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Desorption by phonon cascades for gas-solid systems with

many physisorbed surface bound states
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We give the extension of our quantum-statistical theory of desorption for systems with many physisorbed bound
states in the surface potentia1. Rate equations are set up and the desorption time t~ is properly identified as the
smallest eigenvalue of the matrix of transition probabilities. The latter are calculated exactly in second-order
perturbation theory for a surface Morse potential. We show that desorption in weakly coupled systems with

many bound states proceeds predominantly through one-phonon cascades. Two-phonon contributions are
shown to be small. Desorption times are calculated for the He-LiF, He-NaF, He-graphite, H-NaCl, He-Ar, and
Xe-W systems. The temperature regime over wiJich a Frenkei-Arrhenius parametrization ts =td exp(g/heT) can
be invoked is given. Our theory which is essentially parameter-free produces prefactors td in the whole
experimental range of physisorption from 10 ' to 10 '4 sec.

I. INTRODUCTION

In a series of papers' ' we have developed a
quantum-statistical theory of desorption of a gas
from the surface of a solid in systems which show

physisorption at low coverage, i.e. , in which no
chemical reactions take place during the adsorp-
tion process and in which interactions between
particles in the adsorbate can be neglected. So far
we have restricted ourselves to systems in which
the surface potential, i.e. , the net static interac-
tion between the particles of the gas and solid
phases develops just one shallow bound state as is
the case, e.g. , for helium adsorbed on Constantan,
a Cu-Ni alloy. ' For this and related systems we
have calculated isothermal and flash desorption
times for phonon-mediated desorption, taking ac-
count of one-phonon processes in second-order
time-dependent perturbation theory. ' '

Even for gas-solid systems where the surface
potential develops just one shallow bound state the
question arises as to the suitability of second-or-
der perturbation theory. %e have therefore per-
formed a complete fourth-order calculation in-
cluding all one- and two-phonon processes as they
arise from the phonon-mediated gas-solid interac-
tion including terms up to third order in the deriv-
ative of the surface potential. '"' Our main con-
clusions, substantiated by extensive numerical
work, were that a relaxation-time description of
desorption from a bound state Ep is possible as
long as h/ IE,

I

« te, where te is the isothermal de-
sorption time. Such systems we called descrip-
tively weakly coupled. We found i.n addition that a
second-order calculation of t„can be trusted as
long as IE, I

s knT&)tcoo, where htdo is the Debye

energy of the solid. Fourth-order contributions
become important for IE,

I
+h~n and knT+ h

Moreover, for the range h&uo- IE,
I

- 2jio&o fourth-
order terms are essential because second-order
contributions are zero in this region of bound-state
energies.

Most gas-solid systems showing physisorption
have surface potentials that develop more than one
bound state. For example, the He-LiF (Ref. 9),
He-NaF (Ref. 9), H-LiF (Ref. 9), and H-NaCl (Ref.
10) systems have all four bound states, whereas
the He-graphite" "system develops five bound
states. Before we develop in this paper a quan-
tum-statistical theory of desorption for such sys-
tems, we must first look at the problem phenome-
nologically to see what is measured and which
quantities must be calculated in the microscopic
theory. We consider isothermal desorption. Ex-
perimentally one prepares a gas-solid system in
equilibrium at a gas pressure P and a temperature
T. If at time t= 0 the gas pressure is suddenly
reduced substantially, theoreti. cally to P = 0
keeping the solid at a temperature T, the ad-
sorbate, i.e. , the gas particles trapped in the
bound states of the surface potential, desorb in
a characteristic time t„which is typically mea-
sured as a function of temperature.

I et us assume that the static surface potential
develops bound states at energies E„.. ., E„into
which gas particles can be trapped. Under condi-
tions of low coverage 8«8, the ith bound state
has a relative occupancy in thermal equilibrium at
pressure P and temperature T given by

~g ($ -g ) g( ]

where p, = p, is the chemical potential in the gas
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where all eigenvalues A, are real and positive
and assumed to be ordered XO&A., & ~ ~ ~ &A.„. Equa-
tion (4) can now be written

N

~n(t) Qf e x)t~~ ( j)- (8)
l 0

where the f, 's are determined by inverting
N

n, (0)= n, =Qf,eI", (&)
/=0

where e,', ~' is the ith component of the jth eigenvec-
tor, and n, is given by (1). Note that the e'&"s are
not orthogonal because R is not symmetric.

The total (relative) adsorbate occupancy is giv-
en by

N N
N(t) ~ n, (t)
N(0) ~ N(0)

where

(8)

N(0) =
l=O

phase. In an isothermal desorption experiment,
i.e. , after a sudden substantial pressure reduction
in the gas phase, the occupation numbers g, will
deplete as a function of time due to transitions be-
tween bound states and into the continuum for which

we assume the following set of rate equations to
be valid:

dn, (t) (= —
I
etc&+ Z ftyg ~n;+ Z

/=0, /gal j g=O, ggg

Oy ~ ~ s y E
where 8&,. is the probability for a transition of a
gas particle from the ith into the jth bound state
of the surface potential, and 8„.is the probability
for a transition from the ith bound state into the
continuum. In an isothermal experiment no tran-
sitions from the continuum into any of the bound
states can take place because the gas is pumped
out. The set of rate equations (2) is not necessar-
ily valid at high coverage, because then nonlinear
terms in z~ may have to be included to account for
the blocking of occupied states.

To find the connection between the isothermal
desorption time g„and the transition probabilities
ft,

&
and R„we write (2) in matrix notation

n= -Hn, (8)

where n is the (N+ 1) dimensional column matrix
with elements n„.. ., n„, and 8 is the (N+ 1)
x (N+ 1) matrix of transition probabilities. To
evaluate the formal solution of (3),

n(t) = e 'n(0)

we diagonalize the transition matrix

Re"'= A. .e"'

and

l -(l)(~)
N(0) ~ ea

where e,"' is determined such that

~

~e (l )e (y )
l l (10)

Writing (8) as

(11)

we see that for times t»(X& -X,) ' for j = 1, . . ., N
all transients have died out and the time evolution
can be characterized by a single time scale

(12)

provided that So is not substantially smaller than
any of the 8& for j& 0. This will be borne out by
our numerical examples. Also note that Q,. ,S&

=1.
So far we have looked at the problem of iso-

thermal desorption from many bound states phe-
nomenologically. A quantum-statistical theory
must provide us with the transition probabilities
B„and R&, in .(2) and (3). To calculate the latter
we set up in the next section the Hamiltonian of
gas-solid systems in which the gas particles in
the adsorbate are mobile in the lateral direction
along the surface of the solid. Such systems can
be treated adequately in a one-dimensional theory
if band effects due to the lateral motion along the
surface are negligible as we will show in some
detail in Appendix A where some misconceptions
and errors in the literature are cleared up.
Though we have used in most, of our previous
work' ' a separable nonlocal surface potential, we
prefer here for gas-solid systems with many
bound states to use a Morse potential to account
for the net interaction between particles in the gas
and solid phases, respectively. Properly normal-
ized bound state and continuum wave functions of
the Morse potential are listed in Appendix B.

We assume that the dynamic part of the gas-solid
Hamiltonian causing gas particles to undergo
bound state-bound state and bound state-continuum
transitions is due to the coupling of gas parti-
cles to the phonon system of the solid. These
phonon-mediated transition probabilities are cal-
culated in Sec. III in second-order time-dependent
perturbation theory accounting for one-phonon pro-
cesses.

Section IV is devoted to numerical results. We
start with an analytical discussion of a model gas-
solid system with two bound states in its surface
potential. We show that in the low-temperature
region the isothermal desorption time is, indeed,
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given by (12) and can be parametrized by a Fren-
kel-Arrhenius formula t~= f,'exp(Q/k~T) where the
activation energy is approximately equal to the en-
ergy of the lowest bound state and the prefactor
g~ is determined by the shallower bound state. In
this subsection we also discuss numerically the
dependence of t„on the shift xo of the Morse poten-
tial (20) away from the wall.

Section IVB deals with systems with a few shal-
low bound states. %e give in Table I isothermal
desorption times for systems like He-LiF. , 4He-

NaF, and 4He on graphite in the relevant tempera-
ture regime where they might be measured. %e
discuss the importance of bound state-bound state
transitions in such systems.

In Sec. IVC we look at gas-solid systems with

deep bound states like H on NaCl, He on solid Ar,
and some model systems with many bound states.
Even in systems where the I.owest bound-state en-
ergy is in magnitude as large as 10 to 25 times
ff~~ (i.e. , Q- kcal/mole) desorption can occur for
TS jill~/k~ in milliseconds to seconds via cas-
cades of one-phonon transitions from the lowest
bound state through the sequence of all the higher
ones. Indeed, our theory produces prefactors t„'

as small as 10 "sec for systems with Q-kcal/
mole. In this subsection we also show, relying on
our previous work, ' ' that for weakly coupled gas-
solid systems two-phonon processes are negligi-
ble.

Our quantum-statistical theory of desorption is
now capable of dealing with gas-solid systems
with activation energies Q ranging from fractions
of k~~ (such as He-Constantan, He-LiF, etc. )
to values of the order of kcal/mole (i.e. , more
than 10hv~). The calculated prefactors t~ range

from 10 ' sec in He-Constantan to as short as 10 "
sec in one and the same theory.

II. THE HAMILTONIAN OF THE GAS-SOLID SYSTEM

To calculate the transition probabilities R, , and

8„.we must specify the Hamiltonian dynamics of
the gas-solid system. In cases of low coverage
the interaction between the particles of the ad-
sorbate can be neglected, and a single particle
picture is appropriate for the gas-solid interac-
tion. If the adsorption occurs at localized adsorp-
tion sites then the static surface potential is lo-
calized as well. For such a system with just one
shallow bound state we have calculated flash de-
sorption times in a fully three-dimensional theory'
and shown numerically that these results agree
quite well with predictions given by a one-dimen-
sional theory. For systems such as He-LiF and
He-graphite it is known that more or less free
lateral motion within the adsorbate along the sur-
face of the solid occurs. ' " For such mobile ad-
sorption the static surface potential can be mod-
eled by"

V(r) = V,(x)+ V,(x)f(R), (»)
where r= (x, R) and f(R) is a periodic function in
the surface plane and V,(x) and V,(x) vanish away
from the wall, i.e. , for x-~. If band-structure
effects for lateral motion are not important, as
it seems to be in the He-LiF and He-graphite sys-
tems, one can neglect the second term in (13).
This in turn implies that the calculation of desorp-
tion can be carried out in a one-dimensional mod-
el due to the fact that phonon-induced transitions
between different states of lateral motion of a gas

TABLE I. Bound-state eriergies ( E„)//k~ in Kelvin, experimental and calculated for Morse potential. (20) with differ-
ent potential parameters. The fourth bound state ('? ) in 4He-NaF has been observed but not resolved.

em 4He-LiF 4He-NaF 4He-graphite H-NaCl He-Ar
yi (A) 1.09 1.09 0.97 0.95 0.95 1.78 1.09 1.49 1.98
&0(K) 81.75 89.0 Expt. 77.78 Expt. ~ 160.54 171.34 Expt. b 399.3 Expt. c 171.93 164.63 160.07

0

2
3

7
8
9

62.69
32.16
11.72
1.38

68.47
36.45
11.43
2.44

68.47
28.55
9.05
2.44

57.10
25.30
6.27

57.10
21.70
6.27
?

129.33
77.04
38.21
12.86
0.98

139.03
84.54
43.53
16.01
1.97

139.03
73.46
34.07
11.49
1.97

346.08
251.03
171.21
106.61

57.24
23.10
4.19

351.63
247.18
165.95
110.25

143.6
94.5
55.7
27.0
8.64
0.46

144.2
107.4
76.0
50.0
29.5
14.3
4.57
0.24

144.3
116.1
90.9
68.8
49.9
33.9
21.0
11.2
4.43
0.80

~Reference 9.
"References 11 and 12.
'Reference 10.
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particle are negligible as shown in detail in Ap-
pendix A. We can therefore write the total Hamil-
tonian of the gas-solid system as

H=H, t+H, +Hd

where

(14)

H„= E,n~n, , (15)

where q labels both the bound states of energy E„
.. ., E» and the continuum E, =g'k'/ 2m. The at' s
and n, 's are creation and annihilation operators
of a gas particle in state q. Likewise

H, =Q ff&~b~~b, (18)

is the Hamiltonian of the solid in the harmonic ap-
proximation with b& and 5& the creation and anni-
hilation operators of longitudinal acoustic phonons

of frequency m~.

In this paper we use a simple Debye spectrum
for the phonon system of the solid with the Debye
temperature appropriate for an infinite solid. '4

More realistic phonon spectra, e.g. , the modifi-
cation of. the bulk spectrum due to the presence
of the surface, are not expected to change the re-
sults in a qualitative way. As uncertainties in the

static surface potential already imply variations
in the calculated desorption times by a factor of

2, we see no point of complicating the theory at
this stage. Optical phonons, on the other hand,
are unimportant for desorption from shallow bound

states. They contribute to a few bound state-con-
tinuum transition probabilities for which, as we
will see in Sec. IV, cascades of one-acoustic-pho-
non processes are more effective.

The phonon-mediated gas-solid interaction is ac-
counted for in the dynamic part of the Hamiltonian
which in lowest order in the harmonic approxima-
tion is given by

S' d'
, + V,(x) iy, (x)=E,y,(x).

M, is the mass of a particle of the solid of which
there are N, in total, and I. is the size of the nor-
malization box for the gas. Note that (17) is ap-
propriate for a second-order perturbation calcula-

H =I. ' QX(q, q')at gp)), ' '(b~~+b, )~, , (17)
a, a'

where for a local surface potential we have

X(q, q') = I I ~ y,*(x) ' y, .(x)d,a &'~2 dv (x)

8 8
/

(18)

. where the p,(x)'s are eigenfunctions of H„, i.e. ,

tion of desorption times; higher-order derivatives
in the surface potential and thus higher powers of

(b~+b~~) must be included for higher orders. ' To
arrive at (18) one uses the fact that the wave func-
tion of a gas particle vanishes sufficiently quickly
inside the solid so that only the displacement of
the surface atom due to the thermal motion must
be iriciuded. If this is not the case then (18) must
be modified due to the deformation of the bulk

solid caused by the phonons [typically factors like

cos(px) for x & 0j.
It remains to specify V,(x). In our earlier work

we have calculated isothermal and flash desorp-
tion times for gas-solid systems that develop only

one bound state." In such situations it is of great
analytical and numerical advantage to replace the

local surface potential by a separable nonlocal
one. ' For the latter choice we were also able to
perform a complete (numerical) fourth ord-er cal-
culation of isothermal desorption times including
all two-phonon processes enabling us to delineate
the validity of a second-order perturbation calcu-
lation and, indeed, the validity of the relaxation-
time approach. ' '

To deal with a gas-solid system that develops
(&+ 1) bound states, one could choose a superpo-
sition of (H+ 1) separable terms in the surface po-
tential. However, the complexity increases very
fast with N. Also, one would introduce too many
potential parameters. We have therefore chosen
V,(x) for our present work to be the Morse poten-
tial

V (x) p (e-2) (x-xp) 2e )'(x-xp)) (20)

because it reproduces the experimentally deter-
mined bound-state energies for systems like He-
LiF and He-graphite rather well, though it de-
creases too fast as x-~. Moreover, scattering
and bound-state wave functions are known analyti-
cally and are given in Appendix B.

There always arises the question of suitable
boundary conditions for the gas-particle wave

function at the surface of the solid. If the gas par-
ticle cannot diffuse into the solid we must assume
that there is a strong repulsion at the surface
which one can model by an infinitely high potential
wall at x = 0 with the surface potential attached to
it for x& 0. Thus the gas-particle wave functions
must vanish at x= 0. More realistically one would

choose a potential that grows like x " as x-0.
The Morse potential with xo= 0 is deficient in thi.s
respect. However, if we choose xpa y

' then V,(0)
~ 2U, and the wave function, decaying as a double

exponential, is negligibly small for x & 0. In (18)
we can therefore restrict the integration over 0

In addition we will see in Sec. IVA that
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the desorption changes little if we vary zo from
y' to~. R, =—I 'Q tdt-, ~X(~ t)

~
(n 2& +1)5(E E & )

2r
U

III. CALCULATION OF TRANSITION PROBABILITIES
where

(2'f)

The input into the phenomenological rate equa-
tions (2) are the transition probabilities R, and

B„.which must be calculated in a quantum-statis-
tical theory based on the Hamiltonian (14}for the
initial-value problem appropriate for isothermal
desorption. We assume that the initial equilibri-
um occupation for I, &0 is adequately described by
the static part H„of (14). The macroscopic time
evolution of the system is started at t= 0 by
switching on the dynamic part H0 of (14), and
setting all occupation number n2(t) of the gas-con-
tinuum states equal to zero for t& 0 to simulate
the sudden removal of the gas phase (P=0). The
physical quantity to be calculated is the time-de-
pendent occupation numbers of the bound states
which are given by

n, (t) = Tr [att(t) a,(t)p,p, ],
where

(21)

p, =, exp(-PH, )/Tr exp(-PH, ) (23)

is the initial--equilibrium statistical operator for
the phonons with P= 1/(kaT). The operators a,(t)
are subject to Heisenberg's equation of motion

tk&, = [a„H.,+H, +e( )f.H..]. (24)

One can certainly argue that during the desorption
process the phonon system of the solid does not
get disturbed greatly, implying that

f,(t) = e-t"0tk, (0) .
This approximation linearizes the set of equations
(24) which can now be solved in second-order
time-dependent perturbation theory. Details can
be found in Ref. 1.

Extracting the long-time limit linear in t one
finds that

n;(t) ~ 6 nt(0)
N(o) ~('t "t'

N(o)

which is identical in form to the solution of (2)
linear in t. The transition probabilities are thus
determined microscopically. For bound state-
bound state transitions into a lower state via
emission of a phonon one finds

(26)

p = exp[-p(H„—yN, )]/Tr exp[-p(H„—ilN, )]
(22)

is the initial-equilibrium statistical operator for
the gas with N, =Q, a~a„ il the chemical potential
of the gas phase, and

nt""'= [exp(pk012} -1] '. (28}

For bound state-bound state transitions into a
higher state via absorption of a phonon one gets

R. .=—1.-2+ ~,' ~X(t, q) ~2n,""'6(E,-E,. -a~,),
2' -2

(29)

Bound state-continuum transitions are given by

R„=—I .g& g ~X(t, k)
~

n'"'5(E, -E,+Itd,),

(30)

where k is the momentum label for the continuum
states. The diagonal elements of R are given by

R , R, ..+ -Q Rtt. (31)

The explicit expressions for these rates for the
Morse potential are given in Appendix C.

IV. NUMERICAL RESULTS

N(t)/N(0) S e 10t + 3 e-l-lt

' with

(32)

~0,1 = 2 (R00+ R01+ Rlo+ Rol)

+ 2 [(R00+R10 Rcl 01} + ~01R10] t

(33)

' ~ ' N(o) " N(o)

It is instructive to look at the low-temperature be-
havior of these expressions. One finds for (32}-
(34) that for temperatures such that

exp[-5(e, —c,)] «1, (36)

cl co 10
(36)

A. Systems with two bound states

- In this section we will present the results of ex-
plicit calculations of isothermal desorption times
for systems with several bound states, in particu-
lar for the He-Lip, He-NaF, H-NaC1, He-graph-
ite, He-Ar, and some model systems. Before we
do this we mant to examine analytically the struc-
ture of the time evolution (8) for a simple model
system with two bound states. In this case we have
from (8)
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Rcg —Rlo+ 2I'xo
Xq=R + I'qo+ I'~0 ~ exp[-5(eo- sg)],

c1 cp

So= 1 —Sl y

S, =
~

" "
( exp[-5(s, —s)],Rcl -Rco

i,B„B,O-+ I', 0 &

where

(38)

R„, R„, and I'„are given in Appendix C. Note

first that the coefficient S, becomes negligibly
small in the low-temperature region implying that
for t& X,

' the time evolution of the system is char-
acterized by one time scale

Indeed the difference (A., —Xo) becomes larger for
lower temperatures implying that the small tran-
sients controlled by X, die out very quickly. For
not too shallow states q, one finds numerically that
I"„»R„&R„at low temperatures. If gas particles
can desorb from both bound states by absorption
of a single phonon, i.e. , if go& 1, then we have at
low temperatures Ap-R„and A.1 I'1p This can be
understood by noting that (35) implies a negligible
occupation of the upper bound state q, . Because
Rp1» R1p a particle in &, w ill first make a trans i-
tion to qp emitting a nonequilibrium phonon before
it desorbs from qp into the continuum. For qp&1
and at low temperatures the desorption in such a
system with two bound states thus appears to be
solely controlled by the lower bound state &p. One

finds numerically that over a limited temperature
regime t„can be parametrized by a Frenkel-Ar-
rhenius formula

Frenkel-Arrhenius parametrization of t„again
holds true with Q=tf&uD(q, —q, )+ Q, a qP&u~. But
this time td= p,

' is controlled by the matrix ele-
ments between the higher state g, and the contin-
uum. Thus the prefactor td is, in this case, con-
trolled by the upper state whereas the activation
energy Q is close to the energy &Pcs~ of the lower
state.

A situation with 0& q, &1&'pp&2 is not very likely
met in real systems which will always have many
bound states if gp&1. Before we turn our attention
to such systems, we want to discuss briefly the
dependence of t„on the parameter xp in the Morse
potential (20). We have seen earlier that one has
to choose xp~ y

' in order to prevent gas particles
from penetrating into the solid. In Fig. 1(a) we
show A.,' as a function of $,=yx, for systems de-
veloping two bound states for o, = 2mUO j(h'y')
=1.55 and op= 2.49, respectively, and for z
= 2m+~/(hy') =.100. In Fig. 1(b) we give t~ for the
system with o, = 2.49 and $,=~ as a function of 5

=h&u~/kaT. We see from Fig. 1(a) that in the sys-
tem, with o,= 1.55 for t', = 1 and at 5= 100, Ao' is
smaller by some 36% from its value at $, = ~
which it indeed reaches within 0.6% at $o= 1.5.
For the larger g, = 2.49 the change in X,' from $,
= ~ to $,= 1 amounts to only 7'%%uq for 5& VO and to

11%%up at 5 = 30 and to 20% at 5 = 5. For a system
with (N+ 1) bound states we know from Eq. (B5)
that N+ —,'& ap&X+ &, so that we can expect much
less dependence of t~ on $o for systems with many
bound states and can safely set t', = ~ implying that
the limit a= 2g, exp($,)-~ in (C4)-(C7) leading to
(C11) and (C12) is indeed acceptable, simplifying
the numerical work for systems with many bound
states considerably.

tpeQ/ &g&
d d (40)

B. Systems with a few shallow bound states

(41)

Desorption in this situation can only proceed via
a phonon cascade 0-1-continuum. If I yp»R„
as one can check numerically, one then gets

t, = II,', exp [5(g, —q, ) ] .
Again R„can be parametrized as

(42)

(43)

where over a limited low-temperature region p1

is independent of T and Q, a q,K~D, so that the

where g is slightly larger than &P&aD.

Turning now to a system, still at low tempera-
ture, with 2& &p& 1& &1 & 0 and &p &1 & 1 we obvi-
ously have R„=O and

In this section we will present calculations of
isothermal desorption times for gas-solid sys-
tems that have several shallow bound states. We
call a bound state shallow if a gas particle can de-
sorb from it by absorbing a single phonon. Sys-
tems in this category are He-LiF, He-NaF, H-
LiF, H-NaF, He-graphite, etc. These systems
are also known to show mobile adsorption imply-
ing that the motion of particles in the adsorbate
is more or less unhindered in the direction paral-
lel to the surface so that our one-dimensional
model is adequate.

We first deal with the 'He-LiF system. Its sur-
face potential has four bound states given in Table
I. In our theory these bound states must be repro-
duced by a Morse potential. We followed two op-
tions leading to somewhat different potential pa-
rameters. One set we get by a least-squares fit
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(a}
0'p = 2.49

(b}—

10'
Xp

108

102 10'
Cl
3

103 lp6

10-4
1.0 1.2 1.3 1.4 1.5 20

Pxo

60 100

b = ho)D/kBT

140
1P5

FIG. 1. (a) Relative change in Ap as a function of the shift xp in the Morse potential (20) for a gas-solid system with
two bound states. G'=2gpexp(exp); Op=2mVp/ (If) ' ~=2m~D/Sy . (b) Temperature dependence of the isothermal de-
sorption time t&.

to the bound-state energies (see Table I). Be-
cause we know from the previous section that the
lowest bound-state energy basically defines the
activation energy, we get a second set of potential
parameters by fitting the deepest and shallowest
bound states for this sytem. In the temperature
region TS 40 K the Debye temperature of LiF is
h~lk~= 730 K dropping sharply to a minimum of
610 K at T- 60 K." In Table II we present the A, 's
and S,. 's of (11) for some typical temperatures for
the first potential. At high temperatures, i.e. , for
5s 20 all X,'s are of the same order though the co-
efficient S, is larger than S, to S,. For 5~ 20 the
lowest eigenvalue X, splits off dramatically from

X, to X, and S, approaches unity very closely in-
dicating that apart from very small and very fast
transients the system is indeed controlled by one
exponential in analogy with the analytical results

obtained for systems with two shallow states at
lowtemperatures. For 5~20we canthen identify t„

Xo This isothermal 'desorption time is plotted
in Fig. 2 as a function of 5. Though t„ is not com-
pletely linear in 5 we can parametrize it by a
Frenkel-Arrhenius formula (40),

f„=l.ox10'exp(71/T), 4K&T&40 K,
(44)

with f expressed in sec and T in K. Again Q in

'(44) is larger than the lowest bound state by

some 5%. In Fig. 2 we also show the desorption
times calculated from the second Morse potential
in Table I. We see that the two potential fits give
comparable desorption times.

The. He-LiF system, as mentioned above, has
four shallow bound states from which gas particles
can desorb by absorption of a single phonon. In

0
TABLE II. Eigenvalues A, ; in sec and coefficients S; in (8) for He-LiF for y =1.09 A

and U/ks=81. 75 K as a function of d =hcoD/ksT.

A p

10 4.06 x 1p' 6.03 x 10 1.37x 1p'
20 1.08x 10' 2.47x 10' 5.96 x 10'
30 3.45x 107 1.63x 10 3 81x 10s
5p 4.1gx1p6 1.17x1ps 2.43x1ps

100 2.87x 10 9.97x 107 1.81x 1ps
150 2.46x10' g.78x1p' 1.75x1ps

1.70 x 109
7.23 x 10s
4.53 x 10s
2.92x 10s
2.27x1Ps
2.18x 10s

sp

0.842
0.979 19
0.992 47
0.999 25
1.0
1.0

s(

0.112
0.001 10
0.003 3
0.000 12
8.8x 10 s

6.8x10 ~i

S2

0.031
0.01501
0.006 40
0.000 62
4.2x 10 7

2.6x 10"~P

0.015
0.004 70
0.000 80
0.000 01
7.3 x 10-s
].9x1P «
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FIG. 2. Temperature dependence of the isothermal
desorption time for He-LiF for thoro sets of Morse poten-
tial parameters (see Tables I and III).

this case one might argue that only bound state- continuum transitions are important with cas-
cades like 0-1- - continuum being negligible
at least as long as k~T is not too much smaller
than p0.

' We have checked this idea numerically
by setting all bound state-bound state transition
probabilities RU in (8} equal to zero. For He-LiF
one finds that for 4 K& T &40 K A.p is reduced by
about a factor of 2. With uncertainties in t„aris-
ing from different choices of potential parameters
being of the same size, the approximation of
setting bound state-bound state transitions equal
to zero seems acceptable for the He-LiF system
with its rather shallow bound states. " However,
if the lowest bound state q0 gets much lower, for
example, q0~ 1, this approximation fails dismal-
ly, and, of course, is even qualitatively wrong
for g0& 1, because one-phonon processes cannot
empty such a deep state. As a numerical example
we consider a hypothetical gas-solid system with
r= 2m&~l(@y'1=80, &&0= 8.05, i.e. , having eight
bound states, the lowest of which is &,= ~E, ~/S+D
= 0.95. In this case t, = 10 "(M,lm)ff &u~ at & = 20
from (39); without bound state —bound state transi-
tions this time is reduced by a factor 0.0013. At
high temperatures, say such that 5-1, the approx-
imation is still unacceptable because then the co-
efficient S0 becomes substantially smaller than 1
with the other S,. increasing proportionately.

We have also done a calculation of isothermal
desorption times identified as tg A0 for He-NaF
and 'He-graphite. The relevant parameters and
our predicted desorption times are given in Tables
II and III. The "theoretical error bars" due to

TABLE III. Frenkel-Arrhenius parametrization of the isothermal desorption times for various systems and Morse
potential parameters.

Number
of

System state s
Temperature

range (K) t (sec) Q/k~ (K) y
' (A) Uo (K) @co /k (K) 0'p m/m,

4He-LiF

4He-NaF
'He-

graphite
H-NaCl
4He-Ar

4
4
3
5

6
8

10

4-40
4-40
4-15
4-15
4

15-35
4-10
4-10
4-10

1.9 xlo 9

1.4xlo 9

8.5 x 10
2.1 x 1O-"
1.8xlo ~2

2.3 x 10-"
2.6 x 10
4.14 x 10-"

71
77
63.2

139.5
149.3
370
151
151
151

1.09
1.09
0.97
0.95
0.95
1.78
1.09
1.49
1.98

81.75
89.0
77.78

160.54
171.34
399.3
171.93
164.63
160.07

730
730
45ob
185'
185
280 d

92
92

4.023
4.1979
3.491
4.8818
5.041
7.242
5.8
7.8

10.2-

144.55
145.79

70.496
27,464
24.436
36.773
18.0
34.0
60.0

0.1520
0.1520
0.0952
0.3333
0.3333
0.0172
0.111
0.111
0.111

/

~Reference 15.
A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).

'W. N. Reynolds, Physical'Properties of Graphite (Elsevier, Amsterdam, 1968).
d Reference 17.
'L. Finegold and N. E. Phillip, Phys. Rev. 177, 1383 (1969).
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&,= (a, ——,')'/r. (45)

If this is supposed to be the only one and located
at &,= 0.065 in the He-Constantan system, one
must have 0.5 & o'o & 1.5 so that r & 15.385 implying
that y '&0.48 A, a range that seems too short. In
any case desorption times calculated for such pa-
rameters are too short by at least 1 order of mag-
nitude as compared with experimental data. To
weaken the coupling between adsorbate and pho-
nons one is then tempted to increase r and thus

y '. This, however, results in a surface potential
that has more than one bound state, e.g. , for r
= 400 the Morse potential has six bound states, the
deepest one being at g, = 0.065. Desorption times
calculated for such parameters are again at least
an order of magnitude too small, due to the fact
that the reduction in coupling is compensated by
opening all the cascades via the additional bound

states. This, it seems to us, is evidence that He
adsorbs on Constantan at localized adsorption
sites having only one physisorbed bound state be-
cause reducing the lateral potential range from in-
finity for mobile adsorption to a finite value of the
order of a few angstroms, one obviously elimi-
nates all higher bound states and arrives at a sit-
uation modeled by a separable potential of a rather
large range X- 2.5 P with only one bound state.
Indeed, suppressing in a quite ad Roc way the cas-
cades via the bound states n= 1, . .., N in the one-
dimensional theory based on a Morse potential
with r= 400, one finds that R,', reproduces the ex-
perimental desorption-time rather well and also
agrees with the full three-dimensional theory for
localized physisorption based on a separable po-

some arbitrariness in choosing y ' and U, are sim-
ilar to those discussed for the He-LiF system.

Finally we would like to add some comments on
helium adsorbed on Constantan, a Cu-Ni alloy.
Cohen and King' have measured a flash desorption
time t~= (2 x 10~ sec) exp(-31 K/T) in the temper-
ature region 4 K & T & 18 K. We have been able to
reproduce these rather long times quite well in a
three-dimensional theory of localized adsorption
with a separable surface potential of range A. = 2.5
A perpendicular and parallel to the surface devel-
oping just one bound state at an energy E,/ke
= -25 K. As pointed out earlier a one-dimensional
theory as developed in this paper is appropriate
for mobile adsorption without any localization in
the lateral direction, i.e. , with a surface potential
that is constant along the surface. It is instructive
to try to fit the He-Constantan desorption times
with the one-dimensional model presented here
and based on the Morse potential. Note first that
in a. Morse potential the deepest bound state is
given by

tential. But this procedure does not seem appro-
priate to us.

C. Gas-solid systems with deep bound states

Thus far we have considered gas-solid systems
with shallow bound states in the surface potential
from which gas particles can desorb via absorption
of a single phonon. In the H-NaCl system this is
no longer the case because the lowest bound state
is at E,/ke = -351.63 K (Ref. 10) wherea, s h~D/ke
= 280 K for 15 K & T & 35 K," so that a single pho-
non cannot supply the necessary desorption ener-
gy. Desorption can then proceed either via multi-
phonon processes on which we comment later and/
or via one-phonon cascades through the shallower
bound states. We choose the Morse parameters to
reproduce in a least-squares fit the four observed
bound states. This potential produces three addi-
tional shallow states as given in Table I. Note that
the range of the H-NaC1 potential y ' = 1.'l8 A is
somewhat larger than in the He-LiF, He-NaF, and
He-graphite systems. The calculated desorption
times are given in Table III in the form of the
Frenkel-Arrhenius parametrization. The activa-
tion energy Q is again larger than ~E,

~

by some
~Vo.

We next consider a system where helium adsorbs
on solid argon for which desorption times have
been measured, "though nothing is known about the
surface bound states. %e choose the parameters
of the Morse potential such that its lowest bound
state is in magnitude about Q. For a range y '
= 1.09 A such a potential produces 6 bound states,
for y '= 1.59 A we get eight-bound states, and for
y '=1.98 A we get ten bound states. The resulting
desorption times are such that the experimental
Q/k~= 151 K is reproduced, whereas the prefactor
t'„varies between 2.3 x 10 "and 4.14 &10"sec,
which brackets the experimental estimate of about
3.6 x 10 "sec that one extracts by dividing the
last two columns of Table 1 in Ref. 18 where the
difficulties with this procedure are discussed.

Finally we want to analyze our theory for gas-
solid systems with many bound states. As de-
tailed experimental informati. on on such systems
is scarce, we prefer here to study first some mod-
el systems for which we choose a Debye frequency
u&~ = 5 x 10" sec ', and a mass ratio m/M, = 0.1.
(Note that &o~ and m/M, only enter our theory as
multiplicative factors in the transition probabilities
if. the potential parameters are given in terms of
v, and r. )

In Table IV we start with a gas-solid system that
develops 50 bound states for gas particles in its
surface potential. The value r= 400 would, for
helium gas, correspond to a range of the surface
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TABLE IV. Frenkel-Arrhenius parametrization of the isotherma1 desorption times for
some model systems with many bound states. coD=5x10 3 sec-', m/M =0.1.

Number of
bound states 0'0 Range of 6 t&0 (sec) Q/ScoL, 0 61

50
50
50
36
71

50.0
50.0
50.0
35.502
70.504

400
200
100
100
400

1-5
1-5
1-5
1-5
1-5

5.0 x10
5.5x10 4

1.8 x10 14

2.0 x10-"
5.0 x10

6.15
12.3
24.5
12.3
12.3

0.245
0.49
0.98
0.69
0.3475

potential of about 2.5 A, implying a fairly weak
phonon coupling. It turns out that in the tempera-
ture range 0.25(ua&k~T & 15~~ the desorption time
can be adequately parametrized by the Frenkel-
Arrhenius formula (1) with an activation energy
Q= 6.15jgv~, about 1/o larger than the deepest
bound state, and a. pr efactor f~= 5 x 10 "sec. De-
creasing the range of the surface potential by a
factor M2 so that r = 200 and keeping the number
of bound states fixed, increases Q by a factor of
2 and decreases t'„by an order of magnitude. De-
creasing r to r= 100 increases Q to 24.5A~D and
reduces t'„ to 1.8X 10 "sec. This very small pre-
factor is quite astonishing because in the latter
system the two lowest bound states are separated
by almost 5~»,more precisely, we have go —g,
=0.98. This, of course, implies a, fairly sluggish
desorption, e.g. , at T= junco~/k~ we have t~= 7.86
&&10 sec, as compared to t„=2.34~10 "sec in
the first system with r= 400. The rather small
prefactor t'„ is therefore compensated by a large
activation energy Q. There have been arguments
in the literature about such a compensation effect
to the extent that a relation like t'„- lnQ is supposed
to, hold as discussed, e.g. , by Menzel. ' We
feel that this is an artifact because experi-
mentally only systems with relaxation times
of the order of seconds to microseconds can be ob-
served implying an apparent law like the above. It
can also be manufactured in our table.

The fourth entry in Table IV is a system in which
we kept y= 100 from the previous example and re-
duced the number of bound states from 50 to 36 by
reducing the strength of the potential via 0„ thus
also raising the lowest bound state to half its pre-
vious energy. This results in reducing the act;iva-
tion energy to Q= 12.3h~~ and increasing t', to 2
x 10 "sec, giving a desorption time t„=4.4 x 10 '
sec at T=18~~/k~. Withthelowestboundstatees-
sentially fixing Q, we see that reducing the num-
ber of bound states implies reducing the number
of cascade channels through which a particle can
detrap from g„ increasing t„.

Next, in the fifth entry, we keep Q fixed, in-

crease r to 400, thus doubling the number of bound
states but also decreasing the phonon coupling. As
a result of increasing the number of bound states,
we would expect a smaller prefactor t', because
there are more cascade channels available, i.e.,
the matrix R in (3) is larger. As a consequence
of weakening the phonon coupling, we must antici-
pate a larger prefactor- t„' because the transition
probabilities, i.e. , the matrix elements A, , get
smaller. Going from entry 4 to 5 in Table IV, we
just about compensate the two trends; but compare
with entry 2.

As a last example we will try to fit the desorp-
tion time for the Xe-W system, measured to be"

t„=10 '"' exp [(4662 + 20)/T] (46)

again in -sec and K. Xenon is adsorbed on a tung-
sten surface at localized sites, so that our one-
dimensional theory should be expected to produce
a desorption time that is somewhat too long. We
have fitted the Morse potential in such a way that
the lowest bound state is at E,/ks = -4662 K. The
Debye energy for tungsten is chosen to be ka&D/k~

=405 K. For our first run we choose the range

y '=1 A, so that &=2208 and 00=159.9. Thus there
are 160 bound states in this potential. In the tem-
perature regime 100 K& 2"&400 K we get a prefac-
tor in the Frenkel-Arrhenius formula (40) of t'„

=3x10"sec and reproduce Q=4662 K. Taking

y '=1.5 A, r=4969, and o = 239.66 with 240 bound

states we get to=1.5&&10 sec. These prefactors
are too large by 1 to 2 orders of magnitude. To
localize the adsorbed xenon more, we choose y '
=o.5 A, x=550) oo 80 07 with 80 bound states
and get t„'=3&10"sec. In view of the above res-
ervations to apply our theory to localized adsorp-
tion, this is in satisfactory agreement with (46).

It remains to justify the use of second-order
time-dependent perturbation theory for the calcu-
lation of the bound state-bound state and bound

state-continuum transition probabilities, in which

only one-phonon processes are so far accounted
for. We have recently made a detailed study of
the importance of two-phonon processes in bound
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state-continuum transitions performing a complete
fourth-order calculation. ' Our main conclusions
were that a relaxation-time description of desorp-
tion from a bound state E, based on perturbation
theory is possible as long as k/ ~E,

~

«t„where
t„ is the isothermal desorption time for such sys-
tems, which we called descriptively weakly
coupled; a second-order calculation of t~ can be
used as long as ~E,

~

& ksT&h~~. Fourth-order
contributions become important for ~E,

~

&h~D and
ksT& tt~~. Moreover, for the range k&u~ ~ ~E,

~

~ 25~ fourth-order terms are essential in the ab-
sence of intermediate bound states because sec-
ond-order contributions are zero then.

Our fourth-order calculations were performed
for a model gas-solid system in which the surface
potential, chosen to be of separable form, devel-
lops only one bound state, whereas the systems
studied in this paper all develop more than one
bound state. Moreover, the present theory of de-
sorption from many bound states is based on a
Morse surface potential. Rather than attempting
a fourth-order calculation for the latter we will
develop now a method of estimating the importance
of two-phonon processes in our present theory us-
ing the model calculations based on the separable
surface potential. Let us first look at the transi-
tion probability from a bound state E, into the gas-
particle continuum. The equivalent separable sur-
face potential must obviously produce a bound state
at E, This requirement fixes one of the two po-
tential parameters, either the range or the depth.
As the range also controls the strength of the cou-
pling to the phonons, we keep it the same for the
separable potential.

Let us first look again at the He-LiF system.
At 5=60, i.e. , T=12 K, the desorption rate cal-
culated from (12) is f,'= 1.5 x 10' sec '. Suppres-
sing the bound state-bound state transitions we
find that gas particles desorb from the lowest
bound state with a rate 8„=6.95 & 10' sec '. Cal-
culating the desorption rate from this state in the
separable potential model we get in second order
R '~'= 2.9 x 10' sec ' for the same value r=44. 55.
A complete fourth-order calculation including two-
phonon processes' ' reduces this rate to 2.76 x 10'
sec '. Whereas the fourth-order correction
amounts to less than 5% we see that inclusion of
the bound state-bound state one-phonon cascades
enhances the rate by more than a factor of 2. At
a temperature of 6 K, the fourth-order correc-
tions amount to about 10% and become more sig-
nificant for lower temperatures where the overall
relaxation time, however, becomes immeasur-
ably large. There is no need for a similar analy-
sis for the higher bound states in the He-LiF sys-
tem because of their negligibly small thermal oc-

cupation at these low temperatures.
We next turn to the H-NaCl system where the

lowest bound-state energy E, is in magnitude
larger than the maximum phonon frequency. In
this case one-phonon processes cannot supply
enough energy for a one-step desorption from E,
into the continuum, i.e. , A„=0. The system how-
ever desorbs via one-phonon bound state-bound
state cascades with a rate 1.8 & 10 sec ' at T = 23
K. For r= 36.'7'l we find that the fourth-order two-
phonon rate in the separable potential model is
only 7.4 sec ', i.e., smaller by nearly 4 orders of
magnitude from the cascade. So also in the H-
NaCl system two-phonon processes are negligible
in the accessible temperature range. A similar
picture emerges for the He-Ar system. We ean

thus say that in weakly coupled gas-solid systems
with many bound states, as defined above, second-
order time-dependent perturbation theory is suffi-
cient at not too low temperatures for the calcula-
tion of the bound state-bound state and bound
state-continuum transition probabilities. How-

ever, it is crucial that the isothermal desorption
time is identified according to (12) as the inverse
of the smallest eigenvalue of the transition ma-
trix (3).

Summarizing we want to stress that our theory
of desorption by one-phonon cascades for gas-
solid systems with many physisorbed surface
bound states is based on the Hamiltonian (14) from
which the bound state-bound state and bound
state-continuum transition probabilities are cal-
culated in second-order perturbation theory for a
Morse potential (20) without any further approxi-
mations. For weakly coupled gas-solid systems,
as defined above, we have shown that higher-order
contributions can be neglected. The system of
rate equations (2) is solved exactly by diagonaliza-
tion and it is shown that at low temperatures the
smallest eigenvalue of the transition matrix R in

(S)-(5) is the inverse of the isothermal desorp-
tion time g„with transient, s being negligible. Our
theory is essentially parameter-free, because the
Morse potential must be chosen to reproduce in-
dependently measured bound-state energies. An

increase in the range of the surface potential re-
sults in a weakening of the gas atom-phonon cou-
pling and, at the same time, in an increase in the
number of bound states. These two effects, in-
deed, compensate each other in the calculation of
the desorption time in most systems so that de-
tails of the surface potential are much less impor-
tant than one would have anticipated.

Fina?ly we comment on related work. In Ref.
21 a similar theory to ours has been developed.
These authors present a detailed discussion of the
gas atom-metal electron coupling. In evaluating
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the desorption time they invoke a number of un-
necessary approximations, namely: (1) starting
from a Morse potential, they construct a harmon-
ic approximation" and add some anharmonicity
neglecting, however, the continuum altogether.
Because the theory can be worked out exactly for
a Morse potential, we do not see the necessity for
such drastic approximations which might repro-
duce the lower bound states and the transition
probabilities between them reasonably well but
must fail close to and in the continuum. Indeed,
the relative insensitivity of our exact calculations
to the choice of Morse potential parameters and
in particular, to the spacing between the lowest
states, suggests that this procedure is unjusti-
fied. (2) In Ref. 21 all bound state-bound state
transitions other than those betweeri nearest and
next-nearest states are neglected. This implies
that, e.g. , for the Xe-W system a large number

'of cascade channels is absent in their theory which
must result in too small desorption rates. (3) In
Ref. (21) only the first passage time is calculated
whereas our exact solution of the rate equations
yields all time scale including transients. Our
last comment on Ref. 21 is concerned with their
fit of Ehrlich's desorption data2 on Xe-W which
differ drastically from more recent experiments
by Dresser et al."which we fitted earlier. To
see the significant difference between the present
theory and Ref. 21 due to the approximations in-
voked in the latter, we have calculated the desorp-
tion time for the Xe-W system to reproduce
Ehrlich's data, namely, f& 10 " sec exp(252——0K/T)
as used in Ref. 21. Taking their S&uD/ka =220 K
and assuming the range of the Morse potential to

bey '=1.5 A, we have x=2698.67, 00=176.28,
i.e., 176 bound states. Around T =200 K we get
t, =9.68X10 ' sec exp(2520 K/T) in unbelievable
agreement with the above data. This success must
be contrasted with Fig. 6 of Ref. 21 where the
authors get theoretical desorption rates at best
2 orders of magnitude too small. This, we think,
shows conclusively that the approxi. mations in
Refs. 21 and 22 are unacceptable, and, .indeed as
we have demonstrated in this paper, unnecessary.
We also want to point out that the coupling mechanism
proposed in Ref. 21 between the adsorbed particle and
the electrons of the solidassumesthat the adsorbed
particle carries a net charge. Though this is
plausible for chemisorbed system like K-W there
is no experimental evidence for the physisorbed
Xe-W system that the adsorbed Xe atom carries
any charge. In Ref. 20 it is estimated that the
interaction of the induced dipole in the Xe with
surface electric fields of W amounts to less than
5% of the total interaction energy. The authors
of Ref. 21 equate this dipole interaction to the in-

teraction of a net charge of 0.04e (see caption of
Fig. 4 in Ref. 21) on Xe, a procedure which lacks
any justification.
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APPENDIX A

In this appendix we want to justify the applica-
bility of a one-dimensional model for mobile de-
sorption. We start by considering a gas particle
at position r = (x, R} interacting with a solid sur-
face. The coordinate system is chosen so that the
static surface is in the (y, z) plane at @=0. The
surface is represented by a lattice of atoms at
positions r, +u„where r, —= (Q, R,) is the equilibri-
um position of the ith surface atom and u, = (u„,U, }
is its deviation from the equilibrium due to ther-
mal vibrations of the solid. The potential energy
of a gas-particle interaction with the surface is

U(x, R) = ~Q V(x —u,„,R —R, —U,), (A1)

5U(x, R) = ——g u, V V(x, R —R,) .
i

(As)

We can now represent the deviations of surface
atoms u,. from their equilibrium positions in the
form of a linear combination of normal vibrational
modes (p, X) of the solid:

where X is a number of surface atoms occupying
an area S (periodic Born-Karman boundary condi-
tions in two dimensions will be assumed) and V

represents the two-body surface atom-gas parti-
cle interaction potential energy. We assume for
simplicity that each elementary cell in the surface
contains only one atom and that all surface atoms
are identical. Our derivation can be easily gen-
eralized for more complex situations. In (Al) we

only include the interaction with surface atoms.
The effect of the bulk of the solid is indirectly
contained ln U]. For smaQ deviations from equi-
librium (A1) can be expanded,

U(z, R) = U,(z, R)+ 6U(z, R), (A2)

where

U,(z, R)=-g V(~, R-R,)X j
is periodic:

Uo(x, R -R,) = Uo(x, R) ~

5U(z, R) is given by



22 DESORPTION BY PHONON CASCADES FOR GAS-SOLID. . . 5667

b;, is the annihilation operator of a phonon (i.e. ,
a normal mode of lattice vibrations), p=—(p„,P )
and (d„(p) are the wave vector and the angular fre-
quency of the phonon of branch X, respectively
(only acoustic modes are considered here:
= 1, 2, 3), e~(p) is a set of phonon polarization vec-
tors, assumed to be normalized: ~e~(p) ~'= 1, M,
is a mass of each atom of the solid, and N, is
their number in the crystal. Inserting (A6) into
(A5) we get

ov(, )()= -( )"'

Let us note that

f(P;x, R —R~) = e '~'~&f(P x R)

so that it can be written in the form

f(P;x, R) =.i~ ~j(P;x, R),
where (t)(P;x, R) is a periodic function

y(P; x, R -R, ) = y(P; x, R)

and can therefore be expanded,

y(P. x R)=g e " '"a. (P.x)

(A9)

(Alo)

(All)

(A 12)

where

f(P;x, R)=—pe*'~ R*.vV(x, R-R,). (AB)

e jR~'Rg (A13)

With the help of (A10) and (A12) 5U(x, R) reads

where K are the translation vectors of the recip-
rocal lattice having the property

l

a/2
(A14)

(A15)

Expanding the periodic potential U,(x, R) in a
Fourier series

Let us note that the two equivalent forms of
5U(x, R), namely, (AV) and (A14) should be used
as the starting points for approximations in two
different physical situations, (A'I) for localized
and (A14) for mobile physisorption. From (AB),
(A10), and (AS) we obtain for P=O

y(0; x, R) = V U (x, R) .

K (f', x) =- t d, ))e' t '" '"v )' (x, R) . (A 20)

So far we have not invoked any approximations and
all is exact within the harmonic model of a solid.

Let us now assume that the force exerted by the
solid surface on the gas particles is smooth
enough so that it can be treated as independent of
8, z.e. ,

U,(x, R) = V,(x). (A 21)

U (x R) g &iR~'RV (x)
m

(A16)
Then the gas-particle wave functions in the pres-
ence of the static surface can be approximated by

(;„(x,R) = 8 'i 'e'"'"u;„(x), (A 22)

a„(0;x) =(V„'(x),fK„V„(x)). (AIV)

For PNO, we get from (A12), (A10), and (AB)

t ei QC~ Ryg')'Id+
S

and (A18) we get

(Ale)

&. P;~ e'~ '"=— e-~~'"-~~'vV x, R-R,
Rm

(A18)

Multiplying both sides of (A18) by e'"~"", inte-
grating over the whole surface 8, using

where u,g(x) fulfills the one-dimensional Schro-
dinger equation with the potential energy V,(x).
The total energy is E,g =O'K'/2m+ E, with m the
gas-particle mass and K the gas-particle wave
vector parallel to the surface. The index q de-
notes a quantum number associated with the gas-
particle motion along g and can assume both dis-
crete n (for bound states) and continuum k„(for
continuum states) values. Let us also note that

u,~(x) depends on K only through the energy shift
5'K'/2m. For the wave functions (A22) the dy-
namic part of the gas-solid interaction reads in
second quantization

w ere [e(p) j„and ao,(P;x) are the x components of e,(p) and K,(P;x), respectively, and 6(K, K') is a
Kronecker 6 obtained from
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d ft e(C-&I'& ll S6(K Ki)
~ ~

~

S
(A 24)

(A 25)

o(,'~ and n,~ are the creation and annihilation operators of a gas particle in state ~gg). To determine
a,„(P,x) for a smooth surface we observe that from (A3) and (A21) we get

t (z, R-R,)= V,(z),
which with (A19) gives

a„(p',x)= v'(x)n fdne ', ""=)"(x)&(p,o).
S

(A 26)

(A 27)

Thus for a smooth surface for which the interaction with gas particles can be assumed constant along the
surface only phonons with P = 0 can interact with the gas particles, and (A23) reads

)i/2
Hd ~ ct g ) Q K x Vo x s &K x dx b, p, + H.c.am 2M' & ( (p ))&yn () )( ()K P n'K

where the index I in (d,(p„) and b, (p„) denotes longi-
tudinal phonons. If in a gas-solid system with mo-
bile physisorption band effects for the motion
along the surface are negligible, the gas-particle
momentum component parallel to the surface is
conserved. Qnly phonons with a zero lateral com-
ponent of the wave vectors interact with the gas
particles. Thus the energy necessary to desorb
a particle out of a bound state of the surface po-
tential must be supplied by longitudinal phonons
with wave vectors perpendicular to the surface.
This justifies the use of a one-dimensional model
for mobile physisorption with negligible band ef-
fects. Note that (A27) and (1V) are equivalent in
the sense that transition probabilities calculated
from (A27) and averaged over the lateral motion
are identical to those calculated from (1V), Good-
man and Romero do not have the factor 6(P, O)

in (A26). As a consequence they include the pos-
sibility of drawing energy out of the lateral
motion of the adsorbed atom in the desorp-
tion process. It is mysterious how in the
one-dimensional version of their model, Good-
man and Romero can desorb a gas particle in a
one-step one-phonon process from bound states
whose energies are in magnitude larger than that
of the most energetic phonons.

APPENDIX B

For the Morse potential

p(z) = p (e &'(n np& 2e )'(n np&)

I

we define dimensionless quantities

, 2mU, , 2mIE„I
0' = ' s0 N2y2 y ff g2y2 7

$=yx, $p=yxp,
(S2)

and get for the normalized bound-state wave func-
tions

y „(z}= ~sf „(h)

w ith

(S3)

and I,~gu) is a Laguerre polynomial. The contin-

uum states of momentum q, normalized in a box
-I &x&1., are given by

P,(z) =(2&) "f(n; t),
where

&)= e&y

and

(B6)

r j,I(n —gp —1'g) i (K —(p))e-in(K —ip)
f(&), ()= (, exp(-o, er kg'j

x y(-,' o,+ i&), 1+ 2i&), 2o,e " 'p'),

where y(a, b, z) i,s a confluent hypergeometric
function that vanishes as z- -, i.e. ,

(2s +~)- 1
( ) = (2gp)'nl' "'(».) ~

n

&(exp( o e p )e n p L n(2gpe o },
(I)4)

where

(B5)

im F(1-o'()+i&), 1+ 2i&),z), „F(p -gp —iq, I -. 2iq z)),e(l —g, + i q, 1+ 2iq, z) =
sinh(2((&)) I'(1+ 2i&))I'(' —o, —i&)) I'(1 —2i&)}i"( —,

' —g, + i&)) ) '

where the p' functions are defined in Ref. 25.
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APPENDIX C

To evaluate the transitions probabilities (29) and (30) we have to invoke the thermodynamic limit, i.e. ,
replace

—f dk
0

and perform the sums over-phonon states. For a Debye model this implies the replacement

3, fMD 0

We also introduce the dimensionless quantities

r = 2m &a/(gy'),

~= 8(dg)IIEET ~

e„= ~&„~le~,= s'„Ir

We then get for (30)

i&1-s'„30,' J~2s + n't-'
er'I'(2s „) i, n )

py~g 2 2
x- — "dx(x+s'„)n "~sinh(2vvx ) ~1'(-,'-o, +fax) ~'

M

2

x du e "u'o ' "'~" -1~L~~(u)g(-'- a +ibex 1+ 2i&x u)2a j tl 2 p

where a.=2o,e~o. For (2'f) and (29) for j i&

R,q=8(r-(s', -s&))[n((s',. —s&)Ir)+1]I&,

for bound state-bound state transitions into a lower state via emission of a phonon and

R„.= e(r —(s',. —s,'))n((s',. —s,')lr)I'„
for transitions into a higher state via absorption of a phonon. Here we defined

(Cl)

(C2)

(C4)

(C5)

(c6)

)I
'. )1(2,)(2,) d " '~"

2
—1 ~L,"~( )L", ( )d

S i~ p 20p

In (C4), (C5), and (C6) we denote

n(z) = (e"-1) '.
In the limit a. = 2croe'o- ~ inserting s&= a, —j ——,we can calculate the integrale in (C'I) and (C4) to be

~

~

~

~ ~

e "u'&"~ —1 ~L&~&(u)L". ~(u)du=(-1)~ ' . I'(2 ajo) 1 —
~

for j&iu & „j-i . i+j+It

(C'1 )

(C9)

and

J e "u'o ' '" "I
2

—I L'„'o '" '(u)e(-,' —a, + iv x, 1+ 2iMx, u)du = Ir(a, + ,'+i~x)—
0 E2oo 0

(C 10)

For 0.-~ we therefore have

3&(2a'&& —2n —1) m S+ 0'p -g
4r nil' 2ao-n M, r

einh(2vv x )" -'(
(C11)
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and (j&i)
Ss m, j! 1(2o, -j)I' = ~o —(j i-)' —.

' . (2o i-—j - 1)'(2o - 2j —1)(2o0 —2i —1) .2r' M, i! r(2o, - i)
(C12)
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