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Prediction of solid solubility in alloys
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A new empirical method for the analysis of solid solubility in alloys is proposed. The method is an extension of
previous work by Darken and Gurry and by Chelikowsky. Each chemical element is characterized by three
parameters: the atomic volume V, the electronegativity tl ', and the electron density at the boundary of bulk atomic
cells n„.Bib

'
and dn, (cf indicates the difference between solvent and solute} are combined into a unique parameter,

AH„the heat of formation of an equiatomic compound. This is done by using the semiempirical theory of Miedema
and co-workers. Then, the two parameters dH, and 8 Yare used to construct a two-dimensional map. In this map,
the chemical elements insoluble in a given host are neatly separated from the soluble ones. Even more, it seems that
contours of increasing degree of solubility can be drawn with a fair 1&gree of success.

I. INTRODUCTION: REVIEW OF THE PREDICTION
OF SOLID SOLUBILITY IN ALLOYS

The prediction of solid solubility in alloys has
attracted the interest of metallurgists and solid-
state physicists since the early 1930's. The first
significant contribution was made by Hume-Hoth-
ery, ' who proposed three empirical rules (or fac-
tors} to explain the formation of solid solutions:
(1) the atomic sizes of the solvent and solute must
not differ by more than 15%, (2) the electrochemi-
cal nature of the two elements must be similar,
and (3) a higher-valent metal is more soluble in a
lower-valent metal than vice versa. Only the first
rule is a quantitative rule, whereas the other two
rules only have a qualitative character. Scientific
basis for the two first rules was given by Friedel' and

Eshelby. ' Darken and Gurry4 were able to make
the secorid rule. quantitative by bringing into play
the concept of electronegativity, introduced by
Pauling. ' Darken and Gurry introduced a map
where the two coordinates are the electronega-
tivity and the atomic size. Each chemical ele-
ment is represented by a point on this map. Then
they found that an ellipse which is centered on the
solvent and has one axis of +15% of the solvent's
size and another axis of +0.4 of an electronegativity
unit of the solvent's electronegativity value would

encompass most of the solutes which show sig-
nificant solubility in the solvent. An extensive
analysis performed by Waber and co-workers'
showed that the Darken-Gurry method predicts
extensive solid solutions with a 60% confidence
level, limited solid solutions with an 82% con-
fidence level, and an overall reliability of 80%.
By comparison, the confidence levels of the sim-
ple size rule of Burne-Rothery are 50.1, 90.3, and

67. 6%, respectively. The Darken-Gurry method
has been used by several authors. ' Gschneidner'
has extended the Darken-Gurry method to slightly
improve the reliability of the predictions. 'The

main new feature in the set of rules formulated
by Gschneidner has been the introduction of the
crystal structure of the pure components as a new
parameter and the selective use of the Hume-
Rothery method for the cases where the crystal-
structure factor is favorable.

A graphical procedure similar to the Darken-
Gurry plots has recently been introduced by Cheli-
kowsky. ' This author used, nevertheless, a dif-
ferent pair of coordinates: the electron density
at the boundary of bulk atomic cells, n~, and the
electronegativity Q*. These two coordinates are
the fundamental parameters in a successful semi-
empirical theory of heats of alloy formation de-
veloped by Miedema and co-workers. ' " The re-
lation of the Miedema coordinates to more funda-
mental descriptions of the alloy-formation prob-
lem has been attempted by several authors. ""
In this new kind of p1ot, Chelikowsky was able to
draw an ellipse containing most of the metals which
are soluble in a given host metal. The position
of the host metal lies inside the ellipse, although
the precise location varies from host to host.
Chelikowsky analyzed the solid solubility for the
case of divalent hosts and he demonstrated that the
use of the Miedema coordinates in the graphical
method gives more accurate predictions than the
use of the Darken-Gurry coordinates. A few cases
are found which disagree with Chelikowsky's pre-
diction. We mention, for instance, the case of
silicon in beryllium. Si is predicted to be soluble,
a fact which disagrees with the experimental in-
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formation. Other examples are plutonium and
scandium, as solutes in magnesium. Pu and Sc
are both predicted to be insoluble in Mg, whereas
the experimental result is the opposite. A few
other exceptions are found in the figures published
by Chelikowsky. ' These exceptions suggest that
Chelikowsky's method is still susceptible to some
improvement. An interesting point to note is that
the Darken-Gurry plot, although less successful
than Chelikowsky's plot, is still a good first ap-
proximation for the prediction of solid solubil-
ities. Both graphical methods have a coordinate
in common —the electronegativity (the fact that
Pauling's scale' is normally used in the Darken-
Gurry plots, whereas the Miedema scale used in
Chelikowsky's plot is of minor importance: both
scales show a good correlation ). The second
coordinate is different: atomic size in one case
and electron cell-boundary density in the other
case. It seems to us that a scheme containing all
three coordinates should be more successful. "
We show in the next section how the three coor-
dinates cari be handled and combined in order to
arrive at a two-dimensional graphical representa-
tion in the spirit of the work mentioned above.
We first show that the predictions of solid solu-
bility are improved. The relative importance of
the three coordinates is clearly displayed. Fi-
nally, the considerable success of the schemes of
Darken and Gurry and of Chelikowsky is explained
by the fact that atomic size and electron cell-
boundary density are strongly correlated, al-
though the correlation is not complete. This ac-
counts for the exceptions observed in the Darken-
Gurry and Chelikowsky plots.

H. PARAMETRIC ANALYSIS OF SOLID SOLUBILITY

Figures 1 and 2 show a Chelikowsky plot for the
solubility in iron and cobalt, respectively. The
two coordinates characteristic of eachmetal, elec-
tronegativity (p ~) and ele ctron cell-boundary density
(n, ), have beentakenfrom the tabulation of Miedema
et al. ' The solutes have been divided into
four classes: (a) solutes with a measured solu-
bility higher than 15 at. %, (b} those for which the
solubility is between 5 and 15 at. %, (c) those for
which the solubility is between 1 and 5 at. %, and
(d) solutes with a solubility smaller than 1 at. %.
The solubility refers to the maximum solid solu-
bility (at a temperature no higher than the melt-
ing temperature of the pure solute; we have found
this restriction convenient to eliminate some ex-
ceptions). The experimental information on the
solubility was taken from Refs. 20 and 21. Both
figures show that an ellipse can be drawn which
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FIG 1 Chel&owsky s plot for the analyses of solid
solubility in Fe. The two coordinates of each element
are the electronegativity Q* and the electron-d 't

C/3
ron-, ense yparameter I), of the Miedema theory of heats of for-

mation. An ellipse is drawn which separates soluble
from insoluble elements.

contains most of the highly soluble elements and
leaves the insoluble elements outside. Some
exceptions are also noted. For instance, B, Ag,'
and U are insoluble in Fe. In contrast, these
three elements are found inside or very near to
the ellipse of high solubility. Ti is at a distance
from the ellipse which is greater than the distance
of Pu, U, Ta, or Nb, despite the fact that Ti is
more soluble than Pu, U, Ta, or Nb. Some ex-
ceptions are also found in the graph for Co (Fig.
2). B, Ag, and U are again inside the ellipse of
high solubility, despite the fact that these three
elements are insoluble in Co. Two of the excep-
tions in Fig. 2, lithium and calcium, deserve a
separate comment. The only data on the solu-
bility of these two elements are very old" and by
the same author in both cases. These two ele-
ments deviate so strongly from the expected solu-
bility behavior (see also Fig. 4) that we have
strong doubts about the reliability of the experi-
mental results. A new experimental determina-
tion of the solubility of I i and Ca in Co would be
welcomed. The main observation from Figs 1 and
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2 is that there is no way to draw a sharp separa-
tion contour between the insoluble elements (for
example, those with a solubility smaller than 1%}
and the soluble ones. If one remembers that the
Hume-Rothery size rule (as well as the Darken-
Gurry method} is rather successful in predicting
insolubility, we can try to improve the predic-
tions of Figs. 1 and 2 by introducing a third coor-
dinate, the atomic size. We characterize the
atomic size by the radius R~ of the Wigner-Seitz
sphere of the metal (radius of a sphere with a
volume equal to the volume per atom in the pure
metal). We then have three coordinates —ltd~,

n~, and R~. In order to conserve the pictorial
simplicity of a two-dimensional plot we have com-
bined Q* and n (more precisely, the differences
&Q* and &n between the two alloy partners) into
a single coordinate, the heat of formation &H, of
a fictitious 50/50 intermetallic compound formed
by the two partners. To calculate &B, we use
the semiempirical formula proposed by Mie-
dema9 ~~ ~
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FIG. 2. Same as Fig. 1 although the host is Co.

~H, = -f (&y+)2+ q(~n', ")'-ft .
In this equation, P and Q are universal constants,
whereas R is another constant which is different
from zero only when one of the partners is a poly-

Ba
0(f)

~ W

~0~
f—(f) ~

(n ~ o
w E

Z ~
U

Llj 3

0
Sr

Ce Ca
La
0

0
oPb

oLI

Dy Tb
YGd Sm

Tm& Sb~ S InBI
& "o

Z~ H f Sco
U PdRe Cdo NbgaoPu Zp Moo

TI~ ge . Au

A4 Ta W
Pt
. .t~~OS

Ir V
NI ~CO

Be Ru

B

O 0
Mg Hg

0Agc

Cu

I

+lO

~ SOLUBILITY & I5 /o

I 5'/o & SOLUBILITY & 5 /o

S I:I 5 &o & SOLUBIL1TY & I '/u

I /o & SOLU BI LIT Y

HOST

0
Na

I

+20

0
K

+H ( F'eX compound ) («&}~g «)
-S it radius of the solute X versus the heat of formation of the compo eX.

lines separate the insoluble elements from the rest. The broken line encloses the highly soluble (solubility larger than

15 at. %) elements.
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valent metal with p electrons. ' " Then we plotted
a two-dimensional map. Each alloy FeX (or CoX)
is represented by a point on this map. The first
coordinate of the point is ~H», » (or ~Hc,»), where-
as the second coordinate is R~ (X), the Wigner-
Seitz radius of the pure solute. In a few nonmetal
cases (Si, Ge, As, Sb, Bi) the Wigner-Seitz radius
is not the one corresponding to the stable pure-
solute phase, but the radius of a more convenient
metallic phase, as proposed by Miedema. " For
some of the alloys treated here, ~HF,» (or ~Hc,»)
has been tabulated by Miedema. ""Figure 3
shows that it is possible to separate sharply the
insoluble elements (solubility smaller than1%)
from the soluble ones. A continuous line has been
drawn to show this. The only exceptions are Sn
and Sb. The experimental data on these two al-
loys are very old. Furthermore, the solubility
has not been measured at temperatures below the
melting point of Sn. By extrapolation from high-
temperature solubilities, we have assumed that
the solubility of Sn is between 1% and 5%. As we
mentioned before, we restricted the temperatures
to values no higher than the melting-point tem-
perature of the solute. If we relax this restric-
tion, then a few deviations appear in Fig. 3 (also
in Fig. 1). Sb and Ga become filled circles Al-.
though the number of exceptions is in both cases

very small, we think that the trends in solid solu-
bility are better displayed by 'imposing the above-
mentioned temperature restriction. In Fig. 4, in
which the host metal is Co, a line has also been
drawn separating the soluble from the insoluble
elements. The only exceptions are Sb, I,i, and

Ca, but as we stated above, we do not trust the
experimental information on these three alloys
(the data on Sb are also due to the same author").
The improvement in the separation of soluble and
insoluble elements which Figs. 3 and 4 show with
respect to Figs. 1 and 2 can be ascribed to the
introduction of the atomic-size coordinate. It also
happens that one can approximately draw contours
corresponding to increasing degrees of solubility
more accurately than in Figs. 1 and 2. To show
this we have drawn the broken lines of Figs. 3
and 4. These broken lines are contours contain-
ing the elements with high solid solubility (higher
than 15%). Only one exception is found (Zn, in

Fig. 4). Figures 3 and 4 show that the main fac-
tor determining insolubility is the size differ-
ence. Alloys with high &B~ show solid insolu-
bility, independently of the sign and the size of
&8,.24 More work is needed to define precisely
the topology of these contours. The two hosts treat-
ed in this paper are rather peculiar, because both
have a small Wigner-Seitz radius. Hosts with an
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information) is not parallel to the 4H, axis, but
has a nonzero slope. This means, as is well
known, that the size difference is not the only fac-
tor determining the precise boundary between
soluble and insoluble elements. The graphs show
that for solutes near the insolubility boundary
the size-difference requirement becomes more
relaxed as &B changes from positive to negative
values. This is understandable since the size
difference &V contributes to the heat of solution
with a positive energy":

&H„„~(&V)'. .(2)

The rationalization of the results of Figs. 3 and
4 can be obtained by writing the heat of solution
as a sum of three terms:

I

0.0 I

I

0.02
1

0.03
nb(non-d ) e/o. u,

3

intermediate volume will help in this task. That
work is now in progress. It appears from Figs.
3 and 4 that the line separating the insoluble from
the soluble elements (the upper line at least, be-
cause it is the only one for which there is enough

FIG. 5. Inverse of the atomic volume versus the non-d

part of the electron density at the boundary of bulk

atomic cells.

In order to have a non-negligible solid solubility,
+8

~
should not be too positive; this al lows the

entropy term -T4S,
„

to make the free energy
(&H„,—T&,„)negative. . If &V is too big, then
the third term in Eq. (3) is the leading one and it
makes the solute insoluble, irrespective of the
values of &Q* and bn~ '. If &V is.relatively
small, then all three terms in Eq. (3) are im-
portant. Then &H„,will not be too positive only
if the sum of the first two terms is not too posi-
tive. This explains why, for a given &R~, sol-
utes with a highly positive &0, show lower solu-
bilities than the other elements.
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m. COMMENTS

Figures 3 and 4 show that the three-parameter
scheme proposed in this paper is more success-
ful than previous two-parameter schemes for pre-
dictions of solid solubility in alloys, while at the
same time it is very simple to use. As mentioned
above, both the Darken-Gurry and Chelikowsky
schemes give good first approximations to the
problem. This is because atomic size and elec-
tron cell-boundary density show a strong correla-
tion. We analyze this correlation in detail in
Figs. 5 and 6. Figure 5 is a plot of the inverse
of the atomic volume (V= —', vBwsz) versus the non-d
part of the electron cell-boundary density. The
non-d part of n, was calculated by Moruzzi and
Williams" by using the self-consistent augmented
spherical wave method. " A good universal linear
relation is found between V ' and n~ (non-d), fol-
lowed by both transition and nontransition metals.
The fact that in nontransition metals n, (non-d) is
rather close to the total n, shows the equivalence
between the use of n, or V for simple metals.
Figure 6 shows n, (non-d) versus n, ." It is found

that a linear relation exists within each class of
metals (nontransition metals, noble metals, M
metals, 4d metals), but the slope of the line is
different in the four different classes of metals.
In other words, combining the results of Figs.
5 and 6, we conclude that n, and V are equivalerit
parameters within a given class of metals, but
only within a given class.

Stronger correlations exist for particular clas-
ses of metals. In fact, the solid solubility of
nontransition homovalent alloys can be simply
explained in terms of a unique parameter for
each metal. "" This is true because, for simple
metals with a common valence, P*, n„and V
are equivalent parameters.
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