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Electronic structure of magnetic impurities calculated from first principles
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The electronic structure of magnetic 3d impurities in Cu and Ag is calculated self-consistently from first principles.
Using the density functional theory the exchange and correlation is treated in the local spin-density approximation
of von Barth and Hedin. Our method is based on the Kohn-Korringa-Rostocker Green's-function method and the
impurity is described by a single perturbed muffin-tin potential in an otherwise periodic lattice. We give results for
the local density of states, the magnetic moments, and the phase shifts at the Fermi energy for the 3d impurities in
Cu and Ag. Our results are in qualitative agreement with the Anderson model, however modifications due to the
host band structure are important, especially for Mn and Fe in Cu. For all cases studied, the exchange integral I lies
between 0.65 and 0.8 eV.

I. INTRODUCTION

Since the pioneering work of Anderson, ' many
experimental and theoretical efforts have been
undertaken for the understanding of magnetic im-
purities in metals. Nevertheless, the nature of
such impurities is not well understood. Two dif-
ferent theoretical models have been proposed: On
the one hand, the Anderson model' or the equiva-
lent Wolff model which is based on Friedel's
virtual bound-state concept, on the other hand the
ionic model proposed by Schrieffer3 and Hirst. 4

While both models have their proponents, the rele-
vance of the models to the real systems in question
is not clear.

In this paper we present ab initio calculations of'

the electronic structure of magnetic 3d impurities
in Cu and Ag. We employ the density functional
theory i,n the local spin-density approximation
which has been proven to give very reliable re-
sults for ideal metals. 5 We use a Green's-func-
tion method, originally proposed by Dupree6 and
Beeby, ' which is based on a muffin-tin approxima-
tion and the Korringa-Kohn-Rostoker (KKR)-band-
structure method. In our model the impurity is
described by a single perturbed muffin-tin poten-
tial in an otherwise periodic muffin-tin lattice.
The Green's-function method has the major ad-
vantagei that it correctly describes a single per-
turbation in an infinite crystal, i.e., the full spatial
extent of the perturbed wave function is taken into
account and only the perturbed potential is assumed
to be localized. Other methods used in impurity
calculations do not have this advantage. For in-
stance, in cluster calculations one is always faced
with problems due to the finite extent of the cluster,
e.g. , surface states, etc. Similarly, in supercell
calculations, where a certain structure containing
one defect is periodically repeated, one is plagued
with uncontrollable interaction effects between the
periodically arranged defects. The Green's func-

tion also allows us to make the calculation self-
consistent with very little effort. First the ideal
lattice Green's function is calcu)ated from self-
consistent host band structures. For the impurity
calculation only the impurity muffin-tin potential
has to be determined self-consistently, while
during all iteration cycles the ideal lattice Green's
function. is unchanged. On the contrary, in cluster
or. supercell calculations all potentials have to be
recalculated in each iteration cycle. In semicon-
ductors a Green's-function method based on a
linear combination of atomic orbitals (LCAO) ex-
pansion has successfully been applied recently for
the calculation for the vacancy in silicon. @'

The organization of the paper is as follows: In
Sec. D we give a short review of the KKR Green's-
function method and discuss some problems arising
in the application of this method. In Sec. III we dis-
cuss the results of our calculations for 3d impuri-
ties in Cu and Ag. In particular, we give results
for the local densities of states, the magnetic
moments, and the phase shifts at the Fermi ener-
gy. We also compare our results with recent
cluster calculations of Johnson et al. ' on the same
systems. Both calculations do not agree and we
think that the cluster calculations are unreliable.
On the contrary, our results are in qualitative
agreement with the phenomenological Anderson
model. A preliminary account of this work has
been published in Bef. 11.

II. KKR GREEN'S-FUNCTION METHOD

In the following we give a short review of the
KKB Green's-function method for point-defect cal-
culations. The results given here are not new and
can be found in a number of articles, starting from
the older work of Dupree, e Morgan, '~ and Beeby'
to the more recent publications of Holzwarth, '
Lehmann, ' Harris, "and Hamasaki. '6 However,
since this information is so widely scattered and
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since the nomenclature and the derivation of the
most important formulas is always different, we
think it is welcome and useful to give a short sum-
mary of the most important results.

A. Expansion into radial eigenfunctions

We consider the Green's function G(r, r', E) for a
periodic array of spherically symmetric muffin-tin
potentials v (~r-8 ~). For conveniencewe intro-
duce new coordinates 8 +r, 8 +r'in each cell m

and m' so that r and r' are always restricted to the
Wigner- Seitz cell.

The Schrodinger equation of G in cell m is then:

t'
8-', + v (r) —E G (8"+ r, 8" + r'; E)

= —f) (r r—') 5„„.. (l)

An analogous equation holds if r and r' are inter-
changed. For m g m', G satisfies the homogeneous
Schrodinger equation, since the source term
vanishes. Therefore it can be expanded into radial
eigenfunctions RP(r, E)JC~(r). Here Y~(r) are real
spherical harmonics and RP(r, E) are the regular
solutions of the radial Schrodinger equation for the
potential v (r) and the energy E. Further, I stands
for I.= (I, m). With this the Green's function can be
written as

G(R~+r, 8 +r', E)=g RP(r, E)F~(r)Gz7,.(E)RP. (r', E)Fz, (r')+f)„~
&

K QRP(r&, E)F~(r)H", (r&, E)F~(r'),
(2)

with
2m

r& ——min(r, r'), r& ——max(r, r'), K=
& & E)

The coefficients G~~ (E) of the Green's functions
have still to be determined (see below). For m
= m' the source term in (l) no longer vanishes and

we have to add the second term in E(l. (2), which
represents the Green's function Gs for a single
muffin-tin potential v„(r) embedded in free space.
The construction of this Green's function is quite
analogous to the radial expansion of the potential
free Green's function. The regular solution
R", (r, E) corresponds to the spherical Bessel func-

tion; H, corresponds to the spherical Hankel func-
tion and contains both the nonregular solution
N", (r, E) and the regular solution R", (r, E):

H p(r, E) =N p(r, E) —iRp(r, E) .
Both the regular and the nonregular solution can

be chosen as real and outside the muffin-tin radius

R„T they are given in terms of the spherical Bes-
sel function j,(Kr) and the spherical Neumann func-
tion n, (Kr).

RP(r, E)= cosh, (E)j,(Kr) —sin5P(E)n, (Kr),

N p(r, E) =+sin5) (E)j,(Kr)+cos5$(E)n, (Kr).

(4)

It is clear from the construction of expression
(2), that the Green's function satisfies in each cell
the Schrodinger equation (l). The connection be-
bveen the different cells can be made by deter-
mining the elements GT~ (E).

B. Matrixelements 6&&, of the defect Green's function

For practical applications it is very useful to
have a conn. ection between the Green's function G

for an arbitrary defect structure, i.e., arbitrary
potentials v„(r), and the ideal host Green's func-
tion Go for a given host potential vo(r) in each
cell, as well as the free-space Green's function g
for vanishing potentials, For all three cases Eq.
(2) remains valid if one replaces R, and Np by the
host radial functions Ro(r, E) and No(r, E), respec-
tively, the spherical Bessel and Neumann functions

j,(Kr) and n, (Kr). The corresponding elements we
call Go~~. " '(E) for the host-lattice case and
g~(~." '(E) for the free space. A simple algebraic
equation between these elements is obtained by in-
serting the corresponding expressions (2) for the
Green's functions in the following Lippmann-
Schwinger equations for G:

G(R +r, R +r')=d(R +r, H +r')+g f dr"d(R +r, )+Rr") (r)r(RG" +r", R +r'),

G(R +r, H" +r')=Gr(R."+r,H" rr')rg fdr"Gr(H +r, rR+r")(rr„(r")G()R+r", H +r'),
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with ~v„(r) =m„(r) —v0(r) .A straightforward cal-
culation (see the Appendix) yields

Gg7 (E) =SENT. '(E) + sir, -"'fl. (E)G~- z ~ (E) (7)
iI

when the free-space Green's function is taken as
reference or

0

GTi (E) =Gi'i '(E) + Ga;"&(E)~f",(E)G";.
'

(E)

with
I

~om~c~~e N~ go ~' -& so ps~~' -g
LL' LL' ) LL ~ LLI

(8)

when the host Green's function G is taken as
reference. Instead of the potentials we have in
these equations the "on-shell" t matrices as
perturbation:

1t "(E)= — —e"& 'a' sin5 (E)2mZ

gf m(E) f m(E) f 0(E)

Whereas in cluster calculations, i.e. , for the
scattering at a finite number of particles, the free-
space equations (7) are most appropriate, for the
.description of a defect in an infinite crystal clear-
ly the equations (8) are to be preferred, since the
perturbation 4t", is then restricted to the immedi-
ate vicinity of the defect. On the right-hand side
of Eq. (8) only those Green's functions in the per-
turbed subspace near the defect enter. For exam-
ple, if n potentials are perturbed and if on each
site l perturbed phase shifts have to be taken
into account, then Eq. (8) requires the inversion
of matrices of dimension n(l +I)0. Thus Eq. (8)
is not more difficult to solve than Eq. (7) for a
cluster in free space, provided the disturbance is
of similar size and the host Green's functions

Gl, 'I".. "'(E) are known.
Equation (8) strongly simplifies, if only the im-

purity potential at site n =0 is perturbed, since
then only &t", enters. Of primary interest is the
impurity Green's function G~~0 " = 0(E). For cubic
symmetry and for l ~ ~ 2, this Green's function is
diagonal, G0~0~.(E) = G,»5~~. and the solution of Eq.
(8) trivially becomes

1 ~
0

(L) —
1 ~0 ~t (L) ~

(L) L

Throughout the paper we will restrict our discus-
sion to this model, where- only the impurity poten-
tial itself is disturbed, essentially assuming that
the impurity is fully screened within its own muf-
fin tin.

C. Evaluation of the host |reen's function

The major prolbem of the KKR Qreen's-function
method is the determination of the ideal-lattice
Green's function 6 . Starting with the spectral
representation (BZ denotes Brillouin zone)

G(R + r, R + r', E)

(12)~ g;„(R"+ r)P„(R + r')

we may insert the usual KKR ansatz for the wave
functions:

P„(R +r)=e'" pi'P~(kv)R0(r, E)Y~(r).
L

By comparing with the general result (2) for G0

we obtain for the imaginary part of G«

ImG («)= & «e~«~o... o„,—wg J «k o~«-«;„y, t«.~«,".t«~~~'-'. '" «"-«
LL' @2

v BZ
(14)

In this form the imaginary part can be directly
evaluated by a numerical Brillouin-zone integra-
tion. The real part can be obtained from the
imaginary one by a Kramers- Kronig integration.
In Eq. (2) we note that both G(R +r, R +r') as
well as the term proportional to 5 ~, representing
the Green's function for a single muffin-tin poten-
tial, obey a Kramers-Kronig relation, since they
are both proper Qreen's functions. Therefore,
also the third term containing the.elements G~~ (E)
fulfills a Kramers-Kron, ig relation. Thus we ob-
tain

with
(15)

n«, (E) = r0dr R0(r, E)R0. (r, E),
0 I

where, for convenience, we have integrated out
the radial dependence.

In actual calculations the E' integration in (15)

(E) ReGO (m-m') (E)
+ 00

dE'p E, ~„, E Ima'„(. — 'E'
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requires the knowledge of the band structure up to
infinite energies. Since this is impossible, one has
to choose a cutoff energy E,. For m =m' this .

means that above E, one replaces the Green's
function by that for free elections [compare Eq.
(14)1.

Alternatively one can calculate the Green's-
function elements Go~~(™n ")(E)from the free-elec-
tron Green's function g~~. (E). Analogously to

Eq. (7) we obtain

Go (m-tz') (E) +(m-m' ) (E)

+ ~6~-„~ E ~0 E ~0(
gt d

(18)

Owing to translation invariance this equation can
be solved by Fourier transformation leading to

"' .'(.) =
r f Id () t (EE)r(z))

with

D. Charge densities and local densities of states

The imaginary part of the Green's function gives
the distribution n(r, E) of electrons in space and
energy:

2
n(r, E) = ——ImG (r, r; E) . (18)

g ei)t ' ()t -R )+(m-m') (E)

The g~~. (kE) are directly related to the KKR
structure constants. Contrary to(15), the integrand
(17) is only needed in the desired energy range.
However, here additional difficulties arise due to
the strong E and k dependence of the KKB struc-
ture constants, which requires a very good numeri-
cal Brillouin- zone integration. Detailed calcula-
tions with both methods" show that the much
faster Kramers-Kronig calculation with a cutoff
at about 1 By can be used without significant er-
rors. The BZ integrations are performed by the
tetrahedron method" with 6144 tetrahedrons in the
irreducible part of the Brillouin zone.

t)N(E) = - g [(5, —60)) —Im in[ 1 —Go(~) (E)b t, (E)]].
7T

«i+ ~ = —
nI, E2 2

1T g 7T

where we have set

A~(E) =[1—Go(»(E)at, (E)] '= IA~~e'Gl. .

(22)

The phase shifts )i~ = &It + P~ are called gen-
eralized Friedel phase shifts and consist of the
usual contribution &5, due to the changed impurity
phase shifts and an additional contribution P~,
arising from an interference of the impurity scat-
tering with intermediate "backscattering" events
at the host atoms. According to Friedel's sum
rule, a completely self-consistent calculation
should give b,N(E~) =tdZ, the changed nuclear
charge of the impurity, since the impurity would
be totally screened in a metal.

polarization of neighboring host atoms are in-
cluded. According to Lloyd's formula, ' the change
of the integrated density of states due to the im-
purity is for our model with one perturbed muffin
tin given by

From this the charge density is calculated by
energy integration,

n(r) =f dE trrG(r, r; E), (19)

whereas the local density of states, e.g. , in the
impurity cell V„ follows as

n„,(E) = J[ dr ImG(r, r; E) .
7T

I
The total charge in the impurity cell is then

(20)

(21)X...= dEn...E = drn r .
~(O v

Contrary to these local properties one can also
calculate the change of the total density of states
due to the impurity, where also effects due to the

E. Inclusion of spin polarization

In the case of spin polarization we have two dif-
ferent potentials v, (r), for up spin (v, ) and down
spin (v ). Consequently all phase shifts, Green's
functions, etc. , obtain an additional index + or-
for the spin, e.g. , 5, , (E), G, ~~, (E), and all equa-
tions in Secs. IIA—IIC appear twofold, one for
each spin direction.

The densities of electrons with spin up (+) or
down (-) are given by

r, (r) =f dZ trrG, (r, r;Z),
(23)

rr'„, (Z) fdr —tmG=, (r, r, E)
VI

The local charge N„, and the local moment M, ,
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within the impurity cell are then

1/0 c foe Jo c

+30c++loc ~

From Lloyd's formula one obtains for the total
displaced charge due to the impurity

6N(E~) = 4N '(E~) + nN (Ep),

whereas the change of the magnetic moment is

4M=AN'(E~) —bN (E~) =Mt„.

(24)

(25)

(26)

For a nonmagnetic host this is just the total mo-
ment M„, due to the impurity where contributions
due to the polarization of neighboring host atoms
are included, which is not the case for M„,.

The parameters C~=0.045, C~=C»2, ~~
——21,

&~=2 r~ were chosen to agree with those of
Moruzzi et al.~0

The host band structures of Gu and Ag were
generated from the self- consistent potentials
given by Moruzzi. et al. 2 The ideal Green's func-
tions are then calculated by a Brillouin-zone in-
tegration. These two time-consuming steps of
the calculations have to be performed only once
for each host metal. This represents a major ad-
vantage of a Green's-function method since the
subsequent calculations for the defect Green's
function [ Eqs. (11) and (2)] and the impurity
charge densities [Eq. (19)] are rather fast. Only
these fast steps have to be repeated for each im-
purity, and that many times since the self-con-
sistent solution for the impurity potential is ob-
tained as usual by an iteration technique.

Several problems are connected with the itera-

F. Density functional theory and selfwonsistency

For our calculations we have applied the density
functional formalism. Exchange and correlation
are treated in the local spin-density approximation
suggested by von Bar th and Hedin'9:

V„,= —1.221774/x, (l a l')' ~3- C~ ln(l + x~/r, )

+ 5.1298[C „E(r~/r, ) —C~F (r~/r, )]

x [1—(1 ~ C)' "],
where

E(g) = (1+@ ) ln 1+— + ——z2 ——,3 1 z 2 1
8 2 3'

tion procedure: An initial guess for the impurity
potential has to be found, the charge density has

. to be calculated everywhere for solving Poisson's
equation for the potential, the straightforward
iteration procedure is usually unstable, and the
magnetic moment converges rather slowly.

As input to the first iteration step we used
either a potential constructed by a Mattheiss
prescription from Herman-Skillman atomic charge
densities or an already self-consistently deter-
mined impurity potential of an element adjacent
in the Periodic Table. When solving Poisson's
equation we confine the perturbation in charge
density to the impurity muffin tin. This approxi-
mation changes the impurity potential by a con-
stant equal for both spins and is one of the reasons
why the Friedel sum rule is not completely ful-
filled (see Table IV). For convenience the impuri-
ty core states are treated as frozen and the core
charge density was taken from an atomic calcula-
tion.

As in atomic or band-structure calculations the
straightforward iteration which uses the output
potential of,one iteration as the input to the next
iteration does not converge due to the strong
Coulomb forces. In defect calculations a similar
effect also arises since the Fermi energy E~ is
fixed by the host and therefore the number of elec-
trons is not conserved. A small shift of the poten-
tial leads to a small energy shift of a virtual bound
state, but to a large change of the charge in the
impurity cell, particularly if the virtual bound
state lies near E~. For.stabilizing the iteration
process we adopted the standard procedure of
using a linear combination of input and output
potentials from one iteration as input potential
for the next iteration. However the mixing factor, .

the amount of output potential used, is rather
small, typically a few percent, which leads to a
hundred or more iterations. For accelerating the
convergence of the magnetic moments we used a
larger mixing factor acting only on the difference
between the potentials for up and down spin. The
iteration process is stopped if input and output
potentials of one iteration agree on the average to
better than 0.01 eV. The final results for impurity
potentials do not depend on the initial guess of the
potentials and on the applied mixing factors.

III. RESULTS AND DISCUSSION

A. Local density of states

The local densities of states (20) in the impurity
Wigner-Seitz cell are plotted in Figs 1(b)-1(h) for
the Sd impurities Ti-Ni in Ag, both for the
majority and the minority spin. For comparison
Fig. 1(a) gives the density of states of pure Ag.
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FIG. 1. Local density of states {full lines) and integrated local density of states (dotted lines) for ma orit--'. (i)"- f d'-" t'--A. . F---."';; h dcomparison (a) gives the density of states of pure Ag.

Since Ag is nonmagnetic, the densities for both
spin directions agree. The dotted lines give the
integrated local densities of state. Their dif- .

ference represents the number of unpaired elec-
trons with energy smaller than E and thus at the
Fermi energy the local moment in the impurity
cell [see Eq. (24)]. All 3d impurities show Lo-
rentzian-shaped virtual bound states near the
Fermi energy. In Ag, only Ni is nonmagnetic; all
others show a considerable spin splitting and thus
a local moment, which is especially large for Fe,
Mn, and Cr. This behavior is just as expected
from the Anderson model. Band-structure effects
from the silver d band are not very important.

This situation is different for 3d impurities in
Cu. Figures 2(a) and 2(b) show the local densities
of states for Cr and Mn in Cu. Contrar to A
th e d band of Cu is higher in energy, extending
between 1.6 and 5.3 eVbelow E~. For Cr one
still has as i as a split Lorentzian; the majority peak of
Mn [and also of Fe (Ref. ll)J is extremely narrow
and contains only about two electrons, whereas
more intensity (2.5 electrons) is distributed in the
range of the Cu d band. The latter behavior can

also be seen already for Cr in Cu. It arises from
a local hybridization between the impurity d orbitals
with the d orbitals of the neighboring host atoms and
cannot be described by the Anderson model or other
models which neglected the host band structure,
e.g. , an impurity- in- jellium model. l' Figures
2(c) and 2(d) show the results of such a calcula-
tion, where only the scattering at the impurit1 y
muffin-tin is taken into account, and the scat-
tering at the host muffin-tin is neglected. Tech-
nically this is obtained from expression (2) for the
impurity Green's function if the elements G~~. are
set equal to zero. (These jellium calculations are
not self-consistent; rather, we have taken the im-
purity potential from the full Cr-in-Cu and Mn-in-
Cu calculation. )

The peak positions and the half-widths of the
virtual bound states for both spin directions are
given in Table I for all 3d impurities in Cu and
Ag. In principle each virtual bound d state con-
sists of two separate peaks for the d-t and d-

Bg -e~
symmetries, which are split due to the crystal
field. In practice this crystal-field splitting is
much smaller than the half-widths of the peaks
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FIG. 2. Local density of States (full lines) and inte-
grated local density of states (dotted lines) for Cr in Cu
(a) and Mn in Cu (b). (c) and (d) give the same quanti-
ties in the approximation that backscattering effects are
neglected (jellium model).

and therefore quite unimpor tant. As is also seen
from Fig. 1, the majority peak moves in the se-
quence Ti to Ni from above the Fermi energy to
below the Fermi energy with a minimum at Mn

(- 1.44 eV in Cu and —2.42 eV in Ag). The spin
splitting of the peaks is largest in the middle of
this series (2.17 eV for Cr in Cu and 3.20 eV for
Cr in Ag) and considerable larger in Ag than in
Cu (see the discussion below).

The half-widths of the virtual bound states are in

general much smaller than the ones obtained in a
jellium model (see Fig. 2). Especially the small
values of the majority-peaks for Mn and Fe in Cu,
and to smaller extent also in Ag, are effects of the
host band structure. In general, the half-widths
in Ag are smaller than the ones in Cu.

From the jellium calculations we obtain that L'

is roughly a factor 1.6 larger for impurities in Cu
jellium than in Ag jellium. A change by about 15%
can be explained by the larger s density of Cu,
resulting from a 15% smaller lattice constant.
This would mean, that the matrix element V,~
would be somewhat larger in Ag than in Cu (about
20%).

Photoemission measurements of Norris and
Wallden22 and %allden23 at dilute AgMn show a
broad hump in the photoemitted intensity between
1.8 and 3.2 eV which compares favorably with our
peak maximum of the majority spin at 2.42 eV. On
the contrary, for CuMn no indication of a virtual
bound state peak has been found. An explanation
for this negative result could be the strong overlap
of the Mn density of state with the one of pure Cu,
as is shown in Fig. 2(b). Optical-data measure-
ments of Myers et al. 24 and Steel and Treherne~~
lead to similar findings, two rather broad impurity
peaks for AgMn, presumably one due to the ma-
jority and the other due to the minority spin states,
but no indication of additional impurity peaks for
CN Mn,

Recently extensive x-ray photoemission spec-
troscopy (XPS) studies of 3d impurities in noble
metals have been performed by Hochst, Steiner,
and Hufner. 26 In these measurements clearly de-
fined virtual bound states are only detected for
CuNi and ANNi, however, not for magnetic im-
purities such as AgMn, AuFe, or CuFe. Here only
an increase in the region of the flat s-P band be-
bveen the host d band and the Fermi energy is
found. Also a considerable increase within the
range of the host d band is reported. Part of the
experimental results are explained by the recent
cluster calculations of Johnson et al. ,

' which we,
however, consider as unreliable (see the discus-

TABLE I. Peak positions [column {a)]and half-widths [column {b)) of the virtual bound states of 3d impurities in Cu

and Ag for both spin directions. All values are in eV.

Impurity
Mn CoV Cr Fe

Host Spin (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

0.62 2.04 .-0.21 1.39 -0.91 0.69 -1.44 0.24 -1.44 0.23 —0.70 0.64 -1.09 0.38
0.62 2.04 0.85 1.87 1.26 1.70 0.62 1.47 0.03 1.09 -0.70 0.64 -1.09 0.38

0.05 1.21- -0.41 0.84 -1.15 0.48 -2.42 0.18 -2.14 0.18 -1.38 0.27 -0.69 0.33
113 1 59 183 146 205 125 060 091 007 066 -016 051 -069 033
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sion in Sec. IIIC). While these new results cast
some doubts on the earlier photoemission mea-
surements, ~~'23 they are also in conflict with our
well-defined virtual bound states shown in Figs.
1 and 2. The reason for this discrepancy is not
clear to us. In this respect it is vrorthwhile to
mention that within the density functional theory
the energy eigenvalues and thus the densities of
states do not have a direct physical meaning. Thus
we cannot exclude that, while our results for the
charge and magnetization density would be per-
fectly sound, the densities of states could be
strongly modified by many-body effects (See Note
added).

Coleridge et al. ~' have performed de Haas —van
Alphen (dHvA) measurements at very diluted CMCr,
CuMn, and CuFe. For CuCr their results show
that the virtual bound states of Cr scatter elec-
trons of both spins equally well, in good agree-
ment with the symmetric location of the virtual
bound states of Cr in Fig. 2(a). For CuMn the
scattering is asymmetric for the two conduction-
electron-spin states, whereas for CuFe resonance
scattering at the minority virtual bound states oc-
curs, 2 both in agreement with our calculations
(see Fig. 2 and Table I).

B. Magnetic moments

Figures 3(a) and 3 (b) show the local moment in
the Wigner-Seitz cell of the impurity [open cir-
cles, see Eq. (24)] and the total moment which in-
cludes the polarization of the host atoms [full
circles, see Eq. (26)]. The moments are given
in units of unpaired electrons, corresponding to
one Bohr magneton (for a g value of g=2). The
triangles give experimental values for the mo-
ments as obtained by susceptibility measurements
or neutron scattering. Not included in the figure
is a recent experimental va;lue of 4.6 for Cr in

Ag 29

Our self-consistent calculations show Tl Co,
and Ni to be nonmagnetic in Cu, whereas in Ag
only Ni is nonmagnetic. In general there is a
stronger tendency for magnetism in Ag than in
Cu, which is also seen from the larger moments.
This is in line with the larger spin splitting be-
tween the peaks of the majority and minority
virtual bound states, which is also plotted in Fig.
3 (crosses connected by full lines). According to
the Anderson model' or the Stoner model, the
splitting &E~ =IM„, is proportional to the local
magnetic moment, where I is the exchange inte-
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FIG. 3. Local moments {open circles connected by dashed line) and total moments (full circles connected by fuQ line)
of 3d impurities in Cu and Ag. The triangles are experimental results of different authors. The moments are given in
units of Bohr magnetons. Also included in (a) and (b) is the exchange splitting of the virtual bound states (crosses con-
nected by fuH. lines) showing the proportionality of the peak splitting with the local moments. Data points refer to the
following.

J.R. Davis and T. J. Hicks, J. Phys. F 9, L7 (1979).
"C. M. Hurd, J. Phys. Chem. Solids 28, 1345 (1967).
'P. Steiner, S. Hufner, and W. V. Zdrojewsky, Phys. Rev. 8 10, 4704 (1974).
~%. D. gneiss, Z. Mettall. k. 58, 909 (1967).
'J. R. Davis and T. J. Hicks, J. Phys. F 9, 753 (1979).
~C. M. Hurd, J. Phys. Chem. Solids 30, 539 (1969).
~M. Vochten, M. Labro, and S. Vynckier, Physica 86-88B, 467 (1977).
"P. Steiner and S. Hiifner, Phys. Rev. B 12, 842 (1975).
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gral. This proportionality can be directly seen
from Figs. 3(a) and 3(b) (compare the peak splitting
with the moment). In Ag we obtain for I values be-
tween 0.74 and 0.80 eV, whereas in Cu we have
0.74 eV for V, 0.74 eV for (,"r, and 0.64 eVboth
for Mn and Fe. The smaller value for Mn and Fe
in Cu is due to the fact that the position of the sharp
majority peak is no longer characteristic for the
energy distribution of most majority electrons
[see Fig. 2(b)]. The values for I obtained here
are slightly smaller than theoretical estimates
by Moruzzi et al. 2~ and Qunnarsons for the ex-
change integral in pure crystal, whereas recent
experimental conclusions of Eastman et al. lead
to a value of 0.6 to 0.7 eV for pure Fe, (."o, and
Ni metals. Our result is that the magnetism is
more favored in Ag than in Cu, can also be ex-
plained by the Anderson model: Favorable con-
ditions are a small host density of states, a
small s-d coupling V,~, but a large exchange in-
tegral I. All these conditions slightly favor Ag
over Cu (see also the discussion of the half-
widths of the virtual bound states in the pre-
ceding section).

The comparison of the calculated moments with
the experimental values is satisfactory. Ap-
parently the experimental values do scatter ap-
preciably. Moreover, one should realize that
results of susceptibility measurements or neu-
tron scattering cannot be interpreted in a straight-
forward fashion in an itinerant theory.

Figures 3(a) and 3(b) show that the local and the
total moments of the impurity agree quite well,
which means that the polarization of the neigh-
boring host atoms is not very important. This is
an a Posteriori justification of our model assump-

tion that the perturbed potential, and thus also its
exchange correlation part, has been restricted to
the impurity muffin tin. Nevertheless, the small
but systematic difference between the local and
the total moments is quite interesting: it even
changes sign. For instance in Ag, the host atoms
enhance the moments of the impurities Ti, V, and
Cr, whereas they diminish the moments of Fe and
Co. Both for Cu and Ag, most of the host polar-
ization comes from the host d electrons, and not
from the s electrons as assumed in the Anderson
model.

C. Phase shifts at the Fermi

In Table II we have summarized the generalized
Friedel phase shifts q~(E~) of Eg. (22). For each
spin direction we have an s, P, t2~, and e~ phase
shift (q„q~, 7), , q, ). For the nonmagnetic im-
purities the values for both spin directions agree.
For two impurities, Cr and Mn in Cu, Table III
gives a decomposition of this generalized Friedel
phase shift q~(Ez) into the impurity phase shift
b, 5, (E„)and the backscattering phase shift Q~(E~)
[see Eq. (22)]. It is seen that the backscattering
effect is quite important. Compared to Cu, the
backscattering phase shifts are slightly smaller
for the impurities in Ag. This is plausible since
the Ag d band is about 1.7 eV lower in energy.
These results are in line with earlier conclusions
of Coleridge et al. ~e about the importance of back-
scattering in Cu.

Table IV gives the local charge N„, in the im-
purity Wigner- Seitz sphere (valence electrons
only). For complete screening inside the Wigner-
Seitz sphere, i.e. , local neutrality, this number

TABLE II. Generalized Friedel phase shifts g~(Ez) of 3d impurities in Cu and Ag for both
spin directions.

Cu Ti
CuV
CuCr
CuMn
CuFe
Cuco~
CuNi

-0.29
-0.21 -0.25
-0.15 -0.22
-0.09 -0.16
-0.08 -0.12

-0.10
-0.06

-0.21
-0.15 —0.17
-0.10 -0.14
-0.05 -0.10
-0.04 -0.07

-0.06
-0.04

-1.25 -2.29
-0.46 -2.51
-0.18 -2.23
-0.15 -1.52

-0.46
-0.20

2 023
-1.38 -2.36
-0.49 -2.56
-0.18 -2.31
-0.15 -1.65

-0.49
-0.20

Ag Ti
AgV
AgCr
AgMn
AgFe
AgCo
AgNi

-0.11 -0.17
-0.05 -0.17

0.00 -0.15
0.09 -0.04
0.07 -0.01
0.02 -0.02

-0.01

-0.05 -0.09
-0.01 -0.08

0.03 -0.07
0.09 0.00
0.06 0.01
0.01 -0.01

-0.02

-1.63 -2.59
-0.82 -2.79
-0.23 -2.84
-0.03 -2.49
-0.03 -1.73
-0.08 -0.97

-0.21

-1.66 -2.58
-0.85 -2.78
-0.24 -2.83
-0.03 -2.49
-0.03 -1.73
-0.08 -1.01

-0.22

' Nonmagnetic:
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Cr in Cu

-0.28
-0.39

0.13
0.18

-0.15
-0.22

-0.12
-0.16

0.02
0.03

-0.10
-0.14

.-0.36
2012

-0.10
-0.39
-0.46
-2.51

-0.36
2g 12

-0.13
-0.43
-0.49
-2.56

-0.17
-0.29

0.08
0.13

-0.09
-0.16

-0.06
-0.12

0.01
0.02

-0.05
-0.10

-0.17
-1.62
-0.02
-0.61
-0.18

2023

-0.17
-1.62
-0.02
-0.69
-0.18

2y31

should equal to the valence Z of the impurity. It
is seen that locally the impurities are rather well
screened, which is another justification of our
model with one perturbed muffin- tin potential only.
By this we do not mean that charge-transfer ef-
fects are not important at all; however, they are
rather small. Also given in TaMe IV are the
total charges V, , = ZD+ AN(E~) calculated from
Lloyd's formula Eq. (22) (Zo equals the valence
charge of the host). For an exact treatment of
the screening these values have to-agree with the
valence Z of the impurity, since according to
Friedel's sum rule &N(EJ, ) =Z- Zo. Thus the
deviation from g, e.g. , the deviation of 7.OS for
Mn in Ag from the correct value 7, is a measure
for the accuracy of our model. In general it is
seen that the Friedel sum rule is better satisfied
in the middle of the 3d series than at both ends,
Furthermore, all impurities accumulate locally
more charge in Ag than in Cu. We have to con-
cede that if these results have some physical sig-
nificance we do not understand them.

Table V gives the change of r n(E„) the total den-
sity of states at the Fermi energy, which can be

TABLE III. Impurity phase shift 66)(Ey), backscatter-
ing phase shift P (8 ), and Friedel phase shift g (Ez)
= D6&+ p& for Cr and Mn in Cu.

calculated by differentiation of LN(E) of Eq. (22)
(«+(E~) = [d&&,(E)l&E] ~z.z ). This quantity
enters, e.g. , in the electronic specific heat. For
each spin direction we get a maximum when the
corresponding virtual bound state nearly coincides
with the Fermi energy, e.g. , in Cu hn, (E„) is
greatest for Pand «, (E~) for Fe. Thus the sum
«(E~) =«'(E„)+an (E„) shows a double-peak
structure.

Figures 4(a) and 4(b) show the residual resis-
tivity for the 3d impurities in Cu and Ag. The re-
sistivity has been calculated by the approximation
proposed recently by Qupta and Benedek"

4p 4&
(f + i)»n [ni. i(E~) —n~(Ez)1c ek~

(29)
where in generalization of the impurity-in-jellium
model the impurity phase shifts &5, have been re-
.placed by the generalized Friedel phase shifts g,
(open circles). The triangles denote experimental
values. The overall agreement is reasonable.

However, there are discrepancies. Most dis-
turbing seems to be that experimentally the mini-
mal resistivity is found for Mn rather than for Cr.
This is supported by the fact that Mn shows by far
the smallest Kondo temperature which indicat. es
that the local density of states at E~ should be
smallest for Mn rather than for Cr. Note that our
calculation shows that both the local density of
states at E~ (Figs. 1 and 2) as well as the change
of the total density of states bn(E~) are smallest
for Cr. On the other hand our calculations are
supported by the dHvA measurements of Coleridge
ef; al. which seem to show that the virtual bound
states of Cr, rather than Mn, are symmetrically
located around the Fermi energy. Thus the situa-
tion is not clear.

D. Comparison with cluster calculations of Johnson et al.

Recently Johnson et al. ' have performed detailed
cluster calculations for magnetic impurities in Cu.
The calculations are based on the self-consistent-
field Xn scattered-wave method. An impurity with
12 nearest neighbors and 6 next-nearest neighbors
is considered, e.g. , a FeCu&~Cue cluster. The re-

TABLE IV. Local valence charge N„, within the impurity signer-Seitz sphere and total
charge N~, ~ =Zp+~(Ez) as calculated from Lloyd's formula equation (22) (Zp equals the val, -
ence charge of the host). For an exact treatment of the screening N&, &

has to agree with the
valence Z of the impurity IFriedel sum rule L&'(Ez) = Z- Zp].

Cu host Nag

Ag host N„,
N~oc

Ti
4

3.53
3.75
3.73
4.06

V
5

4.66
4.78
4.85
5.09

Cr
6

5.74
5.88
5.91
6.03

Mn
7

6.79
6.87
6.90
7.08

7.90
8.06
8.02
8.26

Co
9

9.02
9.33
9.12
9.32

Ni
10

10.04
10.23
10.18
10.28
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TABLE V. Change of the total density of states M~(Ez) =d~, (E)/dE (~ at the Fermi en-
ergy. for up and down spin and the sum of both contributions.

Fe Co

Cu host

sum

1.24
1.24
2.47

1.97
1.05
3.02

0.53
0.67
1.20

0.10
1.42
1.52

0.10
2.97
3.07

0.88
0.88
1.75

0.26
0.26
0.51

Ag host

sum

2.67
0.74
3.41

1.80
0.35
2.15

0.28
0.27
0.55

0.04
1.38
1.41

0.05
4.74
4.79

0.13
4 44
4.57

0.55
0.55
1.11

~C.
15-

0—a

10- aa

Cu host 15 o

ab
aa

-10-

Ag host -15
ITI
(J)

-10

suits of these calculations are in strong disagree-
ment with our results. For instance, the d-wave
functions 5t&~ and 5e„responsible for the moment
formation, are strongly delocalized (see Table 1

and Fig. 10 in Ref. 10); for the 5tm state, only 38/&
of the charge is localized in the Fe sphere. The
spin splitting of these states (0.17 eV for e~ and
0.12 eV for f&) is an order of magnitude smaller
than our spin splitting of 1.47 eV for the Fe virtual
bound states. Nevertheless the moments obtained
are quite high, e.g. , for Mn in Cu the full atomic
moment of 5p.~ is obtained.

The principle defect of the cluster calculation is
the neglect of the s-d interaction, i.e. , the inter-
a,ction with the conduction electrons of Cu. Using
the golden rule (28) this interaction leads to a
half-width of the virtual bound states of the order
of 1 eV at the Fermi energy (see Figs. 1 and 2 and
Table 1). According to the Anderson model and
also to our results, this interaction is decisive
for the formation of local moments in metals. In

order to simulate this broadening in a cluster cal-

culation one would need many s-P states within the
half-width of the virtual bound states, i.e. , ex-
tremely large clusters. In the calculations of
Johnson et al. ' on the other hand, only one single
state, the 3a«orbital, is 'the discrete cluster
analog of the half filled conduction s band of
crystalline copper. " Since there is no way of
getting around this s- d interaction, the discrete
energies of the cluster calculations should at least
be broadened by the corresponding half-width. The
effect of such a broadening is sketched schemati-
cally in Fig. 5. The discrete states for the spin-
up and -down electrons, resembling the 5t& or 58,
states of Johnson et al. , are spin-split by about
0.15 eV. For Mn the lower state is fully occupied,
the higher one empty leading to a loca, l moment of
5p, ~, and a Fermi energy right in the middle be-
tween these states, A Lorentzian broadening of
both states by 1 eV changes the occupation dras-
tically: The lower state is only slightly more than
half filled, the higher one is slightly less than half
filled, so that the local moment is practically
wiped out. For the values chosen in Fig. 5 it is
0.48@,~ instead of 5p;~. Thus we conclude that
such cluster calculations cannot give reliable re-
sults for local moments.

The importance of the interaction with the con-

kC
LC

-5 o
3
Q
~O
O

Ti V CrMnFe CoNi Ti V Cr HnFe Co Ni
FIG. 4. Residual resistivity for impurities in Cu and

Ag calculated according to Eq. (29) of Gupta and Benedek.
The triangles are experimental values of different auth-
ors:

'G. Griiner, Adv. Phys. 23, 941 (1974).
"J.D. Cohen and C. P. Slichter, J. Appl. . Phys. 49,
1537 (1978).
'J. F. Blatt, Physics of Electronic Stmctuxe in Solids
(McGraw-Hill, New' York, 1968).

dP. T, Coleridge et al. , J. Phys. F 2, 1016 (1972).
'Landolt-Bornstein, Zahlensv eAe und Eunktionen aus
Natureseissenschaften und Teehnik, edited by K.-H.
Hellwege (Springer, Berlin, 1979), Vol. UI, part 1.

1eV
FIG. 5. Effects of broadening due to s-d interaction

on the results of cluster calculations: The two discrete
states with a spin splitting of 0.15 eU are broadened by
a Lorentzian with a half-widths of 1 eV. Both states are
now more or less equally occupied so that the moment is
reduced by an order of magnitude.
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duction electrons can also be seen at the case of a
single impurity: Whereas a Cr or Mn atom in free
space, i.e., a clust:er of one atom, has only little
to do with the structure of Cr or Mn impurity in
Cu, the same atom embedded in jellium gives al-
ready a fair description of the impurity, as can be
seen by comparing the densities of states in Fig. 2.
Therefore we believe that cluster calculations as
performed, e.g. , by Ries and Winter, 3~ where the
cluster is embedded in a free electron sea, could
give reliable results for magnetic impurities.

Against our approach one could argue that as a
consequence of our assumption of one perturbed
muffin tin the local moments have to be localized.
However this is not the case, since in the Green's-
function method the full spatial extent. of the wave
functions, densities of states, etc. , is taken into
account. If the displaced charge and the local
moment would not be localized, it would show up
in our calculation. However, our results justify
our approximation as has been discussed before.
This is confirmed by the recent Green's-function
calculations of Baraff et al. ' and Bernholc et al. e

for vacancies in Si: Whereas the wave functions
and the densities of states are perturbed over
rather large distances away from the defect, the
perturbed charge densities and the perturbed poten-
tials a.re localized, since by integrating over the
energy the differences in the perturbed local den-
sities of states cancel to a large extent. Ries and
Winter33 come to the same conclusion by using
their cluster method to study C vacancies in NbC.

IV. CONCLUSIONS

We have for the first time performed realistic
calculations for the electronic structure of mag-
netic impurities in noble metals. The calculations
are based on the density functional theory in the
local spin-density approximation and on the KKH
Green's-function method. The latter method al-
lows a self-consistent calculation of the impurity
potential. Our results for the local moments are
in reasonable agreement with the available ex-

perimental information. They are in qualitative
agreement with the Anderson model, although in
disagreement with recent cluster calculation of
Johnson et al. ' in which s-d interactions are
neglected.

We would like to point out that despite thyrse
successes the calculation can and will be improved
in the future. In order to quantitatively discuss the
question of charge transfer to nearest neighbors or
the localization of the perturbed potential, changes
of the potential at neighboring sites also have to be
allowed. Finally, also, the problem of lattice re-
laxations can be attacked by these methods, as has
been shown by Lodder. 34 While we believe that the
main features of our present results will not be
changed by such improvements, more detailed
questions, e.g. , whether the minimum in the den-
sity of states and in the resistivity is at Cr or at
Mn, could perhaps then be answered differently.

Vote added. Recently the work of Reehal and
Andrews ' and Andrews and Brown on ultraviolet
photoelectron spectroscopy (UPS) studies of solid
solutions of Sd impurities in Ag and Au came to
our attention. Clear evidence for the virtual bound
states of Fe and Cr impurities in Au is found and
especially the majority peak of Mn in Agp 8Mnp 2 is
identified at —2.8 e7 below E~ which is in agree-
ment with the findings of Norris and Wallden~~ and
Wallden~~ and also with our calculations (we obtain
a value of —2.4 eV; see Table 1). Thus despite the
negative findings of Hochst et al. ~e the existence of
well-defined virtual bound states for magnetic im-
purities in noble metals seems to be now well
established.

Note added in Proof. Recently Cohen and
Slichter" have fitted model calculations for 3d
impurities in Cu to NMR satellite data for these
impurities. The resulting positions of the virtual
bound states are in astonishing agreement with our
ab initio calculations. " This is another indication
that our present calculations give a very realistic
description of magnetic impurities.

, APPENDIX: DYSON EQUATION FOR THE ELEMENTS 6 (E) OF THE GREEN'S FUNCTION

According to E(l. (2) the Green's function G(R" + r, R" +r') can be split into a Green's function

G, (R" +r, R + r') representing the solution for a single muffin-tin potential v (r) and into a second term
containing only regular radial functions R, (r, E) and R", (r', E):

G(R +r, R" +r') =6,G, (R +r, R +r')+p Rp(r, E)Y~(r)G~~, (E)Rp (r', E)Y~, (r')
L,

'

with

(Al)

G, (R +r, R" +r')= ~K g )), (r, Z)Y (r)H, (r, Z))' (r')

The same equations hold for the Green's functions t"' for the ideal crystal if the radial wave functions
are replaced by Ro(r, E),Ho)(r, E). The corresponding elements of the Green's function are Go~~( '(E).



22 ELECTRONIC STRUCTURE OF MAGNETIC IMPURITIES. . . ,5789

By inserting these expressions into the Lippmann-Schwinger equation (5), the terms proportional to 5

can be collected and represent a Lippmann-Schwinger equa. tion for G, (R + r, R +r'):

G,"(R +r, R +r')=G, (R. +r, R" +r')+f dr"G, (R +r, R" +r")dr (r")G,"(R +r", R +r'). (A3)

The remaining terms lead to the following equation for Gii. in terms of Goii. :

B, (r)G B, (r')=B.a(r.)Go Be(r')+ zZf dr"r" sBo(r")Ba(r")dr (r )B (r"")G B (r').

KRO{h)GOmm' rrr1dhr RO (rrr)gv (rrr)Rm(rrr)Hm{hrr)
2m MT

+ R', (r')g G~~~, . r"~dr"R', (r")tBv„(r")R", (r")Gz"„~,Rp (r').
MT-

I
O

(A4)

Note that in the second term r&' means the minimum of r, r", however, in the third term r&' stands for
the minimum of r' and r". By realizing that the radial solutions RP(r, E) =e"~ (e)R, (r, E) satisfy the
radial Schrodinger equation

MT
Rp(r, E) =Ro(h, E) + r"2dr™~KRO){h&'E)HO{h)'E)tBv (r")Rp(r" &E), (A5)

with Ro{h) =e@)RO(r), the second term on the right-hand side of Eq. (A4) can be lumped together with the
left-hand side of Eq. (A4) thus replacing R, (r) by e 'BF ' 'B)R(0(r). Analogously the first and third terms on
the right-hand side of Eq. (A4) can be lumped together, effectively replacing R; (r ) in the first term by
e B&" '6('RP (r'). For the latter step we have used the following version of the Lippmann-Schwinger equa-
tion:

R, (r, E) =Ra(r, E)+ r"~dr"
z KR) (r&', E)H, (r&', E)hv (r")Ro(r",E). (A6)

The resulting equation then takes the form
I

R, (r)e '~) ''()rG"~. R",. (r')=R, (r)G, e ()t ''()F'R . (r')
I

"~MT
+R, (r) g G~~" r" dk "Ro- (h")t)v„(r")RI-(r") G~.".~.R) ~ (r').

ni" "0
(AV)

Since all three terms contain the same radial
I

functions, we obtain the desired equation for Gii.
in terms of Gi'i.

with

t) (E) = — (sin5P)

mm' () (m-m' ) M Q (m-n) n nrem'
GLL' GLL' ~ Gii" L"GL"i'

y
iN

with
I

Gnsm' ~- i6) Gmm e-c6i.
ZL' ii'

~ 0 0
G() (m-m ) e-co,Go (m-m )q-e, ,IL' ii'

(AB)
The expressions (A9) and (A10) are equivalent

which is seen as follows: In the integral (A9) we
can replace the terms v (h)R) {r) and vo(r)RO(r) by
the following expressions obtained from the radial
Schrodinger equation;

@' l(l+1) h' 1
r ( ) r(B)=r( —B , + —8,'r B", (r),

In these equations the deviations of the on-shell
t matrices t P{E) from the ideal crystal values t 0(E)
appear as perturbing potentials.

QO:

6t p(E) = r" dh "R,(r",E)tv„(r")Rp (r",E)
0

(A9)
or

f (6~+ &0) 2

tBt ) (E) = — sin(5", —50) = t, (E) —t 0(E)

(A10)

(A11)

tt~ l(l +1) h2 1
v (r)R0(r)= E — + —R, r Ro(h).

(A12)

Only the terms containing the second derivative
of rR, and rR, remain. The resulting integrand is

(A13)



5790 R. POOLOUCKY, 8, . ZKI LEE, AND P. H. DKDKRICHS 22

so that the integral is elementary and given by the
value of the radial functions and their first deriva-
tives at the muffin-tin radius. We have

the Wr'onskian for j,(x) and n, (x):

j,(xgr (x) —j,'(x)ng (x) =+I/x', (A15)

This expression can readily be calculated using
the asymptotic result (4) for the wave functions and

which finally leads to the result (A10).
Very analogous to the relation (8) between the

Green's function GLL. and the ideal crystal Green's
function we can also derive the corresponding Eq.
(7) between G~~, and the free-space Green's func-
tion g~~. . Inserting the equation for g

g(H + r, R" + r') =5, 2 K g j (Kr&) Yz (r)h, (Kx&) Yz (r') +g j, (Kr) YI (r)gz p. j, (Kr') Y~. (r'),
LI'

together with (Al) into Eq. (5), the terms pro-
portional to 5 ~ give an equation analogous to
(A5) for G,", where Go(H" + r, H" + r') is replaced
by g(R +r, H +r') and b,v„(x") by v (r") The.

remaining equation analogous to (A4) can be modi-
fied using similar arguments as in (A5) and (A6)
and finally leads to the desired equation between

GT~ and g~~i.

r mm' (ni-m') ~~LL' +L L' ~L L" f"~L "L'
nL'

The f matrix t P(E) is obtained as

MT
t p(E) = x "~de "j,(Kx")v (x")fop(x")

where the last identity follows using relations
similar to Eqs. (A11)-(A15).
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