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Two-soliton interaction energy and the soliton lattice in polyacetylene
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Making use of a variational solution zi {x) the dimerization pattern, we calculate the interaction energy of two

solitons within the Su, Shrieffer, and Heeger model for polyacetylene. It is found that two solitons attract each other
in general except for the case of two solitons having the same charge and the case of the spin triplet pair of neutral

solitons. We have also studied the electronic structure of a regular array of solitons with the same charge.

I. INTRODUCTION

Recently there has been great interest in soli-
tons in polyacetylene, since the proposal by Rice'
and Su, Shrieffer, and Heeger (SSH)' that solitons
will play an important role in the electric prop-
erties of doped ones. Su et a/. ' have developed a
microscopic theory of solitons with the Hamil-
tonian including both the electronic and lattice
distortion terms. %hile SSH have studied the sol-
iton solution of the above model numerically,
Takayatna et al. (Ti M)s have shown that the prob-

/

lem can be handled analytically in the continuum
limit. Indeed, the continuum approximation
should be quite good, as the system is essentially
in the weak-coupling limit.

The object of the present work is twofold; first,
we examine the interaction between two solitons
in the continuum limit of the SSH model; second,
we study the electronic properties of the soliton
lattice formed by the charged solitons of the
same charge. These problems are analyzed by
making use of variation solutions, which are
asymptotically exact when the distance between
two solitons becomes much larger than the soli-
ton size $. It is shown that for a large separation
d (i.e. , d» $), two neutral solitons with opposite
spins or two charged solitons with opposite charges
attract each other. Also, a neutral soliton and a
charged one attract each other, but the interaction
energy is one-half of that for two charged solitons
of opposite charge. Finally, two charged solitons
with the same charge or two neutral solitons with
parallel spin configuration (i.e. , the spin triplet
state} weakly repulse each other.

Because of this, the charged solitons with the
same charge tend to form a regular lattice to
minimize the interaction energy when the soliton
density is increased. Here we neglect the quantum
fluctuation of the soliton lattice for simplicity,
although it may have quite important consequences.
The soliton lattice produces a narrow electron

II. TYPO-SOLITON PROBLEM

%e have shown earlier' that the SSH model
8amiltonian

H= —g (t„„„Ct„,C„,+ H.c.)
tie S

y y 2+ —M ys2

with

.,t..= c- (y.,r-y. )

can be transformed into a familiar Hamiltonian4
in the continuum limit

(d@
H, =, dx 4'(x)

+ ~4'~ -tv~0, —++x o, 4 x
8

where

g= 4n(a/M}rts, ~os = 4K/M,

~(x)=g(a/M)"'y(x),
(4)

and a is the lattice constant and y(x) is the con-
tinuum limit of the dimerization pattern y,
=(-1)"y„. Here, Ct, (C„,) is the electron creation
(annihilation} operator at the site n, 4'(x) -=(„"&"„I)is
the spinor representation of the electronic field, '
and 0; are the Pauli matrices. 'The functional dif-
ferentiation of Etl. (3) by 4 and &(x) yields

band in the middle of the dimerization energy gap.
However, this electron band is either completel. y
occupj.ed for the case of the negatively charged
solitons or completely empty for the case of the
positively charged solitons. Therefore, the elec-
trons in the narrow band play no role in the mag-
netic response or in the dc electric response of
the system. A probable role of this narrow elec-
tron band in the metal-insulator transition of poly-
acetylene will be discussed later.
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8
c„u„(x)= i-v~ —u„(x)+ a(x)v„(x),

9
e„v„(x)= iv~ —v„(x)+ &(x)u„(x),n

2

a(x)= ——,Q Re[v„'(x)u„(x)],
Q n, s

(5)

(6)

by introducing f, =u +iv as"'

{
82)" . ,+ n.

' - V, (n
)I f, = 0,

where

V, (x) = S'(x) + v
aa x) (12)

(7)

I ~2
E„~(a(x))= Q &„+~ dx &'(x) .

ns
(8)

Here again the sum runs over the energy levels
below the Fermi level. Furthermore, the bound

state at the Fermi level has &„=0, and

u„(x)=iv„(x)=2 '& '~'se h( c/$x).

'Therefore, as already noted by Horovitz, ' the
bound state does not contribute to Eq. (6) or to
Eq. (7), implying that the neutral and the charge
soliton have identical &(x) and Ez, consistent with
the numerical result of SSH.' Furthermore, the
neutral soliton has spin 2, while the charged soli-
ton is spinless.

Here let us consider the two-soliton solution
with a variation function

n(n)= n, tnnn( ) nnnn( ), (10)

where d is the distance between two solitons. In
the limit of d» $, Eq. (10) approaches asymp-
totically to the exact solution. Substituting Eq.
(10) into Eq. (5), we obtain a coupled equation for
u(x) and v(x). The set of equations is separated

where u„and g„are normalized eigenfunctions of
Eq. (5). The sum in Eq. (6) runs over up to the
Fermi level, which is chosen to be zero. Equa-
tions (5) and (6) are very similar to the Bogoliu-
bov-de Gennes equation4 in the theory of supercon-
ductivity, except that the real part of v„*(x)u„(x)
appears to the right-hand side of Eq. (6). As
pointed out by Horovitz, ' this reflects the condition
that the field y(x) is real in the half-filled band
where the charge-density wave is commensurate
with the CH group lattice 2k~ = m/a.

It is shown by TLM' that the solution &(x)
= 4otanh(x/$) with ) = vz/4„where 2&, is the
dimerization gap and v~ is the Fermi velocity,
satisfies the self-consistent equations (5) and (6),
yielding the soliton energy

XT- d
V,(x)=&,' 1-2sech'

+ O(e i~). (14)

This suggests that Eq. (11) can be solved varia-
tionally by making use of the solution with the
single potential well. Furthermore, we have

V,(x)= V (-x), (15)

implying that the energy spectrum of f is identi-
cal to that of f,. Therefore, we shall confine our-
selves to the f. function. The exact solutions of
Eq. (11)with

V,'(x ) = &ao 1 - 2 sech'
)nn

is given as'

= 0 f' = (2$ )
' 'sech x- 2d')

(16)

g,'= [S',+ (kv~)'], (18)
1

f,=( [LI(+k$)']] '~' ik$+ tan-h
~

8'~",

where there are one bound state [Eq. (17)] and a
set of scattering states with wave vector k. Here
the scattering state is normalized in the system
with length L.

Making use of wave functions given in Eqs. (17)
and (18), we calculate the energy spectrum of Eq.
(11) when the distance between two-soliton d is
much larger than $, where we can treat 5V, = V,
—V', as a small perturbation. %'e obtain

sech' ' tan

1

j.
From Eq. (13), we see immediately that V,(x) has
a large potential well at x =-,'d, while V (x) at
x = ——,'d . In particular, in the limit d» $, we can
approximate Eq. (13) by

00 1

&'=(2&') ' dxsech' ' 6V (x)=4&'e ~~'+O(e ~~'),
a +
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I
as=a;+('v k)'+ —(1+(kt)'I'f dx tanh' +(kt)'IIV(x)

=t,'+(v k)'+ —OV-[ta(kt) j'J'wsenh'~ *)sv.(x)
anOO

1=—'o+(v„k)'+ —(6V —[1+(k$)'] '(8$~2oe '«)), (20)

where

hV. (x)=a'Isenh'( )sash'( . )
— I+tanh( ) sanh'( ). t t-h("'"') .e.h(*-"")I

and

6V= dx5V. (x)=~O2 dxsech', x-d/2, x+d/2~sech'

(21)

(22)

Equation (19) shows that in the presence of two solitons the bound state at e, =0 is split into two levels
with energy

~2g e~/f

'This splitting is due to overlapping of the bound state at x = ~d and that of x = -2d.
As to the valence band, the energy shift due to 6V is calculated as

6e =-2 g [~'+(v k)'] ' '—(6V —[1+(k$)'] '(8$'e «))
1

(23)

dk&'+ v k' ' &V- j+ k ' 8 &'e
-A

(24)

Here the factor 2 comes from the spin summation. As is easily seen, the first term in Eg. (24) is diver-
gent logarithmically, which is exactly cancelled by one term arising from the lattice distortion energy:

E,.„...(~(x))=—', dx ~2(x)

(d'
(25)

Here use is made of the gap equation (at T= 0 K):

g21=— —,1n(2)A).
7TVp +g

Putting together the total energy of the system
for a variational function (10), we obtain

(26)

E„z(b(x)) -E„z(60)=2Ez+ —b, e "'«+ P &3, (27)
8

B

where E~=(2/w)~, is the soliton energy' and the
last term has to be summed over on occupied
bound states. Since the bound-state energy is of
order of e ', the electrons in the bound state
have dominant contributions in the interaction en-
ergy. The lowest energy state is obtained by putt-
ing two electrons in the Eo state. ' This corres-

ponds to the case of two neutral solitons with
opposite spin (i.e. , the spin singlet pair) or two
charged solitons with opposite charge. The bind-
ing energy is given by -4&, e~ '. The second case
corresponds to a neutral soliton and a charged
soliton. In this case, the total electrons available
for the bound states are odd. Therefore, in this
case the bound states contribute -24, e~ '. Final-
ly, for the case of two charged solitons with the
same charge or two neutral solitons in the spin
triplet state, the electronic energy due to the
bound states vanishes. In this ease two solitons
are repulsive with the interaction energy
(8/w)4, e ~~«. The charge or spin configurations
of two solitons and the related interaction energies
are summarized in Table I. Since the spin of
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Two solitons
Q Spin

Electron
configuration

Interaction
energy

0a
Eo

-4a, e "«

8

TABLE I. Charge and spin configuration of two solitons
and the corresponding interaction energies.

III. SOLITON LATTICE

Let us now consider a doped polyacetylene where
a number of charged solitons with the same
charges are introduced. In such a situation the
pinning potentials due to dopants are not negli-
gible, in general. However, we shall consider
here the idealized case where the intersoliton in-
teraction is predominant and the solitons form a
regular lattice with the distance d. This situation
may mimic the more complicated configuration of
solitons in a relatively large doping level, al-
though we assume still that d» $. In the present
case, a variational function is given by

(28)

neutral solitons may be flipped in the long run,
the repulsive interaction will be effective only for
the solitons with the same charge.

Since the electronic contribution plays the dom-
inant role in the interaction energy, we shall
study Eq. (11) with &(x) given by Eq. (28). Substi-
tuting Eq. (28) into Eq. (12), we obtain Eq. (11)
with

) .(x)=—c,'{( s g sech'( )
„,t'x —nd „,x —(n+ 1)d &I

+ sech' sech'
n

, tx —(2n+ 1}d x —2nd /x —2(n+ l)d&I
+ sech' 1+ tanh tanh~

, (x —2nd x —(2n —1)d x —(2n+ 1)d},
(29)

where we have neglected the terms of order of e ~~'. V.(x) has the deep potential wells at x= (2n+ 1)d,
while V (x) has the potential wells at x= 2nd Again. , the energy spectrum of f„ is identical to that off,
and we shall concentrate on f, . Let us first consider the bound states in the middle of the dimerization
gap in the presence of the soliton lattice. It is quite natural to study the energy spectrum within the tight-
binding approximation. Assuming that the bound state is given by

;,(,„., ), t'x —(2n+ 1)d'),

i '

we obtain &~(k} as

s.,'(h)= f Sx e',' e)',(x))h, (x)('
I

=8&', e ~ ~[1 —cos(2ka)]+O(e )

dx
[

())),(x)['

(30)

(31)

(32)

and

a (k)=+4&, e ~'~sin(ka)~, (33)

g 7r——& jg&-
2d 2d

The bound states form a narrow one-dimensional

after straightforward but tedious integrals. From-
Eq. (32), we obtain

I

band with half-width 4&oe~ ~, which is the energy
splitting in the presence of two solitons. Further-
more, the electrons in the narrow band are com-
pletely inert, as the band is either completely
filled (the negatively charged soliton lattice} or
completely empty (the postiviely charged soliton).
(In this circumstance the electric conduction is
still dominated by moving solitons. } The energy
between solitons is due to the continuum electron
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state as well as the lattice-distortion terms. The
total energy of the system is then given

Z., =n, Z, + —~, e-""+O e-~"16

acetylene, where the electrons in the narrow band
suddenly become metallic. If we assume that Eq.
(35) is still valid for such soliton densities, the
critical soliton density n", =d, ' is determined from

where n, =d ' is the soliton density.
6E=0 or d= $ In[m+ (m' —8)'~'J

—= 1.5$ . (36)

IV. CONCLUDING REMARKS

We have studied the interaction between two soli-
tons by making use of a variational function. We
find that two solitons attract each other except
for the case of two charged solitons of the same
charge or two neutral solitons with a triplet spin.
Therefore for solitons with the same charge it is
possible to form a regular soliton lattice when the
soliton density is sufficiently high. In this cir-
cumstance, the bound states at the center of the
dimerization gap form a narrow electron bind
which is completely inert to low-frequency exter-
nal perturbation. However, when one neutral sol-
iton is introduced in the above soliton lattice,
which will provide an electron or a hole in the
narrow band, and which is active both electrically
and magnetically, the energy required to introduce
a neutral soliton is now

~Z=E, +—~ e ""-4~ e~"16
s + 0 0

where E~= (2/w)&„and the last term arises from
the hole at the top of the narrow band or the elec-
tron at the bottom of the same band associated
with the neutral soliton. Then, when the soliton
density is such that M & 0, it is energetically
favorable to introduce neutral solitons in the sol-
iton lattice. This implies a possibility of a new

type of the metal-insulator transition in poly-

This corresponds to n", ~ 10 ' if we take $= 7a,
where a is the distance between two neighboring
(CH) groups. Although the critical soliton density
obtained here appears to be too large compared
with the experiments' on doped solitons, the ap-
proximation used (d» $) is certainly no longer
valid in this short distance. Therefore, in order
to determine the critical soliton concentration,
more refined treatment of the soliton lattice is
necessary.

As already mentioned in the introduction, we
have also neglected the effect of fluctuations of
the soliton lattice. Inclusion of the fluctuation ef-
fect will also modify the critical density given
above. These are some of the most urgent ques-
tions, which require further clarification.

Note added in proof. In a recent publication S. A.
Brazouskii [Zh. Eksp. Teor. Fiz. 78, 677 (1980)]
has also considered the interaction between two
solitons and obtained similar results.
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