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Temperature variation of the size effect in dilute A1Mg and AlCa alloys:
Measurement and theory
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Optical-interferometric-differential-length and x-ray lattice-parameter measurements performed at low

temperatures in dilute A1Mg and A1Ca alloys indicate that the temperature variation of the size effect corresponds
to a relatively large difference between the intrinsic coefficient of thermal expansion P,. of the solute atom structure
and that, P, of the solvent. This result is another example of the surprising expansive properties of point defects
previously described by Gilder and co-workers (high-temperature vacancy diffusion) and more recently by Ganne
(low-temperature dilatometry on irradiated specimens). Specifically, in the temperature range 0.2 & T/8n & 0.4, we
find that P,.(Mg)/P =3 and P, (Ca)/P = —4. This, as well as the fact that the sign of the change in the coefficient of
thermal expansion dP of the host metal caused by the introduction of the solute atom is positive for Mg and negative
for Ca, indicates that solute-solvent valence efFects play a minor role in determining the coefficient of thermal
expansion of the dilute alloy. It is also found, to within the experimental precision, that dP(Mg} and 1P(Ca) are
temperature independent, suggesting a type of Matthiessen's rule for thermal expansion. A model calculation of the
size effect and its temperature variation in the infinitely dilute alloy is presented. The volume-dependent forces are
treated by means of a term describing the elastic energy associated with the solute-solvent volume misfit, whereas

the temperature-dependent potential of Dagens et al. is used to calculate the pairwise interaction between the
solvent ions and the solute ion. Good agreement with the experimental data is obtained for the size effect in both
A1Mg and A1Ca. The calculated values of BP(Mg)/C, , C, being the solute concentration, and P, (Mg} fall between
the measured values in the two A1Mg alloys studied. The calculation of clP(Ca)/C, and P, (Ca) is not possible due to
a lack of elastic-constants data for pure, metallic calcium. Inasmuch as, in the case of Mg, solute-solute interactions
are apparent in the measured values of the size elfect, dP/C, . and P„even at C,. (Mg)-0.2 at. %, extreme care must

be exercised when comparing experimental data for dilute alloys with calculations of infinitely dilute alloy
properties.

I. INTRODUCTION

The change in volume 0; accompanying the in-
sertion of a substitutional impurity or vacancy in
a metallic host crystal of atomic volume 0 defines
the physically measurable quantity commonly re-
ferred to as the size effect or fractional defect
formation volume 0,/Q. Although calculations of
the vacancy size effect are numerous, ' calcula-
tions of its temperature variation, and hence of the
change in thermal expansion AP„of the host metal
on alloying with vacancies, are indeed less abun-
dant. 2 4 When 4P, is much larger than expected, 5'6

or.equivalently, when the intrinsic coefficient of
thermal expansion P„of the vacancy is much
greater than the coefficient of thermal expansion
Pof the host, a simplified explanation of Ar-
rhenius-plot curvature' in self-diffusion experi-
ments can be invoked. In spite of this interesting
relation between the phenomena of thermal expan-

sion and atomic transport, measurements of &P„
are relatively rare and complicated. s "

The experimental and theoretical state of affairs
for the size effect in dilute alloys, as conven-
tionally defined, is entirely different. Even though
there is a relatively larger number of measure-
ments'~ of this quantity, there is, to date, no
comprehensive theory that permits its calculation
from first principles, although a number of elas-
tici 5 and elastic-atomjci6-is models have been
proposed.

With regard to the experimental situation, al-
though there are many good data for &P due to the
addition of magnetic impurities to pure metals, 20'2'

there are very few precise measurements of b. P in
dilute, nonmagnetic alloys. The experimental
problem evidently resides in the fact that for a
dilute alloy (solute concentration -I at. %}, &P/P
«1. For example, Axon and Burne-Rothery~2
found, by means of x-ray measurements on an
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AlLi alloy, that &P & 0, whereas Zhmudskiy's~~
data for the same alloy imply that &P & 0, even
though high-purity aluminum was used in both ex-
periments. In another example, although Bailey
et af. ~4 measured P and P+ 4P of Pd and Pd-4 at. %%uo

Ag, respectively, to a precision of -1.5%, b P can
be determined to no better than about 60%. Spe-
cifically, it is found at 273 K that P= (11.5+ 0,17)
x10 8 K. ', p+ap=(11.9+0.17)x10 ' K ', and
thus &p= (0.4+0.24) x 10 8 K '. Similarly, Hume-
Rothery and Boultbee's~~ data on Al-2. 36 at. % Mg,
A1-1.70 at. % Zn and A1-1.62 at. % Cu alloys
yield the following values of &p: &p(A1Mg) = (1.2
z 0.9) x10 ' K ', hp(A1Zn) = (1.8~ 0.9) x 10 ' K ',
and &p(AlCu) = (0.6+0.9) x 10 ~ K '.

One of the rare situations in which alloy thermal-
expansion data allow a determination of sP to within
5-10% involves a series of 'experiments on dilute
AlMg alloys performed by Beaman et al. ~e From
their high- temperature measurements of the tem-
perature variation of the length and lattice pa-
rameter of the alloy, b P can be deduced to the
aforementioned precision.

Given this general experimental situation, it is
not too surprising that even fewer data and theories
exist for the temperature variation of the size ef-
fect. In Eshelby's'4 approach, a spherical cavity
formed by the removal of an arbitrary number of
solvent atoms is filled with a sphere consisting of
the same number of solute atoms. Mechanical
equilibrium and suitable boundary conditions de-
scribing the state of stress and strain at the
solute-solvent interface are used to obtain the size
effect as a function of the lattice parameter and
elastic constants of both media. It has been re-
cently pointed out27 that the temperature deriva-
tive of Eshelby's volume change can be used to
estimate &P, insofar as elastic theory is valid as
applied to short-range, atomic phenomena. Other
less rigorous elastic models, such as those of
Turner 3 and Hughes and Brittain, ' impose arbi-
trary, geometrical relations between the fractional
volume and fraction of cross-sectional area oc-
cupied by the solute. Although these models yield
values of 4P that are in limited agreement with ex-
perimental data, ~ it is obvious that they should be
treated with extreme caution.

Semiquantitative, elastic-atomic calculations ef
the size effect at 0 K have been performed by
Blandin and Dbplante~~'~~ and Visnov et al. for a
relatively. large number of alloy systems. Al-
though these studies yield interesting notions with
respect to the relation between electronic and
volume effects, they can not be easily exploited to
calculate the temperature dependence of the size
effect, namely, b P.

Using the Dagen ep al. ,
' pseudopotentials for

Li and Mg, Beauchamp et al. 30 derived concentra-
tion-dependent interionic potentials which they
subsequently used to calculate the elastic constants
of LiMg alloys at 0 K. As the interionic solute-
solvent potential used is electronic-density and
hence temperature dependent, it would appear that
such a potential could be used to calculate the tem-
perature dependence of another alloy property,
such as the size effect.

In the present work we present the details of a
series of thermal-expansion measurements on
dilute AlMg and AlCa alloys for which the readily
available interionic potentials of the constituents
allow a model calculation of & P as well. En addi-
tion, since Mg and Ca are both divalent, this choice
of solute atoms presents the possibility of experi-
mentally confirming the importance of the solute-
solvent valence difference'6' ' in determining the
changes in the properties of the host lattice in-
duced by the solute.

Finally, the work described in this paper was
undertaken to see whether at temperatures com-
parable to or less than the Debye temperature e~
of the solvent, the solute defect structure is as an-
harmonic as that of the thermally activated vacancy
at high temperature or that of irradiation-pro-
duced defect structures" at low temperature.

II. THEORY

0; consists of basically two contributions. First
of all, because of the difference between the
atomic volumes 0 and A~ of the host and solute
atoms, respectively, energy is required to equal-
ize these volumes. ~ 3 Thus, we imagine the
formation of the infinitely dilute alloy in the fol-
lowing way. Q~ is isothermally expanded or com-
pressed to the final volume 0 by means of a hydro-
static pressure P given by

At T=O K,

(8E~I)
E, 3P 3

(3)

where E~ is the formation energy of the infinitely
dilute alloy. Even for T v0 K, Eq. (3) is valid to
a very good approximation~4 (-10 ~). Using Eqs.

&~j'
where B~ is just the isothermal bulk modulus of
the solute crystal. This pressure is nothing more
than the rate of change, with respect to volume, of
the elastic formation energy E& required to ac-
commodate the misfit, i.e. ,
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(2) and (3) to evaluate the elastic contribution A«
to 0;, we obtain

J=3

(8)

& 8P & &8P &r( 8fl r

Q() ——A(BB /8) 1n(Q~/0) . (4)

The second contribution A, &
to the formation

volume A; arises from the interatomic force
changes that occur during the alloying process.
This contribution is suitably handled by the lattice
statics method34'35:

As real-space lattice sums in aluminum are known

to converge rather poorly, 29 the numerator as well
as the denominator of Eq. (8) present a formidable
calcula, tional problem. Fortunately, these sums
can be evaluated by means of a. modified Ewald
summation technique. 3 .Briefly, the technique is
based on dividing the crystal into two regions whose
frontier is defined by a particular shell (f =n) at
which the real potential 4 is very closely equal to
its Friedel asymptotic value 4», i.e. , the numera-
tor of Eq. (8) can be written as

+ PlJrJ +gg rJ
J=i

(9)

and where 8 is, of course, the bulk modulus of the
host, Here, nJ is the number of atoms in the Eth

shell, rJ is the distance behveen a host atom in the
lth sheQ and the substitutional impurity located at
the origin, and 4 (r, +u, ) is the first derivative of
the host-impurity interaction potential evaluated at
the relaxed position r, +u, (u, being the relaxation
displacement from the normal lattice site). The
interaction potential 4 is given by'8

where 4 is the interionic potential of the host lat-
tice, and C~ (Ref. 36) is the interaction potential
between a solute and host atom in the alloy system.

The problem of calculating the formation volume
of the impurity, A& ——A«+A&&, thus reduces to one
of calculating the dipole moment G of the impurity
by means of suitable expressions for 4 and 4~, in-
asmuch as 0« is easily evaluated by recourse to
published experimental values of B~, 8, Qq, and
A.

As can be seen from Eq. (6), it is necessary to
evaluate the relaxation displacements u,' in order
to determine G. The present approach is to cal-
culate ui and u& by means of a Green's-function
method (see Appendix A) while using u, = 6/(4~
x (c«)r f)'~ for all the higher-order displace-
ments. As the host lattice in the present case is
aluminum, the isotropic elastic expression cited
above is adequate, especially when the Voigt-
averaged3~ value of c&& is used. Separating Eq. (6)
into a sum over first and second neighbors and
another sum over all the rest, we obtain the fol-
lowing expression for G:

4„z(r) =A& cos (2k')/(2k') ~

+A~ sin(2k')/(2krr)4,

where %„~(r) is conveniently taken as the sum of
bvo sinusoidal terms and k~ is the Fermi wave
vector of the solvent lattice for the case of an
infinitely dilute alloy.

The second term on the right-hand side of Eq.
(9) can, in general, be decomposed into sums of
the form g,n,r, ~ exp(2ikrr, ) The .numerical
values of these sums are readily available. '
After Ai and Az are determined by matching 4»,
4„'~ and 4„"~to 4, 4', and 4" at a shell sufficiently
far from the origin, Eq. (10) is substituted in Eq.
(9). The two terms corresponding to P =+1, q= 1,
and P= —1, q=2 are then substituted in Eq. (8) in
order to evaluate G.

Thus, between Eqs. (4), (5), and (8), for a poten-
tial which takes into account the variation of elec-
tronic charge density with lattice parameter (or
equivalently temperature), the temperature de-
pendence of 0; can be determined.

III. EXPERIMENTAL TECHNIQUE

A. Physical basis of the measurement

For an isotropic material of volume Vo, the
volumetric coefficient of thermal expansion P is
determined by measuring the temperature depen-
dence of the specimen's length /0.

P Bn=31 '( o =V '(=")(N

where n is the linear coefficient of thermal expan-
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sion. If we now simultaneously measure the tem-
perature dependence of the length l of a specimen
containing an. impurity concentration and the
length l„of a pure host dummy, we obviously can
write

l dl (T) l dl~ (T)
l(T) dT l~(T) dT (12)

where 4a. is the change in the linear coefficient of
thermal expansion induced by the impurity concen-
tration. For an impurity concentration C; «1, it
is easily shown7 that

6P= C, (Q,/Q. ) (P., P) =.—C,d(Q, /.Q)/d .T,
where

(13)

, P8Q, y
Pg =Q, '/ 8T )~

(14)

P; is just the intrinsic coefficient of thermal expan-
sion of a single impurity and 4P=34~. Substi-
tuting Eq. (13) into Eq. (12) and integrating with
respect to temperature from T~ (lower end of the
temperature range) to T~ (upper end of the tem-
perature range), we obtain

In[I (Tc)/1 (T~)] —In[l~(T~)/f~(T~)]

= (C,/3)[Q, (Tc)/Q(T~) —Q, (Ti)/Q(Ti) J.

&I/l(T ) —bl /l (T )

= (C;/3)[ Q;(Tp)/Q(Tp) -Q (Tl)/Q(Ti)) (15)

where bl =l(T~) —l(T~) « l(T~) for both the speci-
men and the dummy. Using Eq. (11), the tempera-
ture-averaged value (P) of P in the interval T~
& T & T~ is given by

exp[(P) (Tc- Ti)] = Q(T~)/Q(Ti) . (16)

Substituting Eq. (16) in Eq. (15) yields

4I/I (T~) —&l~/l~ (Tl )
-'- (C;/3) Q; (Tc)/Q(T„)

x(1-exp[-(p;-p)(T„T~)] f. -
(17)

Thus, in order to determine (P,), we need to have
the values of P, C, , and Q( T) /Q( T)c, as well as
the measurements of &l and &l~. The size effect
Q,/Q is typically measured by means of x rays:
Q,/Q= (3/C, )(4a/ao)c;, where (&a/ao)c, is the
fractional change in the host lattice parameter ao
due to the impurity concen. tration C&. Thus, Eq.
(17) can be written as

~f/I (T,) ~f„/&,(T,)—
=—(Aa/ao)c. (1—exp[ —(P,. —P) (T~ T~)]].. (18)—

The choice of the experimental method of mea-

suring (P, —P) is obviously a sensitive function of
the order of magnitude of the quantity hl —4l~. In-
asmuch as b, l —hl~ =—I (T~)(Tc- T~)aP/3, the prob-
lem of estimating 4l —4l~ is equivalently that of
estimating b, P. The high-temperature measure-
ments (523 K ~ T ~ VV3 K) of Beaman et al. 28 on
dilute AlMg alloys yield & p/C, . ='2 x 10 ~ K, where-
as those of Afanas'yev &t al." (293 K~ T & 723 K)
yield 4P/C;-10 4 K '. Furthermore, the excellent
low-temperature (4 K ~ T & 25 K) data of Khan and
Griffiths~~ for CuMn and AgMn alloys indicate b P/
C,. = 10 ' K '. If we take 4 p/C, . -3 x 10-' K ', b, /
—bl~-0. 5 p, m for C;-10 (atomic fraction), l(T~)
-5 cm, and T~ —T~-100 K. As can be seen in Ap-
pendix B, measuring the differential length change
&l —&l&=0.5 p, m, with an uncertainty of +3& 10 ',
results in an overall uncertainty in (P;) of about
10%. The only way to obtain this kind of precision
without recourse to complicated calibration pro-
cedures is to utilize an optical technique. A
specially designed Fabry- Perot differential inter-
ferometer was decided upon, as explained in the
following section.

g. Apparatus

1. Interferornetric cell

For l(T~)=—l~(T~)- 5cmand
I l(T~) —l~(T~)~ &5 pm,

E(T~) and l~(T~) can be considered equal in Eq. (18)
without introducing more than a 3/c error in (P, )
(see Appendix C). Under these conditions we can
write Eq. (18) as

[b,l (T) dd~ (T)]—/I (T~)

=—(«/& ),.(1 —exp[- (0; &&(T- T—i))) (»)
The quantity bl (T) —&l, (T) appearing above can be
directly measured by attaching optical surfaces to
both the specimen and dummy in such a way that
the displacement of the fringe pattern resulting
from the incidence of monochromatic light on the
optical surfaces is proportional to the quantity
b I (T) —&l~(T). Specifically, the essential aspects
of the specimen-dummy optical-surfaces con-
figuration are indicated in Fig. 1. The surface S,
of the upper optical quartz disk partially transmits
the normally incident He-Ne laser beam (X =6328
A) that is subsequently almost entirely reflected by
the surface Sz of the lower quartz disk. Under
these conditions it is easily shown40 that the optical
wedge formed by S, and S2 gives rise to a linear
fringe pattern described by the relation e„=(2n
+1)X/4. a is the wavelength of the incident light
and n is a whole number defining the particular
dark fringe found at those points for which the
separation of S, and S~ is equal to e„. %hen the
surface S& is translated parallel to itself by a
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FIG. 1. Configuration of the specimen, dummy, opti-
cal elements, and experimental chamber. A —flange,
B—optical port, C—stainless-steel tube, D—support-
ing columns, E—electrical feed-through, F—electric
main heater, G—indium seal, H —quartz optical inter-
ference wedges, K—aluminum alloy specimen, L—alum-
inum dummy, M—small electric heater, N —aluminum
supporting disk.

E that 4T» ——50 mK introduces an uncertainty of
about 10'%%up in (P,.) for a, dummy-specimen tempera-
ture excursion of -100 K. In fact, as verified by
measurements with a differential thermocouple,
4TsD never exceeded 25 mK.

As shown in Fig. 2, the specimen and dummy
are supported by an optically flat aluminum disk
situated at the bottom of the inner chamber. A

small electric heater, mounted on the axis of this
disk and activated momentarily after each run,
provides a means of correlating the sign of ~P
with the fringe- system displacement.

The temperature was controlled and measured by
means of detectors in contact with the dummy. A

Thor Cryogenics Mark-II temperature controller
permitted fluctuations of no greater than 10 mK
about each set point. Electrical communication be-
tween the optical c'ell and external instruments was
effected Qy means of a vacuum electrical feed-
through seal assembly located just below the sup-
porting disk.

As can be seen in Fig. 2, the inner part of the
specimen chamber, which houses the optical cell,
is surrounded by a concentric, coverlike struc-
tural element that contains the optical port and the
main electrical heating element. The excellent con-
tact between the external surface of the inner cham-
ber and the internal surface of the outer envelope
makes possible the creation of a vacuum seal with
an indium 0 ring located at the internal corner of
the lower flange.

distance ~S, each fringe translates parallel to
itself by a corresponding distance &II= (2i/X)&S,
where i is the interfringe distance. Two remarks
are in order. First, aS can be set equal to Ll(T)
—n.l~(T), provided that the average separation be-
tween S& and S& is no greater than about 50 p.m. In
this case, the thermal expansion associated with
this thickness of quartz makes &S equal to b,l (T)
—hl~(T) to within better than 1'%%uo (see Appendix D).
Second, as b, S= (X/2i)AH, the precision with which
EU(T) —n, l~(T) is measured obviously depends on the
precision with which i and 4H are in turn mea-
sured. This evidently necessitates fringes of
small half-width with respect to i. Ref lectivities of
nearly 100% and 90% of S, and S&, respectively, re-
sult in a hal. f-width to interfringe ratio of -10
This allows a precision of -10 in the measure-
ment of the fringe-system displacement.

As can be seen from Fig. 1, the light tubular
specimen is concentrically surrounded by a rela-
tively massive dummy. This geometry tends to
minimize the variation in the difference between
the temperature of the dummy and specimen, &T»,
in the range TI &T c T~. It is shown in Appendix

A C 0 E

FIG. 2. Block diagram of the optical circuit and fringe
recording system. A —laser, B—prism, C—telescope,
D—microscope, E—TV camera, F—optical wedges,
G—video tape recorder, H —TV screen.

2. Fringe acquisition and counting system

As schematically shown in Fig. 2, a highly re-
flecting right-angle prism guides the initially hori-
zontal laser beam to the optical cell located about
a meter below the supporting table. After producing-
the interference fringes in the optical wedge, the
beam is redeviated by the same right-angle prism
so that its final orientation is horizontal. The
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FIG. 4. Al-A/„vs T for Al-0. 064 at. % Ca.

FIG. 3. Mechanical assembly. A—supporting slab,
8—optical port, C—vacuum, D—antivibration pads,
E—upper surface of glove box, F—soft airtight coupling,
G—stainless-steel tube, 8—flange, J—indium seal,
K—inner chamber, L—outer envelope.

image of the interference fringes is then relayed
by a telescope to a microscope whose optical out-
put can then be viewed in a, variety of ways.

It is evident that a basic factor in measuring the
displacement of the fringe system is the knowledge
of the number of times that the fringe system
periodically assumes its initial position during a
run. Suffice it to say that this ambiguity in the
fringe-system position can be removed in a num-
ber of ways. 4'4~ In the present experiment we use
the novel technique of recording the fringes on
videotape by means of a closed-circuit television
camera that views the optical output of the micro-
scope. Since a typical run lasts about two weeks,
the position of the fringe system is recorded in
slow motion so that playback at normal speed takes
no more than about 10 hours. The fringe-system
image is simultaneously displayed on a television
screen so that the progress of each run can be
easily monitored.

3. Nechanical assembly

Figure 3 indicates that the experimental chamber
is attached to a stainless steel connecting tube
which is in turn anchored to a stainless steel slab

that supports the optical system (laser, prism,
telescope, microscope, and television camera).
The experimental chamber consists of two parts:
an inner copper chamber housing the optical cell
and an outer stainless steel chamber that is im-
mersed in liquid nitrogen. The space between
these two chambers is evacuated so that the tem-
perature of the specimen can be controlled with
relatively small amounts of electrical energy
(-50 W),

It can be seen in Fig. 3 that the supporting slab
is mounted on the upper surface of a rather large
glove box (volume -3 m3). The antivibration pads
that couple the massive supporting slab to the
glove box prevent irreversible changes in optical-
cell geometry as well as reversible oscillations
that can degrade the quality of the fringe-system
image.

The glove box is also extremely useful in pro-
viding a dry atmosphere that prevents the forma-
tion of ice buildups that would mechanically couple
the liquid nitrogen dewar to the stainless steel
connecting tube, and hence to the optical cell.

C. Experimental procedure

1. Specimen preparation

The specimens and dummy were machined from
bar stock furnished by' Pechiney, France. The
99.99%-pure aluminum was used for the dummy as
well as for the starting material for the A1Ca and
A1Mg alloys.

At every stage of the machining operations used
to fabricate the dummy and specimens, an elec-
tronic dial gauge having a sensitivity of 0.2 pm
was used to insure that the length of each specimen
neverdifferedbymorethan 5 pm fromthelengthof
the dummy. In addition, the optical planes defined
by the upper feet of a specimen-dummy pair were
always parallel to better than 5x 10 4 rad (f -1
mm).
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After machining, the specimens were chemically
cleaned before annealing in air at -300'C during
-15 h. The oxide that forms during the anneal
prevents the evaporative loss of Mg and Ca, both
of which are relatively volatile when dissolved in
Al.

2. Measurements

a. Differential thermal exPa. nsion Sp. ecimens
were mounted in the experimental chamber at room
temperature. After centering the dummy on the
supporting disk (see Fig. 1), a specially designed
jig was used to lower the specimen into the dummy
without deforming its extremely fragile feet. As
the jig permits a specimen-dummy concentricity
of -0.5 mm, unwanted specimen-dummy mechani-
cal contact was avoided.

After positioning the optical wedges on the speci-
men and dummy, a microscope slide containing a
grid of pyramidal, diamond indentations was care-
fully placed on the upper surface of the upper opti-
cal wedge in such a way as to intercept the laser
beam. The grid spacing was chosen so that the
image of at least one of the indentations always
appeared superimposed on the image of the fringes.
The only physically significant displacement of the
fringe system is one that is measured with respect
to an indentation: Any change in the thermal
stresses acting on the long tube connecting the
sample chamber to the supporting slab can change
the orientation of the laser beam with respect to
the optical wedges. This has the unwanted effect
of producing an apparent displacement of the fringe
system even when the distance between S, and Sz
does not necessarily change.

The inner and outer parts of the specimen cham-
ber were brought in contact by means of a preci-
sion jack in order to avoid excessive vibrations
that would dislodge the optical wedges from the
specimen and dummy. The entire system was then
pumped down to a pressure of -10 2 Torr before
filling the optical cell with helium. The good
thermal conductivity of helium helps to minimize
4T». The system was then submerged in liquid
nitrogen, slowly cooling to -80 K for 12-15 hours.

After adjusting the geometry of the various opti-
cal paths so that sharp images of the fringe system
and the fiducial markers are obtained on the tele-
vision screen, the temperature of the optical cell
was increased in a stepwise fashion from -80-180
K. The optical cell was periodically brought into
thermal equilibrium at -10-K int. ervals so that a
statistically significant number of fringe-system
positions could be measured in the temperature
range considered. A cooling" run Was always ef-
fected af ter each "heating" run so that deviations

IV. RESULTS

A. Experiment

1. Differential thermal-expansion measurements
and the determination of +/C, .

The measured values of 4l —&l~ as a function of
temperature are shown in Figs. 4, 5, 6, and 7 for

:0

I

-150.
T(oc)

l

-100

FIG. 5. Dl-Ql~ vs T for A1-0.090 at. % Ca.

from thermal equilibrium as well as mechanical
hysteresis could be evaluated. The fringe-system
position as well as the interf ringe distance were
measured only when temperature fluctuations
stayed within 10-mK limits during -2 h prior to
the measurements. Distance measurements were
made directly on the television screen with an
ordinary ruler to +1 mm. This uncertainty is
equivalent to an uncertainty of a4 && 10 p, m in the
actual distances, inasmuch as interfringe dis-
tances were typically - 80 mm, as seen on the
television screen employed.

After each run, the lengths of the dummy and
specimen were remeasured so that any possible
permanent deformations could be evaluated: dif-
ferences in length never exceeded 4 p, m.

b. X-ray lattice paraclete~ measurements. The
size effect, (3/C, )(ha/ao)o, , was determined by
means of the Laue back-reflected x rays that
sampled the well-annealed surfaces of the alloys
studied: A1Ca at calcium concentrations of 0.060
and 0.081 at. %, and AlMg at magnesium concen-
trations of 0.-115 and 1.065 at. %.

The 2 mm thick square specimens were mounted
in a Philips goniometer which allowed an uncer-
tainty of +10 4 A in the lattice-parameter measure-
ment. This gives rise to an uncertainty of between
3 and 70% in the size effect (see Appendix F).

Both x-ray and thermal-expansion specimens
were chemically analyzed at the end of each run so
that precise estimations of the alloy compositions
could be ascertained.
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TABLE I. Best-fit slopes of Al —Al& vs T.

Alloy

A].-0.060 at. % Ca
A1-0.081 at. % Ca
Al-0, 115 at. % Mg
A1-1.065 at. % Mg

Heating run

-(0.24+ O.O4) x 10-~
-(0.42 + 0.01)x 1p ~

+(0.07+0.014)x1p 7

+{1.20+0.022) x10 7

Cooling run

-(0.27+0.014) x10 ~

-(0.44+ O.O1) x 10-~

+(0.046+0.007) x 10 ~

+(1.20+0.016)x10 7

Both runs together

-(O.25+ O.O4) x1O '
-(0.44+0.02) x10 '
+(0.06+0.02) x10 7

+(1.18+0.013)x 10 7

As can be seen from Table III, the size effect
is relatively constant in the case of Ca, whereas
it increases significantly with increasing impurity
concentration in the case of Mg. As the experi-
mental uncertainty in the size effect is about a 25/0
for the AICa alloys, and + 75 jp and + 5'%%up for the
low- and high-concentration AlMg alloys, respe'c-
tively, an expression which linearizes Eq. (19) for
(P; —P) (T~- T~) «1 is entirely, justified. Taking

(p) =45.xIO ~ K ' between —190 and —90'C, the
linearized form of Eq. (19) yields the values of

(p;)/(p) indicated in Table II. In spite of the large
uncertainties (+40'%%uo) in the values of (PP/(P) for
all except the most concentrated AlMg alloy, we

see that the intrinsic coefficient of thermal ex-
pansion of both the Mg and Ca impurities are
-three times larger than that of the lattice. How-

ever, P, (Mg) ) 0, whereas P; (Ca) (0.
It should be noted that in the case of the Al-

0.115 at. /0 Mg alloy, the size-effect data of Poole
and Axon, being more precise than ours, were
used to calculate (P;)/(P).

B. Present calculation

The calculated variation of Q; (Mg)/Q with tem-
perature is shown in Fig. 8. Between 80 and 300
K, Q, (Mg)/Q varies linearly with temperature in

the range 0.146 & Q, (Mg)/Q & 0.152. From Eq.
(13), 4 p/C, . =d(Q, /Q)/dT. A be. st-fit straight line
of Q; (Mg)/Q vs T yields 4p/C;= (2.9+O.l) x 10 '
K-«

The contribution of Q;& (Mg)/Q to Q,. (Mg)/Q is
extremely small: —V.Ox 10 3 & Q,. & (Mg)/Q & 7.6
x10 between 80 and 300 K. Thus, in the case
of Mg substitutionally dissolved in Al, the change
in the interatomic force constants on alloying has
little effect on the formation volume of the defect:
About 95'%%uo of the formation volume has its origin
in the elastic-energy change E~«associated with the
misfit between Qz (Mg) and Q (Al). From Eg. (12),
together with the calculated values of Q; (Mg)/Q
vs T, we can calculate (P; (M'g)) and (P; (Mg))/
(P) in the temperature range 80 to 180 K. Spe-
cifically, (P, (Mg)) =2.4x10 4 K ' and (P,. (Mg))/
(P) =5.2.

For AICa, the calculated variation of Q;2 (Ca)/Q
with temperature is shown in Fig. 9. In contrast
to Mg, the temperature variation of only the atomic
contribution to the total formation volume can be
calculated due to the lack of experimental data for
Bc,(T) at all temperatures except T = 300 K."
Using the appropriate data for Ca and Al, Eg. (4)
yields [Q;& (Ca)/Q] 300 „=0.26. As reference to
Fig. 9 shows that 0.286 & Q, 2 (Ca)/Q & 0.277 be-
tween 80 and 300 K, it is obvious that in AlCa, the
elastic and atomic contributions to the defect
formation volume are about the same. The sum
of the two contributions at 300 K yields [ Q; (Ca)/
Q] apo x = 0,54,

It should be pointed out that the utilization of
isothermal elastic constants in all of the calculated
results is extremely important in aluminum al-
loys: for Al, the isothermal bulk-modulus tem-

TABLE G. Measured values of d, p/C&, (p&), and (p&)/(p).

Alloy

Al-0.060 at. % Ca
Al-0.081 at. % Ca,
Al-0.115 at. % Mg
Al-1.065 at. % Mg

&p/c]
(K «at. fraction «)

-(11.7 + 2.1)x 10 5

-(14.7+0.9) x10 5

+(1.8+p.6) x10 5

+ (3.33+ 0.12)x 1O
"5

(p)&

(K ')

-(1.3+0.6) x10 4

-(2.2+0.6) x10 4

+(2.7+ 1.2) x 10
+ (1.48+ 0.04) x 10"4

(p&&/(p&

-(2.9+ 1.5)
-(4.8+1.3)
+ (6.0+ 2.7)
+ (3.28 + 0.09)
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TABLE III. Concentration dependence of alloy lattice
parameters and size effects.

0.28

C]
(at. 'fo)

Al pure
Al-Ca 0.060 + 0.001
Al-Ca 0.081+0.001
Al-Mg 0.115+ 0.002
Al-Mg 1.065 + 0.021

4.0488 + 0.0001
4.0494 + 0.0001
4.0495+-0.0001
4.0490 + 0.0001
4.0535 + 0.0001

(3/&~)(«/~)c, .

0.75 + Q.20
0.65+ 0.15
0.13+ 0.09
0.36 + 0.02

G26

O
O

CV

cl 0.24

Q22
200 400 600

I

S00

perature derivatives are typically twice as large
as the isentropic ones. This factor of 2 is suffi-
cient to change the order of magnitude as well as
the sign of the impurity- intrinsic coefficient of
thermal expansion.

V. DISCUSSION OF RESULTS

A. Size effect at room temperature

The fact that the size effect, in the case of A1Ca,
is independent of the calcium concentration to
within the experimental precision, would tend to
indicate that for C,. (Ca) ~ 0.09 at. %%u~, ca-C a inter-
actions appear to play a minor role in determining
the lattice distortions induced by the presence of
the solute. On the other hand, there is a very
marked difference between the AlMg size effects
corresponding to the two concentrations studied.
It is clear that for C,. (Mg) =—1 at. /o, Mg-Mg in-
teractions contribute significantly to the solute-
induced lattice distortion. Evidently, due to the
lack of sufficient data, it is not possible to esti-
mate the importance of the solute-solute interac-
tion at C,. (Mg) =0.115 at. %.

To the knowledge of the authors, there has been
no previous measurement of the size effect in
dilute AlCa alloys. For AlMg the situation is en-
tirely different. Consider the size-effect data of

FIG. 9. Calculated temperature dependence of
0 (2(Cs.)/0.

previous experiments and those of the present
study that appear in Table IV. As the experimen-
tal uncertainties associated with the size effect
were not explicitly determined in the previous ex-
periments that are currently cited, the uncertain-
ties that appear in Table IV have been estimated
by the present authors, and are considered to be
reasonable within the context of the experimental
techniques utilized. We note that the present data
are in excellent agreement with'those of Poole and
Axon. 44 Although Rothery ane Boultbee25 measured
the size effect in A1Mg at C; (Mg) = 2.36 at. /p, the
better than order- of- magnitude agreement between
their value and ours for which C, (Mg) =1.065
at. '%%ug, is nevertheless encouraging. Heturning to
the data of Poole and Axon, we notice that between
the concentrations of 0.18 and 0.32 a,t. /p, the size-
effect jumps from 0.16+ 0.02 to 0.24+ 0.02, and
then increases slowly to 0.30+ 0.02 for C,. (Mg)
=1.93 at. %. This type of behavior is certainly
consistent with the presence of solute-solute in-
teractions for C, (Mg) &0.18 at. %. The present
experimental data confirm these tendencies.

TABLE IV. Summary of experimental data for the size effect in A1Mg alloys.

C]
(at. Pg) (3/C, )(a~t~3c,. Remarks

0.18
0.32
0.62
1.28
1.93

2.36

0.115+0.002
1.065+ 0.021

0.157+0.021
0.240+ 0.021
0.267+ Q.021
0.279+ 0.021
0.297+ 0.021

0.225+ 0.021

0.12 + 0.09
0.36 + 0.02

Measurements of Poole
and Axon (Ref. 44)
at 25 C.

Hume-Bothery and Boultbee
(Ref. 25). Measurements
at 25'C.

Present measurements
at 21'C.
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B. Comparison of the present data for +/C,.with those
of previous experiments

As has already been indicated, this comparison
is impossible for 4P (Ca)/C; due to a total lack of

, thermal-expansion data for AlCa alloys. On the
other hand, the x-ray data of Burne-Bothery and
Boultbee~5 for pure aluminum and an Al —2.36-at. /o

Mg alloy in the temperature range from —50 to
+25'C yield the following temperature-averaged
coefficients of thermal expansion: P=(66..9+O.P)
x 10 6 K i and p+ ap = (68.1 y 0.6) x 10 6 K i. Thus,
we extract from these data b p (Mg)/C, . = (51'36)
x 10 K '. From the present experimental data,
& p (Mg)/C, = (33.3 a 1.2) x 10 ' K ' between —190
and —90'C for C, (Mg) =1.065 at. %. Taking into
consideration the difference in alloy composition
as well as the temperature range of measurement,
the difference between the above values of n. p/C;
nevertheless lies within the limits of uncertainty
in each of the quantities.

The x-ray measurements of Beaman et al. 26 on
Al-l. ll-at. % Mg in the temperature range from
250 to 500 ' C yield & p/C; = (54 + 3) x 10 ~ K '.
This is well above the currently measured, low-
temperature value of &p/C, = (33.3+ 1.2) x 10 ' K '

obtained for C, (Mg) =1.065 at. %. The apparent
decrease of n, P/C, with decreasing temperature is
not too surprising, inasmuch as Q; as well as 0
become increasingly independent of temperature
as T -0, consistent with the third law of thermo-
dynamics.

With regard to previous, less precise measure-
ments on other dilute, substitutional alloys, the
currently measured values of 4p (AlMg)/C, .

= (3.33 a 0.12) x 10 5 K ' and a p (AICa)/C, = (13.2
s 0.2) x 10 K ' are in an order-of-magnitude
agreement with a p (pdAg)/C, . = (1 s 0.6) x 10 5 K '

of Bailey et al. ,
~4 and Ap (AlZn)/C;= (10+5)x 10 ~

K ' and ap (AlCu)/C;=(4+6) x10 ' K ' of Hume-
Rothery and Boultbee. 25

C. Comparison of currently measured values of P,.
with those of point defects

For both AlMg and A1Ca we note that the absolute
value of the ratio (PP/(P) is considerably greater
than unity. This result is consistent with the high-
temperature, vacancy-diffusion measurements in
zinc and cadmium'0 as well as the very recent
low-temperature measurements on radiation-pro-
duced point-defect structures in aluminum. " In
the high-pressure, self-diffusion experiments
referred to, the activated vacancy is found to have
a coefficient of thermal expansion some fifteen
times larger than that of the perfect lattice. In
the latter measurement on irradiated aluminum it
is found that the coefficient of thermal expansion

of the neutron-produced Frenkel defects (isolated
vacancies and small interstitial clusters) is 12
times larger than that of the pure metal. In light
of the present measurements it would appear that
bo'th lntrknsic defects, aDd lmpurltles are endowed
with intrinsic coefficients of thermal expansion
that are substantially larger than that of the
perfect lattice (~ P;,„~/P -4-15), even in the "re-
duced- temperature" range 0.2 & T/ea & 0.4.

It should be emphasized that P,. can be either
positive or negative. ID the present. experiment
p; (Mg) ) 0, whereas p; (Ca) & 0: magnesium in-
creases the aluminum- lattice anharmonicity,
whereas calcium decreases it. The fact that Mg
and Ca are both divalent would then tend to indi-
cate that the solute-solvent valence difference
plays a role less important than previously
thought'6'3' in determining solute-induced changes
in host-lattice properties. At least, thermal ex-
pansion would appear to be independent of valence
effects for the two aluminum alloys considered.
Complementary measurements are obviously re-
quired to validate the universality of these limited
results.

D., Present calculation

1. Size effect

The calculated value of Q; (Mg)/»t 300 K is
0.152, as compared to the x-ray measured values
of 0.129+0.092 and 0.360+ 0.018 at magnesium
concentrations of 0.115 and 1.065 at. %, respec-
tively. As has been stated earlier, the fait that
the measured defect volume varies with the defect
concentration indicates that Mg-Mg interactions
are important a,t C, (Mg) =1.065 at. %. As the
present calculation of Q, (Mg)/Q assumes that the
alloy is infinitely dilute, the calculated value
should logically be compared with the experimental
value measured at the smallest magnesium con-
centration (0.115 at. /0). At this concentration,
the agreement is good: [Q; (Mg)/Q]'" '=0.152,
whereas, [A; (Mg)/II] ' =0.130+0.09.

The calculated value of the size effect for cal-
cium at 300 K, [0; (Ca)/Q]»0 x

——0.54, is in good
agreement with the currently measured value of
0.70+ 0.18. In contrast to A1Mg, both the calcu-
lated and measured size effects in A1Ca corre-
spond to infinite dilution of t,he alloy.

2. Impurity-induced thermal expansion change, +/C, .

a. Cm'gently measured and calculated values.
Eg. (16) allows us to calculate b, P/C, by deter-
mining the slope of the calculated graph of Q,. (Mg)/
Q vs 7'. The slope of the graph of Fig. 8 yieMs-
hp/C, =2.9x10 ' K ', whereas Table II gives the
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measured values of (1.8+ 0.6) x 10 p K ' and (3.33
+0.12) x 10 ' K ' corresponding to magnesium
concentrations of 0.115 and 1.065 at. /o, respec-
tively. The currently calculated value of 4P/C;
is obviously in good agreement with the measured
values inasmuch as it falls between them.

For calcium, reference to Table II shows that
the measured values of &P/C; are —(11.7a 2.1)
x10 p K ' and —(14.7+0.9) x10 p K ' corre-
sponding to calcium concentrations of 0.060 and
0.081 at. /o, respectively. The arithmetic average
of these data yields b p/C;=- (13+2)x10 ' K '.
As & p/C; =d(Q~/Q)/dT. the absence of experi-
mentally measured temperature derivatives of the
elastic constants prohibits a calculation of 4P (Ca)/
C, However, we can use the experimentally mea-
sured value of &P/C; to roughly estimate the value
of (Bc,'dBc, /d T)r. From the experimental data
in the range from 80 to 190 K, d(Q;/Q)/dT =LP/
C, = —(13+2) x 10 p K '. We suppose that d(Q,./
A)dT maintains this value to 300 K. From the
best-fit parabola to Q/Q vs T (see Fig. 9), we
find that [d(A;p/Q)/dT] „,„=-5.8x 10-' K '.
Thus, the 'elastic derivative" [d(Q,/Q)/dT] „,x=- (7+ 2) x 10 p K '. Using Eq. (4) and our cal-
culated room-temperature value of Q;&/A, we can
write

f [d(A, ,/A)/d T]/(A, ,/A)&„, „
= (Bc~dBo ~/dT)ppp x —(B~( dB&) /dT)ppp

where we have neglected the relatively small term
(Pc, —P„,)/InQc, /Q. The left-hand side of the
above equation is estimated to be —(13+4)x 10 p

K '. As (B„,'dB„, /dt)ppp „=—3.6x 10 4 K ', we
deduce (Bc~dBc,/dT)mp „-—(5+0.5) x 10 P K '.
Both the sign and order of magnitude of this quan-
tity are entirely reasonable and fall within the
range of values measured for a wide variety of
metals. 45

b. 1VIanifestation of a "Matthiessen" tyje rule in-
the~mal expansion. The fact that the calculated
graph of Q, (Mg)/Q vs T as well as the graph of
4l —4l~ vs T are both well described by straight
lines implies that in the temperature range of in-
terest, &P (Mg)/C; is independent of the tempera-
ture. This is strangely reminiscent of Mattheis-
sen's rule46 governing the change in electrical
resistivity of a host metal due to the addition of
an impurity. According to this rule, the resistivi-
ties contributed by two mechanisms add; that is,
the extra resistance contributed by defects is
very often observed to be independent of tempera-
ture. In other words, the electron-phonon inter-
action which gives rise to the lattice resistivity is
effectively decoupled from the electron-impurity
interaction defining the impurity-contributed

"extra" resistivity.
With regard to the dilatational properties of a

crystal, the anharmonic part of the interionic
potential gives rise to the crystal's thermal ex-
pansion as well as providing the source of the
phonon-phonon interaction. The change in thermal
expansion caused by an impurity may then be
viewed as a change in crystal anharmonicity
synonymous with the introduction of a phonon-im-
purity interaction that is independent of the phonon-

phonon interaction described by the pure-crystal
anharmonicity. Not only does the decoupling of
these sources of anharmonicity take place in the
dilute alloys present studied, but is equally ap-
parent in the recent, low-temperature data for
dilute CuAl alloys ' as well. Obviously, more re-
fined measurements on other dilute, nonmagnetic
alloys have to be made to establish the generality
of this result.

3. Impurity-intrinsic coefficient of thermal expansion, P,.

The calculated value of ( lI; (Mg)) =2.4x 10 K '

is in excellent agreement with the experimentally
measured values of (2.7+1.2) x 10 4 K ' and (1.48
a 0.04) x 10 K at magnesium concentrations of
0.115 and 1.065 at. %, respectively. Thus, in both
the experiment and calculation, (P; (Mg))/(P) -5.

In contrast to magnesium, (P; (Ca))/(P), as
currently measured, is negative and equal to
—(3.9+ 1.5) in the temperature range explored.
Again, because we lack the appropriate data for
calcium, we can nevertheless make the observation
that the fact that the atomic contribution to the de-
fect volume decreases with temperature, as can be.
seen from Fig. 9, is not inconsistent with P, (Ca) & 0.

VI. SUMMARY

The present interferometric, differential-length
and x- ray lattice-parameter measurements in

dilute AlMg and A1Ca alloys yield a temperature
variation of the size effect that corresponds to a
relatively important disparity between the coeffi-
cientof thermal expansion of the solute atom and
that of the bare solvent. Specifically, we find that
even for 0.2 & T/gs &0.4, P; (Mg)/P ~3 and P;
(Ca)/P=-4. The fact that P; (Mg) and P, (Ca), as
well as &P (Mg)/C; and &P (Ca)/C, , have opposite
signs indicates that solute- solvent valence effects
play a minor role in determining the solute-in-
duced change in the solvent's thermal expansion,
The complementary x-ray lattice-parameter mea-
surements show that the size effects in the two
alloys are considerably different as well, and
that in the case of Mg, solute-solute interactions



22 TEMPERATURE VARIATION OF THE SIZE EFFECT IN. . . 5625

are significant in determining the va.lues of p, ,
hP/C, . and Q;/Q, even at C, (Mg) -0.2 at. %.
Solute-solute interactions in AlCa were imper-
ceptible for C; (Ca) ~-0.1 at. %%uc.

A model calculation of the size effect and its
temperature variation in the infinitely dilute alloy
is presented. The volume-dependent forces are
handled by means of a term describing the elastic
energy associated with the solute-solvent volume
misfit, 2' 3 whereas the temperature-dependent
potential of Dagens et al. ~e is used to calculate the
pairwise interaction between the solvent ions and
the solute ion. Good agreement with the experi-
mental data is obtained for the size effect in both
A1Mg and A1Ca. The calculated values of &P (Mg)/
C; and P, (Mg) fall between the corresponding
values measured in the two AlMg alloys studied.
The calculation of & p (Ca)/C; and p; (Ca) is not
possible, due to a lack of elastic-constants data
for pure, metallic calcium. The fact that the
solute-solute interaction can be important at
-0.2-at. % solute concentration points out that ex-
treme care must be exercised when comparing
experimental data for "dilute" alloys with calcula-
tions of infinitely dilute alloy properties.

Finally, it would appear that impurity ions, like
Frenkel and Schottky defects, produce large
changes in crystal anharmonicity.
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APPENDIX A: CALCULATION OF FIRST-
AND SECOND-NEAREST-NEIGHBOR RELAXATION

DISPLACEMENTS

The force-constant matrix g(l) of the perfect
crystal is obtained from the first and second
derivatives of the pairwise Al ion-Al ion interac-
tion potential 4 evaluated at the equilibrium posi-
tions:

Q ~(I) =r ,r@r, ~[r, '4 '(r, ) —4 "(r, )] —5,~r, '4'(r, ) .

The static Green's function G(I) of the perfect
crystal is then obtained by taking the inverse
Fourier transformation of Q '(0) where p(k) is the
Fourier transformation of Q(l) and is calculated
for each of the allowed values (25000) of the wave
vector in the symmetry-reduced part (

—', ) of the
Brillouin zone for E spanning the first eight
nearest-neighbor shells. We assume that the act
of replacing an aluminum atom by an impurity is
felt only by the first- and second-nearest neigh-
bors of the impurity. The force-constant matrix
P*(l) of the imperfect crystal can then be written
as

where

The Green's function of the dilute alloy is then
given by

G*= (I —G5$) ~G,

where t" is the perfect-crystal Green's function.
The atomic, relaxation displacements g in the
perturbed region are evaluated by means of

& =G~F,

where

F = —V @i„,, I =1,2.
At T=140 K, the center of the explored tempera-
ture range, the first- and second-nearest-neigh-
bor displacements for Mg and Ca are found to be
u&/a=-1. 6x10 4, u2/a=- 5.3x 10 4, and u, /a
=7.8x10 ', u2/a= —4.2x10 ', respectively.

APPENDIX B: CONTRIBUTION
OF THE DIFFERENTIAL-LENGTH

AND LATTICE-PARAMETER UNCERTAINTIES TO hP,.

From Eq. (18), for (P, —P) (T~ T~) «1, we ob--
tain the following expression for 5 p, /p, :

5P,. 4 5(~I -~i ) &~a 5(P)
p,. 5 (Al —h. / ) 6a 4(p)

where we have taken as representative (1/C,.)(4a/
ao)c;-10 ', C;-10, ao-4 A, and 5a-10 4 A. We
have obviously dropped the relatively negligible
terms 6l/l, M T/AT, and 5ao/ao. In addition, we
have taken (P;) -5(P). As 5P/P - 5 x 10 2 for
5(b, l -b. l~) -3x10 2

p,m, and b, l —Al~-0. 5 p.m, Eq.
(B1) yields 5P, /P, -10%%uc.
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APPENDIX C: MAXIMUM ALLOWED DIFFERENCE e
BETWEEN THE SAMPLE AND DUMMY LENGTHS

We can obviously write

dilatation of the optical disks thus contributes a
relatively negligible uncertainty to P; of the order
of 10 '/0. 5=0.2%.

Z~ ——l +e.
From Eq. (CI) and to first order in e,

(C1)
APPENDIX E: MAXIMUM ALLOWED VARIATION

IN SAMPLE-DUMMY TEMPERATURE
DIFFERENCE, dZ~

(C2)

Using Eq. (C2) together with the definition of the
difference between the sample and dummy frac-
tional-length changes, we obtain

«/l —«~/lq ——b I/I —(«~/I —g«q/l~)

= (Af —hlq)/I + F«q/l~ . (C3)

Evidently, in the present context, 5(«/I —&l~/I„)
=eh, l~/I . Using this relation in Eq. (Bl) yields

5 P,'/P; = 0.8 (elf~/li)/[ (« Al~)/—I] . (C4)

APPENDIX D: UNCERTAINTY ASSOCIATED
WITH THE THERMAL EXPANSION OF THE QUARTZ

OPTICAL DISKS

In the temperature range where the experiments
are performed, the linear coefficient of thermal
expansion of quartz is a, =2x10 7 K '. This
means that when the temperature changes by 100
K, the separation S, between S, and Q, typically
about 50 pm, changes byAS, =S,n, (7' I' ) =50
&2&&10 '~100=10 p, . As &l —4l„= 0.5 p, mthe

Taking (P &
= 3 x 10 5 K ' in the temperature ~ange

defined by Tz, 80 K and——7'~=180 K, «/& =(P&(7'„
—Z'~)=3x 1.0 'x100=3x10 '. To a very good ap-
proximation, the quantity &l~/f~ can be replaced by
«/I in Eq. (C4). Taking «- «, =0.5 pm and e
=5 pm, Eq. (C4)yields5p, ./p, =-3%. Thus, the
left-hand side of Eq. (18) can be replaced by the
left-hand side of Eq. (19) with little error.

It is obvious that even when the sample and
dummy are identical in every respect, a varia-
tion &T» in their temperature difference in the
temperature range T~ & T( TU will cause an ap-
parent differential length change, 5(« —«~), given
by

5(AI —«g) =&0&«7'sn/3. (DI)

Due to this source of error, between Eqs. (Bl) and
(D1) we obtain, for 5I3,./P„

5P~/P; =o 85(&f —&4)/(« —&4)

= &P &«7'Sn/3 (« —&4) (D2)

For (48 &
=3 x 10 ' K-', 1 = 5 x 10' p, « —«,

=0.5 pm, and 5P, /P, =3', ATsn= 40 mK. In a—ll of
the runs performed, &T» never exceeded 25 mK.

APPENDIX F: UNCERTAINTY IN THE X-RAY
SIZE-EFFECT MEASUREMENTS

The lattice parameters are presently measured
to +10 4 A, whereas the solute concentrations are
known to within -1%. The fractional uncertainty in
the size effect is thus given by 5b,a/na. As can
be seen from Table III, for C; (Mg) = 0.115 at. %,
&a=4 0480-.4 0488 A=2x10-' A, so that 5«/
Aa=l x 10 4/2/2x 10 4=70%. On the other hand,
the most precise measurement of the size effect
occurs for C, (Mg) =1.065 at. %. In this case b.a
=4.0535-4.0488 A =47 X 10 4 g, and 5Aa/Aa
=1x10 4V2/47x10 4=3%. The uncertainties in
the size-effect measurements on the Alca alloys
studied fall between these extremes.
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