dis-
tance between traps:

T, =(2N"2/7)[InN’ + 0, 306 39] (34)

with N’ =1//q.

Model 5. This is the label we put on what we
are interested in but have not solved: a compact
but irregular cluster of traps.

What we can show about model 5 is that it is
bracketed in between the others: Model 1 leads to
a smaller trapping (and growth) rate, models 2,
3, and 4 to faster ones. The proof for this goes
as follows: Consider the 4’ walks of j steps that
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would be possible on a “perfect” (i.e., trap-free)
lattice, and among them the subset that ends by
trapping (i.e., first passage through a trap) at step
j. If traps are far apart, or as long as j is small-
“er than the trap separation, that subset is simply
proportional to the trap density, i.e., each trap
acts separately, no walk ending at step j at one
trap could possibly have passed through another
trap earlier. But when the traps are close togeth-
er, this is no longer true: A walk making a first
passage through trap # might have been at trap &
earlier and thus terminated earlier. So doubling
the number of traps will less than double the num-
ber of walks ending at step j. We say that “inter-
ference” between traps reduces the amount of
trapping, and lengthens the mean duration of the
walks. So the question is, given an overal density
g of traps, how much interference does each of the
five situations above provide?

We argue that model 4 provides the least inter-
ference because the traps are as far apart as they
can get. Model 2 will provide somewhat more,
because with a random arrangement some traps
will get close together and tend to interfere more.
Model 3 provides a great deal of interference (each
trap is interfered with by a neighbor for 2 out of 4
otherwise possible walks), but model 5 provides
even more (3 out of 4 walks are interfered with for
sites on the surface of the cluster, but for sites in
the interior of the clusters, it is worse, viz. 4 out
of 4: the “trap” in the interior is wholly inaccess-
ible.) The only model that overestimated the inter-
ference is model 1 with all of the traps arbitrarily
piled on one site (thus approximating the whole
cluster by just one site).

Models 1 and 4 are the ones for which we have
the most information, and they provide upper and
lower bounds for our physical situations. Ac-
cordingly, they are the ones with which we pro-
ceed.

VII. SOLUTIONS
A. Model 1

We define W(¢) as the number of walkers at time
t on an N XN toroidal surface with one trap. At
t=0let W=W, and at time ¢, let A(f) walkers be
created in the time interval df. On the other hand,
W,og(t)+ [ At*)g(t - t*)dt* will be lost by trapping,
because, according to Sec. IV, walkers created at
t* will be trapped at time ¢ with probability g(¢
—1t*). Accordingly, W satisfies the differential
equation

AW =[A@t) —h(t) - W, g(t)ldt (35)
with

h(t):j: dt*A(t*)g(t — %) (36)
subject to W(0)=W,. Its solution is

W(t) - W, = fo CALAE) - Wogt) —h@)].  (37)
We evaluate this for A(¢) =%, a constant creation

rate (though more complicated creation functions
would also be tractable). Then

W) =Wy1+ct - F,(t) - cF,#)], (38)
where
c:k/Wo) ! 39)

t
FO=[ g@ar,

. (40)
F0= [ B @har.

The expressions (41) can be integrated out in
closed form, given in Appendix I. The number

of walkers at time ¢ if no traps were present would
be W(¢)=W,(1+ ct); hence the other terms on the
right-hand side of (39) are the walkers that have
been trapped. On the assumption that each trapped
walker becomes itself a trap, the number of traps
V() is

V() =1+W, F,(t) + kF,(), (41)

the first term being the trap that was there to
start with. (Note that in this model, lattice size
and trap density both remain constant and are
simply related by ¢==1/N2.) Results of evaluation -
of (42) for various parameters are shown in Fig.
5; see Fig. T also.

c=10"*

10r c=10"%

. . r , C=0
1 2 3 4 5 6 105t

FIG. 5. Model 1. Walkers trapped T versus step
number £. c¢ is the number of new walkers created per
step. Initially one walker is present. N =100.



B. Model 4

In Sec. VIIA we calculated the number of walk-
ers trapped by time {. According to our original,
physical model of Sec. I, each walker trapped re-
sults in the creation of a new trap in the vicinity
of the old one; this fact was ignored in Sec. VIIA
(only at the end, the number of walkers trapped
was equated io the number of traps created).
Here, we take account of it as we go along.

We do not do so exactly, for the effect of an ir-
regular cluster of traps is not tractable mathe-
matically. Rather, we adhere to the “one trap on
a torus” picture, but take account of the increas-
ing trap density by in effect shrinking the torus
appropriately whenever a walker is trapped.
(“Appropriately” here means simply identifying
1/N? and the trap density g.) As noted in Sec. VI,
this will overestimate the effect of the traps (be-
cause in this model they are distributed not real-
istically in a cluster but far away from each other,
where they work with the least possible inter-
ference from the others); this is good, because in
Sec. VIIA, their effect was underestimated.

If we start with W, walkers and create kdf of
them as time passes, their total rate of increase
will be

AW =[k - W,g(t) - h(t))dt, (42)

where

t
n(t, N@) = f dt*gt —t%,N(2))

=kf'dsg(s,zv(t))

can be evaluated as in Sec. VIIA: k walkers are
created during df, but a fraction g of the original
ones and a fraction % of the ones created during
the walk, are lost by trapping. Since for each
walker destroyed, one trap is created, the num-
ber V of traps obeys the similar equation

dv=[W,g(t,N)+n(t,N)dt . (43)

We have explicitly indicated that g and % depend on
the lattice size N, according to (23) and (39). The
crucial step that takes account of the physical ef-
fect of the growing cluster size is now to identify
N onthe right-hand side with (N2/V)'/2:

dv=[W,g(t, NNV)+h(t,NoNV)]at . (44)

N2 here is the “original” —that is to say, the actu-
al—number of sites in the lattice. In effect, (45)
asserts that the distribution function for V traps
among N2 sites can be approximated by that for
one trap among N2/V sites. (In Sec. VIIA we
simply used N2 instead of N2/V.)

This differential equation can now be integrated
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numerically, step by step, stafting with the ini-
tial condition V(0)=1. Results for various values
of the parameters N,, W,, and %2 are shown in
Fig. 6.

C. Relation to experiment

Figure 7 shows one experimental growth curve
of absorption versus time? together with one at-
tempt each to fit it by models 1 and 4 above. We
found that model 4 as described above is alto-
gether too efficient in providing an upper limit—a
curve chosen to fit experiment at early times soon
rises much too rapidly. Accordingly, we replaced
the relationship N2=N2/Vby N2=N2Z - V; this
says that the walk on the sites that have not yet
become part of the trap cluster can be approxi-
mated by one on a square lattice of the same num-
ber of total sites. The effect of this change in N
is a good deal milder, as might be expected, and
fits experiment better, but can no longer be con-
fidently expected to provide an upper limit. The
parameters that provide the fit are given in the
figure caption. Though the fit is encouraging,
these values should be considered preliminary;
realistically, for example, one experiment in-
volves crystallites of many sizes, which should
be averaged over in the calculation. However, it
can be pointed out that certain characteristic fea-
tures of the experimental curves—e.g., the in-
creasing initial slope followed later by satura-
tion—were not previously reproduced by simpler
models; see discussion of Figure 11 in Ref. 2.

Two bits of physical insight may be gained from
Fig. 7. Although both model 1 and model 4 give
fairly good fits to the growth curve, the parame-
ters required to fit model 1 result in a cluster
size which is an order of magnitude smaller than
expected from optical measurement, whereas the
parameters for model 4 are entirely reasonable.

5 10 15 20 25 30 35 40

10°t
FIG. 6. Model 4. Traps created T versus time ¢.
Parameters as in Figure 5.
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| | |

N

4 6 8
time (microseconds)

FIG. 7. Curve: growth of absorption (experimental).
Squares: Theory, model 1. Lattice of 200 by 200 sites;
108 walkers to start; 4 walkers created per microsecond;
42860 steps per microsecond. Circles: Theory, model
4. Lattice of 200 by 200 sites; 1080 walkers to start;
no walkers created later; 47400 steps per microsecond.

This suggests that the shape of the growth curve
is determined primarily by the change in trapping
cross section of the growing cluster. The source
term included in model 1 may be considered as a
simplified representation of the diffusion of Ag
from the bulk to the surface of the particle. In
practice this term would vie with the effect of
changing cross section for control of the growth
rate. Parameters shown in Fig. 7 (model 1) im-
ply that even in the extreme case where the latter
effect is ignored, the diffusion path would account
for only a small fraction (<20%) of the Ag ar-
riving at the cluster. This appears to be consis-
tent with results obtained by simulating the de-
pendence of growth rate on particle size.*

VIII. SUMMARY

We have tried to model a physical situation that
has been previously studied experimentally*~3:
nearly spherical small particles of silver halides
become absorbent to visible light within a few
microseconds after being irradiated by a short
uv pulse. Is is postulated that the pulse produces
photoelectrons which combine with Ag ions to form
atoms on the surface, that the absorption results
from the aggregation of these in a cluster, and that
the rate of cluster formation is determined by the
random (rather than directed) motion of the Ag on
the surface. (It should be noted that the detailed
mechanism by which this process occurs is still
the subject of considerable debate in photographic
science.!®) We first replaced the (approximately)
- spherical surface by a toroidal one; this enables
us to use and, where necessary extend, the many
exact results that exist for random walks on these
apparently esoteric surfaces. We went to some

trouble to convince the reader that the starting
point for the walk does not have much effect on the
time it takes to get to the cluster (if one walks
randomly it takes a long time, even if one starts
nearby) and thus felt justified in averaging over
starting points before constructing a distribution
function for trapping times rather than after. The
feature most resistant to any tractable approxima-
tion was the expected irregularity of the growing
cluster; several approximations were tried and
though lower and upper limits to cluster growth
were obtained, the latter is not close enough to
reality to be useful. The best fit to experiment
was obtained with a model in which the lattice

size was decreased as cluster growth removed
sites that could be walked on. The final results
(Fig. 7) give parameters consistent with some ob-
servations; however, observations under dif-
ferent experimental conditions and fits to them
must be made before we can be confident of their
physical significance.
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APPENDIX A: DERIVATION OF EQUATION (3)

This appendix should clarify the derivation in
Ref. 10, which contains several typographical
errors. In order to be at point X at step #, a
walker must have first reached that point at some
step j <# and then returned to it in # —j steps:

p,<§)=;m§)p,-j(6> X

[ p,(ﬁ)*was defined as the probability of returning
from 0 to 0 in steps, but because all points in
our lattice are equivalent, it is also the probability
of return from any point X to the same %.] If we
operate on this with 2% s", the right-hand side
becomes, after a little algebra and the use of (1)
and (2), F(%s)P(0,s), while the left is P(%,s)
-p4(X,s) or, using (6), P(X,s) - 083;. Equating the

_ two yields Eq. (3).

APPENDIX B: ESTABLISHMENT OF P(,s),
EQUATION (7)

Let us first justify the basic difference equation
(4). It says that there are four ways of getting to
point X at step »+1: one must be at one of its
four nearest neighbors at step #, and once one is
there, the probability of getting to X on the next
step is §. Now operate on (4) with 2;7s". On the
right-hand side we get $P(x, +1,x,,s) and three
similar terms, and on the left
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Es "Dpaa(X) = Zs"dpnu— (2 s"p, "Po)
0
which with the use of (1) and (6) becomes (1/s)
X [P, s) - 633]; so (4) becomes
P(%,s) -1s[P(x, +1,x,,8) + P(x, - 1,x,,8)
+Hx,,x,+1,8) +Px;,%x, - 1,8)]=0bg5

(B1)
]

Performing the same operation on (5) gives
P(x, 4N, x, +k,N,s)=P(x,,x,,s) . (B2)

Deducing the solution of (B1) and (B2) is a little
involved,!® but verifying that (7) is in fact a solution
is straightforward. (B2) is satisfied because the
x’s appear in (7) in the exponential only, which are
periodic with period kN for any integer k2. For
(B1), we compute from (7) that

P(x,+1,8)+P(x, - 1,x,,8)=N ’222 (e7Tirutsl) 4 pPrira(u-D)p2rira®y /(1 _ Ls(cos 6, + ¢ 0s6,)]

2 coS2my Xy e S

:szzl —(s/2)(cosb, + cosé )

so that (B1) becomes

N-1 p-1
ezrlf-i:N25 5

%707%x50
71=0 72=0 i 2

or, separating variables,

=1

N
Z; ezﬂrx =N530 ,
r= {

a representation of the Kronecker delta which
many readers will recognize and all can verify.
This shows that (7) is indeed the solution of (B1)
and (B2), and hence also of (4), (5), and (6).

APPENDIX C: AVERAGE OVER STARTING POINTS

The average of H(X,s)
from (13),

over starting points is,

zﬂf *X/N

(H(%, S))~—N'ZZZZE (T=sx) "

X1 X3 71 72

Upon exchanging the order of the X and T summa-
tions, this becomes N 2%, 7, (1 —sA)™*F (,)F(r,)
where F(r,) is 23§75, @"*"**1/¥ and can be summed
to give 5, ,. But the point (r,,7,)=(0,0) is pre-
cisely the one which is omitted in the » sums.
Therefore ( H(%,s)); vanishes.

APPENDIX D: EXPLICIT EXPRESSIONS FOR
) SECTION II

Here we obtain analytical approximations to
H(%,s) given by (13) and J, its derivative given by
(19) in the limit of s close to 1. We do the work
separately first for large x (but find that the ex-
pression obtained works surprisingly well for
small but nonzero x as well); and then for x=0.

For nonzero x, we write (13) as

N/2

’ B3
H(i,s)—z > (—f‘TM (D1)

‘1' 2==N/2

|

with 6 given by (8). Use the identity a™ = [ due™*
for a=1 -s), interchange the order of summations
and integration, and write

s=1-€¢, €=1-s. (D2)
This gives
H()’(,S):fqdue'e“Q(s,i,u), (D3)
)
where
Q(s’;{,u):z‘z ’e-u-e> Fueib-; (D4)
with

F=1-x=f(6,)+5(6,), f(6,)=%(1-cosb,).

Since the sums are finite ones, no convergence
difficulties can arise. In the limit e— 0 of interest
to us, @ becomes independent of € and the sums
can be replaced by integrals, yielding

Q(l—€,%,u) =(N/2m)%G(x,,u)Glx,,u) , (D5)
where
G(x,u) :f'dee'“f“”g‘*". (D6)

Now (D3) can be written as

H(i,s):e"f W e™Q(1 -k, v/6) (D7)
]

and this shows that, when € is small, the last ar-
gument # =v/e of @ will be very large throughout
almost all the range of integration. But in that
situation, substantial contributions to (D6) can
come only from regions where f(6) is very small,
that is, where 6 is close to 0. We can then ap-
proximate f(8) in (D6) by the first term in its
Taylor series and extend the limits to £, This
gives!*

G(x’u) =2w/71/u e-leu
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and with (D5)
QU -, Ku)=(N/2m)*(4n/u)e ™,
where

R*=%+x} (D8)

is the distance of the starting point from the origin.

Thus (D3) becomes

2 .0
H(%,1-¢) :JY; f du e e R /y

(]
which is®®
=(2N?/mK,(2RVE) ,

where the Bessel function K (z) is, for small z,
given by —y —1n(z/2) with y=0.5772157...,
Euler’s constant. So finally

H(%,1-€)=-(N?/7)(lne+ 2y +1nR?), (D9)

When %=0 and s =1, the expressions for H and
its derivative J are given by (19). These look
a great deal simpler than (D1); however, the (for-
tunately excluded) term at the origin becomes in-
finite and the nearby ones become large; we must
therefore be careful when replacing sums by inte-
grals. Our procedure is illustrated in Figs. 8(a)-
8(d).

Figure 8(a) shows the “correct” region to be
summed over (except for the fact that only two of
the four edges should be included —a negligible
error since the summand is not large there). In
Fig. 8(b) we have replaced the sums by integrals
over £, the region about the origin that is to be ex-
cluded is shown cross hatched. In Fig. 8(c) the
variables of integration are 6, =2m,/N. Finally,
in Fig. 8(d) we have changed to polar coordinates,
p=(6% + 622, p=arctan6,/6,. We thus obtain

N

Z Z ' ~N/2 [} N/2
[ ff dtq dt,
(a) (b)

I\

-n n/N n Qg n

n/2n? [ [ de, de,

(c) (d)

FIG. 8. (a)—(d) illustrate the method of evaluating
the expression (19). See text for details.

(2m/NPH=A,+44,,

_ (D10)
(27/N)% =B, +4B,,

where the first terms are the integrals over the
annular ring,
A 1/(1 -2,

ol @] odox fony, W

and the second terms the integral over the “corn-
er” regions C which are shown in Fig. 8(d) and
bounded by the circle p=m and the straight lines
6,=mrand 6,=m,

Ac 1/(1 _A) s
Bc}: fcfpd""“’x A=A, (D12)

The major contribution will come from the vicinity
of the origin; we therefore evaluate A,, B, by ex-
panding the denominator about the origin and A4,
B, by replacing the integrand by a constant equal
to its average value in the region C.

In doing A;, B, the main question is the proper
choice of the radius p,, of the inner circle. A
plausible criterion is to make the area of the ex-
cluded circle in Fig. 8(d) equal to the area of the
excluded square in Fig. 8(c). Since the excluded
area in Fig. 8(b) was unity, the excluded area in
Fig. 8(c) is (2m/N)?, and that in Fig. 8(d) is mp?.
Equating these gives mpZ= (27 /N)?a? where a, a
constant of order unity, has been inserted because
both the transition from Figs. 8(a) to 8(b), and
again from Figs. 8(c) to 8(d), were approximate
rather than exact. We therefore chose

po=2VTa/N. (D13)

By expanding the denominator in (D11) we get,
to second order in p,

(1 =) =471+ p*f(4)]
with (D14)

f(@)=(sin™¢ + cos*¢)/12
and (D11) then leads to \

3 2
A0=87T(lnN—1nﬁ+1mr)+L Bem

TN T

where B=2/7a or, with neglect of terms O(N ~%)
and smaller,

A,=87(InN+C'), (D15)

where C’=Inm/B+ n%/32 is a constant whose exact
value is, like that of 8 and «, not known at this
time. Similarly we obtain

By=4a™N?_-47InN+D' ' (D16)

with D'=-16/7+4 7ln(2a/N 7).
Next, we should evaluate A, and B, of (D12).
However, the reader can see that this result will
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be a constant (independent of N) since the integrand

is perfectly regular in region C. In (D10) these

constants will be added to the expressions (D15)

and (D16) which themselves contain undetermined

constants. Accordingly, there is no point writing

down the values of A, and B,; we simply write
(D10) as

(27/N)?H=8n(InN + C) .

~ (D17)
. (27/N)%J=4a™N? —47InN+D,
with C=C’+ (A,/2m), D=D'+ B, constants that we
can determine by fitting the expression (D17) to
(19) as evaluated by direct summation. For # this
is quite straightforward; evaluate (19) numerically
for various N and substitute into (D17). We find
that C=0.3063 provides an excellent fit, even
down to N=2 [where we really could not have ex-
pected (D17) to be valid]. Even better agreement
is obtained if a term in N "% is added,

H=(2N?/mInN+0,30639 - 0.17N %], (D18)

but the fact that the last term is not justified analy-
tically should be kept in mind.

Evaluating the constants in J in (D17) is more
complicated, since there are two of them, includ-
ing one which multiplies the leading term. That
one is evaluated first, by looking at N large enough
to make the others negligible and turns out to be
a™?=0.2193. We then find that in order to fit the
form (D17), the second, logarithmic, term has to
be multiplied'® by -2. We finally obtain

J=(N/m30.2193N%+27InN -2.4]. (D19)

It will also be helpful to have an analytical ex-
pression for u,(X) as given by (15) and (14). For
this we will need an expression for H(0,1 —¢€) with
€ small and positive but not zero, derived in a
manner to allow comparison with (D9). From
(D1), and with use of (D4), we find

CH0,1-9=2.0"1/(c+F) (D20)

ty t,

to first order in the small quantity F. Proceeding
as before via Figs. 8(a)-8(d), we get

10,1 -e)=(§’;)2 J a6 / " pdp/le+ (p/2)7],

where p?/4 is the value of F near the lower limit,
where most of the contribution to the integral
comes from. Upon introducing the variable = p?/
4¢ this becomes
N \2 27 dE
HOl—-e:(—— 2fd —
©, ) 2n) " J, ¢,0/451+£

=(N/2m)%4n1n[1 + (p3/4€)].

As €—0, this becomes
H(0,1 - €)= (N2/m[-Ine+1n(p,/2)?]
or, with the choice (D13) for p,,
H(0,1 —e)(N?/m)[~Ine+ In(w/N?) + Ina?].

We can combine this with (D9) to get the quantity
K(%,1 -¢) defined by(14). As expected, the de-
pendence on € drops out and we find

K(%,17)=(N%/mlnR*+ c] (D21)

where ¢ is an undetermined constant containing the
terms not dependent on X or R. It is shown in
Appendix H that the expression

K(1,0;1)= u,(1,0)=N%_1 (D22)

is exact for all N. Accordingly we write
N2
K(}’(,l):ul(i)zNZ_H—”—lnRz. (D23)

From the method of derivation that was used, it is
clear that this expression is not valid for all X but
only for large R (compared to 1), although it also
happens to be exact for X=(0, +1) or (x1,0). Fur-
thermore, R must be smaller than N/ 2, for, as
on any other closed surface, you cannot get an un-
limited distance away from the origin on a two-
dimensional torus. However, the expression
agrees surprisingly well with the results of direct
evaluation of (14) via (13). The fact that to first
order it depends only on the distance R but not the
angle ¢ is also of interest.

APPENDIX E: ONE-DIMENSIONAL ANALOG

In one dimension, results analogous to those in
Secs. II and III are much simpler and therefore
instructive enough to be summarized here even
though they have been known for a long time.'®
Consider a cyclic one-dimensional lattice of N
sites with one absorber at the origin (or, equi-
valently, a linear chain of N + 1 sites with both
end sites absorbing). Then the mean duration of
a walk starting at site x is'® x(N —x). This be-
comes N —1 for x=1 (starting next to a trap) and
N2%/4 for x=N/2 (starting in the middle, far away
from either trap). And averaging over all starting
points gives N(N —1)/6. This is all the reader
needs to know to construct the one-dimensional
equivalent of Fig. 2. If he does so, he will find

‘that the spread between the three quantities is

much larger than in two dimensions, but still
surprisingly narrow; and that walks are unex- .
pectedly long even when starting right next to a
trap: On a lattice of 100 sites, that walk will take
an average of 99 steps.
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APPENDIX F: DISTRIBUTION FUNCTIONS

We need the formula

© n!
f e~tdt = — (F1)
o c
It follows that the functions g, = (¢**!/n!)"e™ are
normalized; that the quantities

my= [ty (F)

are given by (n+5)!/c’n!, and that m,,/(m,,)*
=(m+2)/(n+1). This is equal to 2 for =0 but
smaller for all »> 1; the above choice for ¥, is,
therefore, rejected, as explained in Sec. IV.

If we repeat the calculation for

b, =[c"1/2(2n + 1)1 Jtme "2 (F3)
(which are also normalized), we instead obtain
(myy)/(m )= (21 +5)(2n +4)/(2n + 3)(2n + 2)

which is larger than 2 for =1 but smaller for
n=2; with this choice of ¢, it will, therefore, be
possible to find a normalized linear combination

glt)=ayp,+ (1 -a)y, (F4)

that will satisfy the ratio of moments demanded by
(21), (22). To determine the constants a and ¢, we
compute p,= [,"tgdt and p,=[,"t?gdt and obtain
two equations; upon eliminating ¢ from them, we
are left with a quadratic equation in a that has sol-
utions
: { 1.0798,
* lo.4s22,
and corresponding values of
¢, =(m/2N?nN) x {18' 25,
31.38.

Substituting these into (F4) gives two functions g,
which are plotted in Fig. 9(a). We see first, that
the two functions are very similar, peaking as ex-
2 .
pected near /=N". However, g, becomes negative
for large enough ¢ [because 1 —a in (F4) is nega-

2

N4g(t) I 5 9s
04 O g-

N = 256 g _____ 9+

0.3 o 9-
0.2

0.1
168 116 14 1 4 16 64 t/N?

FIG. 9. Distribution functions g, (t) and g_(#).

tive]; this is unacceptable behavior for a distribu-
tion function. Accordingly we pick g_ which in its
final form is written down in Egs. (23)-(26).

APPENDIX G: DETAILS REGARDING
EQUATION (27)

Here we summarize enough of the background to
Sec. V to make it appear reasonable; details ap-
pear in Ref. 11. There are four parts to Eq. (27).
Reading from the right, (1 -¢)V*™ is the proba-
bility of not stepping on a trap in the first f -1
steps. The bracket is the probability of stepping
onto a new site at step ¢ (for an old site would cer-
tainly not be a trap), and ¢ is the probability that
new site is indeed a trap. Finally 7, ¢ sums the
duration ¢ over this probability distribution. To
evaluate (27), it is first converted into an integral
over V. Then, since the integrand contains ¢, (28)
must be solved for £. This can be done by “New-
ton’s method,” an iterative scheme using the initial
solution

to=(V/mIn(V/7). (G1)

The end result of this process is the curve in
Figure 3; Equation (29) and the individual points
in Figure 3 result from using ¢, of (G1) instead of
t.

APPENDIX H: TRAPPING BY NEAREST NEIGHBORS

We evaluate the expression

N-1 N-1 , 1 &
szg;o '22.0 'DZ") (1 —cosely(l - b— ; cos @

where 6, =2 m¢,;/N and the prime indicates that the origin is omitted from the summation. S, is the mean
trapping time if the starting point ¥=(1,0,0,...,0) is located next to the trap on a lattice of arbitrary di-
mension D. Note that S, reduces to K(1,0; 1), the expression we are really interested in; but keeping D

arbitrary here is just as easy, and instructive.
First note that when ¢,, ¢, .

..,Ip are all zero, the summand becomes unity whatever the value of ¢, may

be; we can therefore remove the restriction on the summation by writing
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Sp=-1 +E Z
2x0

=0 ip=0
or
N-1 N-1
+
1+ t(l—cos@ E 1/ (1 —cos6,).
D t! tp=0

Using a™ :fo"’ e™“dw for the denominator, the
variables separate and we can write

1+SD

f A TP w) |

where I(u) = N le (1708 and J(i) = 2N X1
-—cos@)e"‘“'“”e’. But we see that J(u)=dlI/du; the
integral can therefore be carried out,

(1+8p)/D=(-1/D)[ 1P )]s =[1°(0) = I”(x)]/D.
From the definition of I(x), we see that I(«)=0
and I(0)=N. Therefore S,=N? -1,

APPENDIX I: EXPLICIT EXPRESSIONS FOR
SECTION VII A

F, and F, turn out as follows:

F,()=(2a/y*)[Gy(s) + (B/7)Gs(s)],

N-1 D
z (1 -cosb,) /( Z(l‘°059>
7

Fy(t)=2a/y3)[Uys) + (B/7)U,(s)],

where

Uz(s)=6t - (Zg/Y)Vg(S)’
Uy(s) =120t — (2£/7)V,(s),
i
§)= 20 0,6,.405),
kR =0
and the G; are given by
Gy(s)=j! —Hy(s)e™,
J
Hy(s)=1, H(s)=1+s, Hy(s)= Zal,,s* ,
k=0
0=l Cp=ay 4y/Ry a0 =1

and

s=(pt/E)2.
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