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A simplified model calculation of the thermal expansion of alloys from their third-order elastic constants within

the context of a Debye, isotropic continuum is presented. The model is applied to the CuA1 system. The averaging

techniques used to convert the cubic alloy to its isotropic equivalent all yield the same value of the impurity-

concentration normalized fractional change in thermal expansion dP/PdC, , within the large, uncertainty imposed by
the error bars in the experimental, input data. The most likely value of dP/PdC, . that emerges from the- present

calculation is —(5+3)X10 ' at. % ', whereas the experimental value of Ganne for CuA1 lies between
—(145~051)&(10 'and —(107+007)&&10 'at. % ' in the concentrationrangeof 106 to 7 55 at. % Al. Given

the simplicity of the calculation, we consider the currently calculated results to be in good agreement with the

experimental measurements: The sign of dP/PdC, is correctly predicted as well as its absolute value, the latter

affirmation being viewed within the context of the uncertainties in both the calculated and the measured values. The
fact that PAg)Pg whereas de/PdC, &0, clearly negates all models of thermal expansion that treat the alloy as a

simple, composite system.

I. INTRODUCTION

Even for those pure metals and alloy systems
for which reliable solvent-solvent and solute-
solvent pair potentials are available, the problem
of calculating the thermal expansion of these
metallic systems is complicated by the volume-
dependent forces that inevitably come into play.
A recent calculation of the thermal expansion of
AlMg and AlCa alloys by Gilder et al.' reviews the
numerous problems encountered in such an ap-
proach. In addition, as there are relatively few
reliable solvent-solvent and solute-solvent pair
potentials available' to describe the constituents
of most alloy systems, both experimentalist and
theorist are usually more than satisfied to, at
least, have at their disposition a model that ade-
quately relates one manifestation of the anhar-
monicity of the interionic potential, namely, the
thermal expansion, to another consequence of lat-
tice anharmonicity, such as the third-order elas-
tic constants.

Such a calculation of the thermal expansion of a
solid from a knowledge of its third-order elastic
constants was originally carried out by Sheard. '
Using an anisotropic-continuum model of the solid
in conjunction with Gruneisen's theory of thermal
expansion, Sheard cal.culated the Gruneisen pa-
rameters, or equivalently, the thermal expansion
of KCl and NaCl from Lazarus'' third-order elas-
tic constant data, and found reasonably good agree-
ment with the experimentally measured values' of
the thermal expansion of these ionic crystals.

where

al V
(2)

and

t ff &i,s ' exp(h +; t, /ice &)
n~( ir T [exp(hto;, /ienT) —1]s '

Here &; ~ is the frequency of the normal mode de-
scribed by the wave number Q and polarization P,
C; ~ is the constant-volume specific heat associated
with this mode, and V is the volume of the crystal.
The anisotropic-continuum model assumes that
co~ s

——qc~(8, P), where ce(8, &f&) is the velocity of a
sound wave of polarization p propagating in the di-
rection (8, p). Combining Eels. (1), (2), and (3),
Collins obtained

r= ~, f „y,(8, y)q, (x,)x, '(8, y)tin

Q,f„q,(x,)x,'(8, y)dn-
(4)

where

( ), (alnep(6, p))
In V

Collins' was sufficiently encouraged by this ap-
proach that he undertook similar calculations for
a variety of metals and ionic crystals. In Collins's
notation, the Gruneisen parameter y is given by
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and

(6)

x&(8, P) is the ratio of e&(8, P)/T, where e&(8, P)
is the Debye temperature for waves of the pth
branch traveling in the direction (8, &f&) E. vidently,
once having determined y from Eq. (4), the Grhn-
eisen relation y= PVBr/C„can be used to deter-
mine the thermal expansion P, assuming, of
course, that the isothermal bulk modulus B~ is
known.

Whereas Sheard solved Quimby and Sutton's'
cubic equation for c~(8, P) on a relatively finely
divided angular grid, subsequently using a com-
puter to effect the numerical integrations appear-
ing in Eq. (4) in order to determine y, Collins
somewhat reduced the numerical complexity of
Sheard's procedure by fitting a six-term expan-
sion in cubic harmonics to six selective values
(directions of high symmetry) of the integrands
appearing in Eq. (4). Although the values of y, as
well as their temperature variation, were in rea-
sonably good agreement with the corresponding
thermal-expansion data, it is obvious that Eq. (4)
involves a relatively complicated numerical analy-
sis. Collin's and Sheard's calculations were li-
mited to either pure metals or ionic crystals, in-
asmuch as experimental values of the third-order
elastic constants of alloys were not available at
that time.

In 1973, Cain and Thomas' (hereafter referred
to as CT) used an ultrasonic technique to measure
the third-order elastic constants of various dilute
CuAl alloys. Using a refinement of Hiki et ai."
of Eq. (4), involving the utilization of Brugger's"
formulation of the Gruneisen mode parameters,
CT predicted the aluminum-concentration depen-
dence of the thermal expansion of their CuAl al-
loys. They found that d(6/PdC, = -3.6 x 10 ' at. % ',
where dP is the change in the coefficient of thermal
expansion of the pure, copper host induced by the
introduction of a concentration dC, of aluminum-
impurity atoms. It should be pointed out that the
calculation of Hiki et al."is numerically nontri-
vial. It involves a relatively important computer
calculation in the symmetry-reduced part of the

' Brillouin zone involving -25 000 vibrational
modes.

It was until only very recently that the quantity
d p/pdC, was measured by Ganne' in CuAI dilute
alloys. Ganne's measurements show that

-(1.45 + 0. 51)x 10 3'at. %

&dP/(MC& & -(1.07 + 0.07) x 10 at. % '

for 1.06 at. % & C, & 7.55 at. %. Not having access

to the uncertainty in the CT calculated value of
dP/PdC& ——-3.6 x 10 ' at. /0 ', it is rather difficult
to compare this value with that of Ganne.

The purpose of this paper is to present a sim-
plified model calculation of the thermal expansion
of alloys from their third-order elastic constants,
within the context of a Debye isotropic continuum,
It is, after all, the anisotropic nature of Sheard's
solid that is basically responsible for the resultant
numerical complexity involved in the determina-
tion of y. As there is no one unique way to con-
vert a monocrystal to its isotropic "equivalent",
the results of a number of "averaging" procedures
will be presented. As will be seen, the present
calculation can be performed with the equivalent
of a TI 59 or HP 67 calculator. In addition, the
results are in surprisingly good agreement with
Ganne's experimental data, inasmuch as we have
calculated the uncertainty in dP/PdC, for each
averaging procedure due to the experimental un-
certainty in the input data. The present work is
limited to CuA1, simply because all of the neces-
sary experimental measurements (second- and
third-order elastic constants and coefficient of
thermal expansion) are available for this alloy.
To our knowledge, the only other alloy for which
the concentration dependence of the second- and
third-order elastic constants have been measured
is Cuwi. As we are currently in the process of
measuring the concentr ation dependence of the co-
efficient of thermal expansion of this system, a
another test of the present calculational technique
will be possible at a future time. In any case, the
present model would appear to be applicable to
most alloy systems, regardless of the nature of
the constituents.

II. THEORY

A. Shear-modulusMependent averaging

In what follows, the differential operator "d'
will denote the change in any host-crystal property
(specified by the subscript "0") induced by the ad-
dition of an impurity concentration dC, . Thus,
for the nondispersionless host and its associated
alloys,

d&g/+ = dq/q + d(c) /( c)

=d(c)/(c) dL/L=- p, , —

where L = V'~'-q ' and (c) is a suitably averaged
sound velocity over the longitudinal and transverse
vibrational modes of the crystal. In the Debye
model of the lattice specific heat of an isotropic
solid, (c) is given by"

( c)= [(cj'+2c, ')/3] '~*, (6)
where e, and c, are, respectively, the longitudinal
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and transverse elastic-wave velocities. Accord-
ing to Eq. (7), all phonon frequencies are frac-
tionally shifted by the same amount p, due to the
impurity concentration dC&, no distinction being
made between longitudinal and transverse modes.
Using Eq. (5), we can now write the following for
the mode-independent y, 's of the host crystal:

y~ 1 1 aln(cp 1 1 a(c~)
Bor SBor Bar alnV, j r SBor (cg aP

(9a)

I

course to experimental data for the isothermal and
adiabatic bulk moduli, as well as the constant-
temperature pressure derivatives of the bulk and
shear moduli. Differentiating the Gruneisen rela-
tion y= pVB /C„, with respect to C„and making
use of Eq. (11), we obtain

dja B, i(8p, dc„, , dVo
( )

PdC( y,dC) ii aP r "' dc) ' dC,
'

In the Debye model of the heat capacity of a solid,
C„=C„(e /T). Thus,

, dc„, p, eD, ac„(eD/T)
"'dC dC,. T "' a(en/T) (15)

(9b)

where the subscript "a" refers to the dilute alloy.
As, by definition, dL, =L, —L, and d(c,)=(c,)
-(cg, differentiating Eq. (7) with respect to pres-
sure P yields

(
ap (c.) t i a(c.) 1 (a(c, )

(co) (c,) aP (CD) i

3L B B (io)

As ( c,) =( c,) and L, =L, to a very good approxi-
mation, between Eqs. (9) and (10) we then obtain

dB

c, = [(B+4G/3)p]'i' and c, = (G/p)"', (i2)

where p is the crystal density and B and G are the
adiabatic bulk and shear moduli, respectively.
Substituting Eq. (12) into Eq. (8), and then taking
the logarithmic derivative with respect to pres-
sure, we obtain

1 t'a(c) 1

( c) I( aP 2Br

(B+4G/3) ' '(B'—+4G'/3)+ G' 'G'
+

(B+4G/3) "'+2G "'
(iS)

The quantities (c, ,) '(&(C, )/&P)r aPPearing in Eq.
(10) are evaluated by recourse to Eq. (8). For an
isotropic solid, we know that"

The term in large round parentheses on the right-
hand side of Eq. (15) can be directly obtained from
Debye tables" of C„vs e~/T. Equations (10),
(13), (14), and (15), together with x-ray, lattice-
parameter measurements of the alloy as a func-
tion of the impurity concentration C„evidently
permit the calculation of d|a/pdc, . As ultrasonic
measurements yield information with regard to
the second- and third-orger elastic constants of
the crystal, the quantity (ay/aP)r obviously de-
pends on the averaging procedure that establishes
the functional relation between G, (aG/aP)r, and

c„, c„, c„, (ac„/aP)„(ac„/aP)„and (ac„/aP),
for a crystal of cubic symmetry. These relations
are presented in the following sections.

Voigt and Reuss averaging procedures

The Voigt" averaging technique essentially re-
sides in spatially averaging the elastic constants
over all directions. The expression for the Voigt-
averaged shear modulus G~ and its pressure de-
rivative G~, in terms of the second- and third-
order elastic constants, are given by

and

(2C'+ Sc44)
5

(
2GB' i 2Q + 3+gg

aP,

(16)

(i7)

where 2c'=(c„—c„), 2c"=(ac„/aP)r —(ac„/aP),
and c« = (ac4q/aP)r.

The Reuss" method is based on a spatial average
of the elastic compliances. The Reuss shear mod-
ulus G~ and its pressure derivative G~ are ex-
pressed as follows:

where B' -=(aB/aP)r and G' =— (a G/aP) r. Thus, the
right-hand side of Eq. (11) is evaluated by re- and

Gz ——5c'c«/(2c«+ 3 c') (18)

(
:Gg = 5[c c44+ c c44 —c c44(2c44+ Sc )/(2c44+ 3c )]/(2c44+ Sc ) .

aPi
(19)
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2. Hashin and Shtrikman averaging procedures

The Voigt and Reuss bounds for the shear modulus were considerably improved by Hashin and Shtrik-
man. " The larger of these bounds is termed the Hashin shear modulus Q~, whereas the smaller of the
two is referred to as the Shtrikman shear modulus. G~. These shear moduli and their pressure derivatives
are given by the following expressions:

and

G~= c„+2[5/(c'-c„)+3.6(B+2c )/c„(3B+4c„)]'=-c«+2K ',
G»' ——c,', + 2 H '[5(c + c,',)/(c' —c«)' —3.6(B'+ 2c,',)/c«(3B+ 4c«)

+ 3.6(B+2 c,)c,',/c', (3B+4c,) + 3.6(B+2c, )(3B'+4c',)/c„(3B+4c„}'],
G~ = c'+3[5/(c„-c') + 2.4(B+ac')/c'(3B+ 4c')] '=-c'+ 3S ',

G ~ c"+ 3S '[5/(c„-c")/(c„—c')' —2.4(B'+ 2c" )/c'(3B+ 4c')

+ 2.4(B+2 c')c"/c' (3B+4c') + 2.4(B+2c')(3B'+ 4c')/c'(3B+ 4c')'] .

(ao)

(21)

(22)

(23)

Evidently, the symbols H and S, when not subscripts, represent the second term in square brackets on
the right-hand side of Eqs. (20)—(23). Needless to say, regardless of the averaging procedure, the poly-
crystalline bulk modulus and its pressure derivatives are always given by

B= (c» + ac»)/2 (24)

B'= (cf, + 2c,', )/3 . (25)

B. Debye-temperatureMependent averaging

I.edbetter and Naimon" proposed an averaging procedure based on the assumption that the Debye tem-
perature of the polycrystalline aggregate is equal to that of the monocrystal. According to de Launay, "
the Debye temperature e~ of a cubic crystal is related to the crystal's elastic constants as follows:

en'= (4nQks' p'~'/Qh'){(c»+ 2c«) 'I'[I —1.8(c' —c„)/(c„+ac«)

+ (189c„+173c, )(c' —c, )'/70(c„+ c„)(c„+2c )']

+ 2c44 [1 —0.6(c —c44)/c44+ (35cg2+ 43C44)(c —c44) /70(c~m+ c«)c44]}~

However, in Debye's model of the specific heat of
an isotropic continuum, ( c) is related to en in the
following way":

e =(4','fl) j(3a'(c)'). (27)

By eliminating e~ between Eqs. (26) and (27), we
obtain a relation between (c), c», c», c«, and p.
Again taking the logarithmic derivative of (c) with
respect to pressure, we obtain

I
(c', c12tc44&c tc12&c44)

r T

(28)

Given the complexity of Eq. (26), the explicit
form of the right-hand side of Eq. (28) is not given
because of its considerable length.

In any case, the calculation of dp/AC, proceeds
in exactly the same way for both Debye-tempera-
ture- and shear-modulus-type averaging: Eqs.
(28) and (13) are used to evaluate (c) '(8(c)/BP)r,

I

which is then injected into Eq. (10). Equations
(11) and (14) then yield dp/pdC„since (c), and
hence p, , is calculated as well for each alloy con-
centration. Thus, Eq. (15) determines the second
term on the right-hand side of Eq. (14), and re-
course to lattice-parameter data for the alloy
system in question allows the determination of the
last term (the size effect) of Eq. (14).

III. RESULTS

A. Treatment of alloy data

The input data to the present calculation are in-
dicated in Table I. The values of cgy cy2 c g c",
and B' (Ref. 9) were measured at the concentra. —

tions indicated. The pressure derivatives for pure
copper, indicated as well, had been previously ob-
tained by Hiki and Granato. " As the elastic-con-
stant and density measurements of Cain and
Thomas ~ had not been performed on alloys having
the same aluminum concentration as those used
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TABLE I. Elastic-constant and density-input data as a function of aluminum-impurity
concentration.

C. p C12

(at. %) 0 g/m') (Mbar) (Mbar) (Mbar)
I

C12 c44

0.0
3.1
5.6
7 4

8938.4
8725.3
8551.9
8426.5

1.219
1.216
1.213
1.207

0.754
0.764
0.769
0.774

0.237
0.231
0.225
0.222

1.377 5.190 2.63
1.370 4.900 2.452
1.363 4.895 2.421
1.355 4.903 2.395

0.375 5.44
0.545 5.264
0.544 5.258
0.536 5.260

for the third-order elastic constant measurements,
the values of ell &l2 &44 & B, and p appearing
in Table I were obtained by linear int, erpolation.
Although the experimental uncertainties of the
measured quantities of Table I are not indicated,
a detailed discussion of their order of magnitude
and their important impact on the calculated val-
ues of dj3/JMC, is presented in the following sec-
tion.

TABLE D. Calculated values of dp/PdC; as a function
of averaging procedure and aluminum concentration.

Averaging
procedure

dP/PdC, .
0.0-' at. %- )

C;
(at. w)
4.351.55 6.50

Beuss
Shtrikman
Ha shin
Voigt
de Launay

+64
+26
+1.6

-13
-13

+0.2+ 2
3e3 + 1 ~ 7

-5.5+ 1.4
7e7 +201
7o7 +2o2

-7.3 + 6.0
-8.8 + 4.1
-9.7 + 2.6

-11.0 + 3.8
-11.0+3.9

B. Currently calculated values of dP/PdC~

The currently calculated values of dP/PdC, are
given in Table II as a function of C, for each of the
averaging procedures previously discussed. Here,
C& is not the aluminum concentration of a particu-
lar alloy, but rather the average concentration of
the neighboring alloy states of Table I used in the
calculation. For example, the concentration C&

=4.35 at. % appearing in Table II means that dP/
PdC, corresponding to this concentration was cal-
culated from the alloys Cu-3. l-at. % Al and
Cu-5. 6-at. %%uoA l (seeTabl e I). Inotherwords,
the pure host state previously referred to in Eqs.
(9), (10), (11), (14), and (15) in practice is, in
fact, synonymous with any alloy state whose con-
centration is changed by dC, . Inasmuch as the
alloy data of Table I correspond to concentrations
of 0, 3.1, 5.6, and 7.4 at. %%uo, dP/Pd C, iscalcu-
lated at average aluminum concentrations of 1.55,
4. 35, and 6. 5 at. '%%uo.

Three remarks are in order concerning the cal-
culated values of dP/PdC, shown in Table 11. First
of all, regardless of the concentration, dP/PdC,
decreases systematically as we pass successively
through the Reuss, Shtrikman, Hashin, and Voigt
averaging procedures. For CuA1, there is ap-
parently no difference between Voigt- and Debye-
temperature-(de I aunay) type averaging. Second
of all, the ensemble of the calculations indicates
that the sign of dp/pdC, is negative. The uncer-
tainty in dP/PdCt, where indicated, varies from
1000% to 25%%uo, with 25 —35% being the most prob-
able uncertainty. Third of all, the uncertainties
are not indicated for Ct —1.55 at. %%uobecausewe
have very little confidence in the pure-copper data
as used in the present context, simply because the
contribution of the unpinned dislocations in the
pure-copper specimens is absent in the CuA1 al-
loys where the dislocations are pinned by the
aluminum impurities. The present calculations
thus place dp/pdC, between +(0.2 a2) x10 at. %%uo

and -(11+ 4) x 10 ' at. % '.
A few remarks are in order concerning the rela-

tively large uncertainties in the calculated values
indicated in Table II. These uncertainties are due
to the experimental uncertainty in each input quan-
tity to the calculation. Concerning these latter
uncertainties, Cain and Thomas' claim that c»,
c44, and c' are measured to +0.001 Mbar, whereas
cl, and B have a probable error of +0.002 Mbar.
Although it is not indicated in their article, we es-
timate that their densities are measured to +0. 1
kg/m'. '/pith regard to the uncertainties in the
pressure derivatives of the elastic constants, they
apparently depend on the concentration of the alloy:
for 3.1 at. % & C, & V. 4 at. %, 0.002 & 6B' & 0.013,
0.001 & 5c" & 0.008, 0.001 & 5c,', & 0. 005, 0.002
&5c,', ) 0. 017, and 0.002& 5c,', &0.008. Thus,
for example, to evaluate the uncertainty in the
first two terms on the right-hand side of Eg. (14),
each input quantity, in turn, is changed by an
amount corresponding to its error bar while all
the other quantities are fixed at their nominal
values. The changes in the calculated quantity
corresponding to these changes in the input data
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are then summed in a reasonably statistical way.
The relative importance of each input datum to the
uncertainty in the first and second terms of Eq.
(14) depends on the averaging procedure being
used as well as the concentration of the alloy.
However, our calculations indicate that the uncer-
tainty in @44 and c' plays an important role in each
of the averaging procedures in determining the un-
certainty in the first term of Eq. (14). The un-
certainty in c» would appear to be next in impor-
tance.

As concerns the second term of Eq. (14), the
major contribution to its uncertainty comes from
the uncertainties in c44 and c', p and 8 playing a
very minor role. The uncertainty in this term is
typically -15%. Inasmuch as C„'dC„,/dC, is usual-
ly no greater than about a tenth of (Bar/y, )(3p/3P)r, ,
its uncertainty obviously contributes little to the
overall uncertainty in dP/PdC„

The last term of Eq. (14), V,'d V,/dC„ is cal-
culated from the lattice-parameter data of Obinate
and Wasserman. " Their data indicate that V,'dV, /
d C, = (2.20 + 0.06) x 10 ' at. % ' within the current-
ly considered concentration range. As Vo'dVO/dC&

rarely exceeds -40'%%uo of (B,/p, )(Bp/8P)r, it is
rather obvious that the predominant uncertainty in
d p/pdC& has its origin in the large uncertainty in

(B,/y, )(Bg/BP) r. For instance, for C, = 4.35 at. %
in the Hashin averaging procedure

dp/pdC, =-(3.0~1.3) x10 '

-(0.33~0.05) x 10 '-(2.20+0.06) x10 '

= -(5.5 a 1.4) x 10 ' at. % ' .
I

Reference to the CT (Ref. 9) third-order elastic-
constant data shows that the data for Qu-V. 4-at. %
Al have uncertainties markedly greater than those
of the pressure derivatives measured for alloys
corresponding to C, = 3.1 and 5.6 at. %. An ob-
vious manifestitation of the relatively poor quality
of the C&

——7.4-at. %%uqdata isapparen t in thesize
of the error bars of the third column of Table II:
they are approximately twice as large as those
of the second column. It is for this reason that we
consider the calculated values of dP/PdC, corre-
sponding to C, =4.35 at. % statistically more sig-
nificant than those associated with C, = 6. 5 at. %.
Inasmuch as the uncertainties in dp/pdC& for C,
= 4.35 at. % are nevertheless too large to discern
significant differences between the averaging pro-
cedures employed, we feel that the most statisti-
cally significant value of dp/pdC, emerging from
the present calculation corresponds to the arith-
metic average of the calculated values appearing
in the second column of Table II. This yields
d p/p d C, = —(4. 8 + 2. 9) x 10 ' at. %%u

&'.
It should be pointed out that in. both Eqs. (13)

and (14), B was used in place of Br .We have
verified that this introduces an uncertainty in the
calculated value of dP/PdC, never exceeding 0.2/o.

IV. DISCUSSION OF RESULTS
AND CONCLUSIONS

The currently calculated values of dp/pdC, are
indicated in Fig. 1, along with the CT calculated
value and the experimental values of Ganne. The
present results are obviously in good agreement
with the CT, anisotropic-continuum value of -3.8
x10 ' at. % '.

The currently calculated value of d p/pdC&
= —(4.8 +2.9)x10 at. /o, as well as that of
CT, is based on the room-temperature values of
the second- and third-order elastic constants,
whexeas the data of Ganne correspond to T -140 K.
Given this difference in temperature between the
measured and currently calculated values of dP/
pdC&, as well as the size of the error bars in the
present calculation, we consider that the present
model is in reasonably good agreement with the
experimental measurements.

g 0
~er0
O
C.

I
C)

u -5-
'0

'0

-30-

~ ")
4 5 6 7 8
concentration t.,(at.%)

FIG. 1. Calculated and experimental values of
dP /gdC; as a function of aluminum concentration C;
for CuAl alloys. In the present model, the averaging
procedures are represented as follows: Reuss (~),
Shtrikman (+), Hashin (&), -Voigt (+), de Launay (}.
The currently calculated values at 4.35 and 6.50 at. jp

are indicated as clusters centered at these concentra-
tions for the sake of clarity. The CT (Ref. 9) calculated
point (+}is based on alloy data spanning the aluminum
concentration interval of 3.1 to 1.0.8 at. %, and is thus
placed at C& = 7.5 at. % The experimental points (o)
are those of Ganne (Ref. 12). The error bar of the ex-
perimental point at C; = 7.55 at. % is equal to the diame-
ter of the open circle.
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The present isotropic-continuum model, as well
as the anisotropic-continuum model used by Cain
and Thomas, both predict the correct sign and
order of magnitude of dP/PdC, . We consider this
to be a nonnegligible accomplishment, in view of
the fact that the alloy is treated as a dispersion-
less medium. There is both theoretical and ex-
perimental" evidence that indicates that for cer-
tain solids there is a considerable difference be-
tween the Gruneisen parameters of high- and low-
dispersion phonons. In addition, the present
model obviously ignores the possible contribution
of local modes in the CuAl system. Although
there is experimental evidence" for the existence
of localized modes in CuAl, their GrGneisen pa-
rameters have not been either measured or esti-
mated.

The sign of the measured and calculated values
of dp/pdC, should, once and for all, destroy all
illusions regarding the utility of those models"'
that treat the alloy as a simple, composite sys-
tem. These models essentially assert that the
solute has the same physical properties whether

or not it is dissolved in the solvent. Inasmuch as
P» & Pc„,"these models would Predict dP/PdC,
& 0, just the opposite of what is actually observed.

Finally, it should be emphasiied that model cal-
culations of alloy thermal expansion, whether they
be isotropic or anisotropic, are extremely sensi-
tive to the second- and third-order elastic-con-
stants data used. Although the second- and third-
order elastic constants used in the present cal-
culation are accurate to -1o ', this uncertainty is
unfortunately large enough to induce uncertainties
of typically 25-35/~ in the calculated values of
dP/PdC, .
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