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Experiments wherein excitons created at one end of a crystal through illumination are detected at the other end

through capture and subsequent radiative emission by a detector layer have been often used to determine the

diffusion constant of excitons. However, reported values span several orders of magnitude for similar or even

identical systems. A theory of exciton migration which addresses this issue is constructed on the basis of an exact
model calculation. It results in a possible explanation of the experimental situation in terms of the observation that

the detectors are not perfect absorbers of excitons. We also indicate the effect of transport coherence on these

experiments.

I. INTRODUCTION

The values of the diffusion constant of singlet
excitons in aromatic crystals at room tempera-
tures reported by experimentalists in the last
thirty years span several orders of magnitude. '
The systems on which the experiments were per-
formed are very similar, and in some cases iden-
tical. Evidently this is a very unsatisfactory state
of affairs and it is imperative that attempts be
made to under stand the source of the enormous
disparity. This paper contains such an attempt
based on what we believe to be a careful first-
principles theoretical analysis of exciton kine-
matics.

We introduce the basic experimental situation
and its usual analysis below', state our model
and give its exact solution in Sec. II, obtain the
results of the earlier analysis' in Sec. III as a
limit of our result, explain the novel features of
our theory including a discussion of how it could
explain the disparity in the value of the diffusion
constant in Sec. IV, and summarize our findings
in Sec. V.

Simpson' was the first among a group of ex-
perimentalists who deduced the diffusion length
and hence the diffusion constant of excitons in
aromatic crystals on the basis of what we shall
call direct migration observations. The experi-
ment consisted of illuminating one side of the
crystal by light and detecting the excitons thus
created with the help of a coating of guest mole-
cules placed at the other side. Simpson used
anthracene as host and naphthacene for the de-
tector coating. The latter emits with a charac-
teristic frequency different from that of the an-
thracene host molecules. A study of the quantum
yield led to values of the diffusion constant. Simp-
son's analysis was based on the steady-state so-
lution of the usual continuum diffusion equation
satisfied by the exciton population n(x, f), i.e.,

sn(x, f) n 8'n

Qf 7H ~X

where I is the incident photon intensity, 7„is the
radiative lifetime of the exciton, D is the diffusion
constant, and k is the absorption coefficient. By
imposing the obvious boundary condition that no
transport of excitons occurs across the illumina-
ted surface and an assumption that the detector
is a perfect absorber for excitons, he obtained
the following expression for the exciton flux S
which is defined as -Dsn/sx ~„~(where I- is the
length of the sample):

jpl L
„

tanh I lD

(1.2)

where l~ = ID7'„.By perfo—rming an appropriate
subtraction of the background signal due to the
direct transmission of light from the experimental
flux, and by fitting (1.2) to the S thus obta. ined,
the diffusion length lD was found to be 460 A at
room temperature. Here the value of MD was
treated as a parameter in the process of fitting.
From its value obtained from the best fit and
from k taken from other independent measure-
ments, lD was determined. As 7H was well known,
the diffusion constant was evaluated.

The experiment was repeated by Kurik' for the
same system but at two different temperatures
(300 and 77 K). The same analysis was performed.
The results lD (300 K) =1300 A and lD (77 K) =900A
were stated to be consistent with those of Simp-
son and any discernible discrepancies were at-
tributed to the use of a thinner host crystal which,
it was assumed, avoided reabsorption. The
change of the diffusion length lD with respect to
the temperature variation is generally believed
to be due to the temperature dependence of the
overlap integral which, in principle, determines
the Forster-Dexter transfer rate and hence the
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diffusion constant.
On the basis of their observation of the exis-

tence of a temperature-dependent probability of
energy transfer from host to trap per unit con-
centration of trap for different types of guest
molecules in the same host crystal, Tomura and
Takahashi~ have suggested that the specific de-
tector used by Simpson' and Kurik' may not have
been a perfect absorber. Therefore, any estima-
tion of the diffusion length based on this perfect-
absorber hypothesis would inevitably underesti-
mate the diffusion length. This idea is supported
by their drift-time measurement in which the
relative time shift between the exciting light pulse
and the emission pulse from the guest molecules
was measured. By employing perylene as a de-
tector, which is believed to be a better absorber
than naphthalene, they actually obtained a value
for the diffusion length (ln = 3800 A) which is much
larger than the one obtained by Simpson (l~ =460 A).

The analysis that we give in the next section
has, as its natural consequence, the above-men-
tioned feature, viz. , the dependence of the value of
D on the nature of the detector used in the ex-
periment. It therefore contains a natural pos-
sible explanation of the disparity in the reported
values of D.

dP~
dt 7

c= ——P' +FP' -fP'
C

(2.1d)

' =E(P, P, )-, (2.2a)

dP =F(P „+P,—2P ) (N —1o m) 2),

dP„=F(P» -P») +fPc —PP»,

(2.2b)

(2.2c)

dP~ (=FP»
I
f+ IPc.

~C ~H j
(2.2d)

From (2.2d) one has, with e as the Laplace varia-
ble and tildes denoting Laplace transforms, a
relation between the detector probability and P„:

where the label 6 denotes the detector or guest,
+ is the intersite transfer rate in the host crystal
taken to be nearest-neighbor character for sim-
plicity, F is the host-to-detector rate, and f is the
detector-to-host rate. We specifically allow 5 4E
and 7'»4 rc Int.roducing quantities x(t) —= x'(t)e" '»,
(2.1) becomes

II. MODEL AND SOLUTION FOR THE QUANTUM
YIELD

Pc&
& +f + (I/&c —1/~»)

PN.

Using (2.3) and (2.2c) we obtain

(2.3)

The experimental setup suggests that we con-
sider a one-dimensional crystal with N lattice
sites, a guest site being appended to it at one
of its ends. If the length of the crystal used (the
distance between the illuminated side and the
detector side) is L and a is the intersite distance,
then N =L/a. The assumption of a one-dimen-
sional crystal is hardly a restriction and cor-
responds to the experimental situation since the
relevant motion is in a single dimension.

We first assume the dynamics to be incoherent,
i.e. , to be described by a Master equation for the
probabilities. This assumption will allow us to
make contact with Simpson's expression (1.2). In

Sec. III we shall mention how to generalize the
analysis to treat coherent motion of the exciton.

The transport equation for the probability P' (t)
that the exciton is at the mth site, is thus

dp,' 1' = ——P,'+F(P,' P,'), -
H

(2.1a)

dp'» = - —P» +FP», +fPc —(E I(-P)P»,
H

(2.1c)

dP' 1."=——P' +F(P'., +P', —2P') (N —I& m)2),
8

(2.1b)

' =F(P, P,), - (2.4a)

dP =F(P „+P,—2P ) (N —I) m)2), (2.4b)

x P„(t')—FP»(t) .

(2.4c)

We have eliminated the detector probability
exactly in going from (2.3) to (2.4). The latter
is immediately solved as

p (a) = f () p„(0)
n=&

e +(I/r„I/r„)-
+~m» &+f+(I/& I/& )

(2.5)

where g „(t)is the propagator for the nonradiative
open chain, i.e. , the solution for P (t) for the

system without the detector and without radiative
decay and for the initial condition P, (0) =6, „.
Equation (2.5) leads to

dP t
» E(P P ) + Pf dtt -(I+I I1'G-jIT»)( t t)-

dt
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g +(1/re —1/r„)+
e +f + (1/r e—1/7'„)&)I')))&))

P („0)„
n=& (2.8)

for the probability of occupation of the end site
of the host in the presence of the detector and of
radiative decay. With (2.3) we then have

(2.7)P~=
e +f + (1/re —1/r„)+ [e + (1/re —1/re) ]Kg~„ 4P.(0)

The inverse 1 aplace transform of (2.7) gives, when multiplied by e ' 'H the probability that the detector
is excited. The probability that the host is excited is given similarly by multiplying by e ' 'H, the inverse
transform of ne(&)

—=Z+„(e),i.e. , of

1 e +1/r~ —1/r„ )I&gj'.(0) (2 8)
~+y'+(1/r -1/r„) +[~+(1/ ,r-1/r„)]FT))„

finally, the most easily accessible experimental quantity, viz. , the quantum yield, is obtained directly,
without Laplace inverse transformations from (2.7) and (2.8). Thus the guest quantum yield, defined as the
ratio of the number of excitons that emerges radiatively from the detector to that put into the host through
initial illumination, is

NN e n)
(2.9)

The first equality in (2.9) comes from (2.1d), the second from the transformation that allows the passage
from (2.1) and (2.2), and the third from the recognition of the expression as a La.place transform and from
(2.7). A similar equation may be written for the similarly defined host quantum yield Q„.It is easy to
verify that

dt n„'(t)=1 ——Pe
H

(2.10)

III. EXPLICIT EXPRESSIONS AND THE CONTINUUM LIMIT

To evaluate the observables such as (2.9) we require the initial condition P„(0)and the propagators
)I) „(t).The latter are found in the analysis of Lakatos-Lindenberg et al. ' With the definition of $,

cosh)' =1+— (3 1)

they are given by

1 {cosh[($'/2)(2N- Im+n —1 I
— Im —n )]I]f csoh[($/2)( Imn+—1 I

—Im —n I)]].
NE1l j' (sinh( ') (sinhN) ')

The initial condition relevant to the experiment is

(3 2)

&.(0) =

~
(3.3)

where x is a discrete version of the absorption coefficient k in Simpson s analysis. We have evaluated
Pe of (2.9) in terms of (3.2) and (3.3) in the Appendix. We obtain

cosh($/2)
F (sinh))(sinhN)) 1 1 e )c e & &(1 -&)'«-&

&) e -& t2(1 i -&))«+&

(cosh//2)(cosh[($/2)(2N- 1)]} 2 1 —e ~~ 1 —e '" " 1 —e '"'~'

(sinh() (sinhN))

(3.4)

Equation (3.4) is one of the primary results of
this paper. Notice that it involves ( rather than
the quantity $' defined in (3.1). The former is

, obtained by replacing & by 1/r„in (3.1).

The exact result (3.4) for the observable &f&e is
obviously more accurate than expressions obtained
by approximating the host crystal by a continuum
and using an equation such as (1.1) for describing
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lim Sa=0.
a-o
lim z/a =k,
a

(3.5b)

(3.5c)

exciton motion. However, to make contact with
traditionally used expressions, '~ the continuum
limit of (3.4) must be taken. This limiting pro-
cedure is straightforward: we let the lattice
constant a tend to zero and define the following
quantities:

(3.5a)

k'1', (Ll. , .( tanh(L/& )
I

(3.9)

Equation (3.9) is nothing other than (1.2). For the
factor (1 —e ~~) ' in (3.9) arises from the nor-
malization and corresponds to I in (1.2) and the
flux S and the yield Pa are essentially identical
to each other. With the help of (3.9) we can write
(3.8) as

lim P„(0)/a=P(x, 0),

limNa=r .
a

(3.5d)

(3.5e)

1+~ a
~l~ tanh — pa(D- ~). (3.10)(1+fr,l

( Qf'g j l~

p(x, 0)=1 -~ e" (3.8)

from (3.5) and (3.3). Equation (3.1) and the de-
finition of $ show that, since F -~, we may re-
place cosh) by [I+($'/2)] which gives

5=( Fr) '" (3.'I )

We also can replace sinh$ by $ and finally obtain,
as the continuum limit of (3.4),

1

1 +fr~ 1

I, tanh(L/I, )

1 1 l'
(I —e ~~

I~ sinh(L/l~) k' —l~

(Li
k —e ~~ k cosh —+ —sinh-

(ln j ls kin]„J
(3.8)

Note here that L is the length of the crystal,
I~ is the usual diffusion length v'Dr„, and 8 is a
trapping parameter of the dimensions of cm/sec '.
The fact that of the three rates f, 8', and F, the
detrapping rate f remains finite, the trapping
rate 8' goes to infinity as 1/a, and the motion
rate F goes to infinity as 1/a', should not be sur-
prising. The rate f describes loss of excitons
from the entire detector, the rate 5 describes
such a loss from (1/N) of the host crystal, and

the rate I" controls a second derivative in space.
Our continuum result (3.8) is not identical to

earlier results'~ because we have not assumed
that f is zero and D is infinite. If we make those
restrictive assumptions or equivalently assume
that (1+fra) «Sr„,the recovery of (1.2) from
(3.8) is immediate:

Note that z tends to zero, N and g tend to infinity
as fast as 1/a, but F tends to infinity as 1/a'. We
now have

Qg=(s)(sech[((N-I/2)]]
~, ~ F

where c is given by

(1 +fr ( sinh(N))
~cosh[$(N —1/2) j &

(4 1)

(4.2)

and S is the product of the last two factors in (3.4).
This I describes the initial population of excitons
determined by the value of the dimensionless ab-
sorption coefficient ~. If the latter is taken to be
zero, signifying spatially uniform initial illumina-
tion which would hold in a relatively thin sample,
one has

lim S =(I/N)(u'Fr ) [sinh(N))]. (4.3)

The opposite limit, which describes excitons

IV. POSSIBLE EXPLANATION OF SPREAD IN
OBSERVED VALUES OF D

In Eq. (3.12) we have a possible explanation of
the large spread in the reported values of the
diffusion constant. The assumption that the de-
tector is a perfect absorber which underlies the
previous analysis, ' corresponds to approximating
the right-hand side of (3.10) by that of (3.11)
through the neglect of (I +fry/gr„). It might be
valid in some situations to put the detrapping rate
f equal to zero on the grounds of detailed balance
and a sizable energy difference between the host
and detector states How. ever, a vanishing f does
not mean that we have a perfect absorber. It is
Sv~- ~ that makes the detector aperfectabsorber.
It mill be seen that such an assumption always re-
sults in an under estimation of the diffusion length
l~ or of the diffusion constant D, and that a varia-
tion in 5' (or equivalently in S) corresponding to
the use of different detectors, could lead to con-
siderable variation in the reported value of
E, D, or /~. We shall now clarify both these
points further.

We return to the exact result (3.4) and reex-
press it in the form
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lim S = cosh($/2) .

For simplicity, let us consider uniform initial
illumination. With (4.3) in (4.1) we then have

(4.4)

(5'/E)
(4.5)

where c is a.s in (4.2) and the value Q~ at which

Qo saturates for large values of (F/E) is given by

sinh(N))
N j cosll[F(N —1/2)])

I

= (1/N) c (4.6)

Equation (4.5) shows that whereas Qo would be
the yield for a perfect absorber, the actual yield
&f&~ would be smaller for a finite (F/E). Conver-
sely, for a given observed value of the yield, the
assumption F/E -~, implicit in the earlier in-
terpretations, results in a lower deduced value
for the diffusion constant D, or equivalently, for
the transfer rate E. In Fig. 1 we have plotted the
yield Q~ as a function of (F/E), the ratio of the
trapping rate to the motion rate, for three dif-
ferent values of E In units . of 1/r„, the recipro-
cal of the host radiative lifetime, they are 10',
5x10', and 10', respectively. For TH=10 ' sec

placed completely at one end of the sample, gives and for a lattice distance of a =10 A, these E's
correspond to the range 1 to 10 ' cm'/sec for the
diffusion constant. The figure also shows a hy-
pothetical observed detector yield. The previous
analysis' would be based on Po =0.316, the
asymptotic value of Qo, and would therefore re-
sult in the conclusion that the diffusion constant
is 0.1 cm'/sec. However, it is possible that the
actual trapping rate F, far from being infinite,
is of the order of E, say 5E. The true diffusion
constant could thus be 1 cm'/sec rather than
0.1 cm'/sec. The previous analysis' ' would thus
indeed result in an underestimated value of the
diffusion constant. Also, various detectors would
correspond to various points on the (5/E) axis
in the figure. A disparity in reported values of
D would thus result. While we have not yet made
estimates of this effect for real crystals because
values of F.are not easily available, the curves
in Fig. 1 could correspond to Simpson's experi-
ments. Thus N, the number of sites, has been
taken to be 1000 to reflect the fact that the sam-
ples used in Ref. 2 were about one Inicron thick.
Also it is to be noted that our present calculation
contains the essential feature that large changes
in the concluded E can occur as a result of the
assumption that P/E -~.

It is instructive to obtain the direct dependence
of the interpreted value of the diffusion constant

0.8

0.6

OA

0.2

lO 20
0.0' 0 50 40 50 60 70 80 90 IOO

TRAPPING PARAMETER 2/F
FIG. 1. Quantum yield P& plotted as a function of the trapping parameter (F/I') for three values (10, 5 x 10, and 10 )

of 5'v.z. Each curve thus corresponds to a given value of the diffusion constant: 1, 0.5, and 0.01 cm /sec, respectively.
The dotted lines represent the value of p& for perfect absorbers (5/I' -~). The solid straight line shows a hypothetical
observed PG = 0. 316. The value of f7& is 10 . The plots correspond to Eqs. (4. 5) and (4.6).
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on the trapping rate 8' from (4.5). For simplicity,
let us consider Er„»1 so that g is small enough
to approximate [(sinhN))/cosh)(N -1/2)] by N$.
Equations (4.5) and (4.6) then give

v FTs o Prs NQq
' (4 7)

This equation displays a relation between (I/WE7'„)
which equals (a/v D~z), the ratio of the lat-
tice distance to the diffusion length, and the
reciprocal trapping parameter (I/8'v„). A plot
of (4.7) results in a straight line with inter-
cept 1/Npo Th. e intercept corresponds to
the earlier interpretations involving 5-. The
slope of the line is proportional to (1 +fro) Whe. -
ther the dependence of the deduced value of D on
the trapping parameter %7' will be significant is
thus decided by the detrapping parameter fro. Its
value could be very large (e.g. , 10» as in Fig. 1)

even for cases wherein detailed balance and a
sizable energy difference between host and de-
tector states makes f«F or f«8:. Equation (4.7)
has an interesting interpretation. Multiplying it by
N we see that I/&f&o equals the sum of two ratios
of the length of the sample: one to the diffusion
length, and the other to the effective trapping
quantity (Pa7's/I +f7~).

For the sake of completeness we now examine
an unrelated effect on these experiments, viz. ,
that of transport coherence. It is possible to
show that an approximate description of exciton
transport in these systems for a low but nonzero
degree of coherence is given by replacing the
quantity E by Eo.(c +o.)

' in the expressions for the
Laplace transform of the propagator fr„„(e)of (3.2)
and all the further consequent expressions. Thus
we now have

fe +o.'(cosh[($'/2)(2N- Im+n —1 )
—[m —n))]}(c soh[($'/2)([ m+n- 1( —[I—n [)]j

E[sinh(g')][sinh(Ng')]

As a simple example of the consequence of (4.8),
note that the diffusion length /~ =v'Dr„should be
replaced by [Dms(n7's)(1+nvs) ']'~'. For complete
incoherence a -~ and the previous results are
recovered. This discussion is equivalent to the
repla, cement of terms such as E P(t) in (2.1) by
memory function terms such as Fn J Odt'e
x P(t'). The limit c. -~ makes the memory func-
tions delta functions in time. This prescription
is not valid for high degrees of coherence be-
cause simple exponential memories would lead
to negative probabilities' for sufficiently low 0, .
The discussion in this paragraph is meant to be
no more than an indication of how transport co-
herence would affect the diffusion constant, and
is quantitatively. usable only for a low degree of
coherence.

V. SUMMARY

We have constructed a theory of exciton trans-
port for direct migration experiments of the kind
pioneered by Simpson. ' Our assumption is that the
transport can be described by (2.1). Physically
we envisage the excitons moving in the discrete
space provided by the lattice sides of the host
through transfer rates F, decaying radiatively
through a rate 1/7„,and being captured by the
detector at one end through rates F. A detrapping
rate f is also included and it brings in the radia-
tive lifetime v'~ of the detector into the calculated
expressions. We calculate the quantum yield of

the detector defined through (2.9): our result is
(3.4).

Our expression (3.4) or (4.1) for the detector
yield and its particular case (4.5) are free of the
usually-made approximation wherein the' discrete
crystal is replaced by a continuum. In inter-
preting experiment, (3.4) should be used directly.
It contains the quantities E, f, 8', I/v» I/7'~, and

It is impossible to determine E, or equivalently
the diffusion constant D =Fa' from these experi-
ments unle-ss the trapping rate 5 is known a Priori.
Yet earlier analyses have attempted precisely
such a determination. Their implicit assumption
is that F7~-~. As was pointed out, for instance,
by Tomura and Takahashi, this perfect-absorber
assumption is definitely suspect. We have shown
that it leads to an underestimation of I' or of the
diffusion constant. We have also shown, specifi-
cally in Sec. 1V and Fig. 1, how values reported
for the diffusion constant could arise from the
perfect-absorber assumption. It is planned to
apply this theory to the reported observations'~
in a future publication.

We have shown that (3.8), the continuum limit
of our result (3.4), reduces to the Simpson re-
sult (1.2) under the perfect-absorber approxima-
tion. Thus, if the latter is to be dropped but the
continuum approximation is to be made, (3.8) is
the result that should be used. We have also in-
dicated how partially coherent exciton transport
should be handled.
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APPENDIX

From (3.2) one obtains

as particular cases. Expressing the hyperbolic
cosine in terms of exponentials and summing the
geometric series, one finds

cosh ' n —1 2 e-""
n=&

C/ {{ g N( &-')) g-I *{{ p Nl-'t)))
+

~ -~&+4' &

and

1 [cosh($'/2)(cosh[(]'/2)(2n- l)]f
F (sinhg') (sinhNt')

(Ala)

1 [cosh('/2j(cosh[(('/2)(2N- 1)jj
E (sinh)')(sinhN$')

(A1c)

Finally, the substitution of (Alb) and (Alc) in
(2.9) leads in a straightforward manner to the
exact expression (3.4) for {{))egiven in the text.
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