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Calculations of the pair-creation energy e, the Fano factor F, and the quantum yield for semiconductors are done
for the assumptions that in each scattering event all possible sets of product particles are equally probable, that the
energy bands are those of free particles separated by a band gap E, , and that there is a single phonon energy Ace, .
A new method of calculating these quantities is advanced. In it a pair-number probability distribution p„(E), the
probability that a particle with energy E ultimately creates n pairs, is calculated recursively with increasing E. The
first and second moments of the p„(E)distribution yield E, E, and the quantum yield as functions of ilco „E,, and a
parameter A, proportional to the ratio of the matrix elements for electron scattering by phonon emission and by
ionization. Vfe find that a single value ofA, which fits the e observed for Si, gives values for these quantities in good
accord with experiments for many semiconductors. The calculated e is found insensitive in many semiconductors to
electron-energy loss to plasmons and to differences in the threshold energy for ionization representing real band-
structure features. The assumption that all possible sets of product particles are equally probable in each scattering
event leads to ultimate nonuniform population of the states with energies below the threshold for ionization, in
contrast to the uniform population assumed in some earlier approaches. Results of other existing approaches in
which the final-state distribution is calculated, an alternate method, were duplicated using this new method. A
simple paradigm is used to illustrate these methods and assumptions.

I. INTRODUCTION

A. Concept

When a particle of high kinetic energy traverses
a semiconductor it scatters by ionization and by
phonon emission, producing a cascade of hole-elec-
tron pairs and phonons. The number of pairs can
be measured and the average energy & required to
create a pair obtained. Because of phonon emis-
sion, e exceeds the band gap E~ of the semiconduc-
tor. In this paper, the calculation of c is reviewed
and a new calculation is presented.

The pair-creation energy e is important in the
efficiency of cathode-ray phosphors" where each
emitted photon requires at least one hole-electron
pair. It is also important for gamma-ray detec-
tors, where e links the charge measured in the de-
tector to the energy of the incident gamma ray."
It has also been applied to the understanding of the
secondary-electron-emission ratio. "

Experimental values of ~ for Si and Ge were ob-
tained in 1953 by McKay and McAfee. ' Lappe' ob-
served somewhat later that e is approximately 3E~
in several semiconductors,

Two approaches have been introduced to calculate
The first, called here the "assumption of uni-

form population, " was set forth by Shockley. ' In it,
it is assumed that a threshold energy E,„exists be-
low which no pairs can be created and that for
large incident-particle energy all states below E h
are ultimately populated unifor mly. The second,
called here the "scattering rate assumption, " was
used by van Roosbroeck, "Antoncik, "and Drum-
mond and Moll. " In it, each scattering event cre-
ates all possible sets of three product particles

with equal probability. The scattering-rate as-
sumption allows calculation of the populations of
the states below E~, and nonuniform populations
are found. Because the subthreshold populations
should be calculated from the individual scattering
events, and because the scattering-rate assumption
gives nonunifrom subthreshold populations, we

adopt here the scattering-rate assumption.
Nevertheless, the assumption of uniform popula-

tion has been popular because the expression for e

is easily derived and is of simple form. The aver-
age energy EE lost to the lattice by a final particle
is the average energy of the subthreshold states.
In the free-particle approximation this average en-
ergy is Ea =3Eis/5. The energy required to create
a hole-electron pair is then twice this loss plus the
band gap: e = +Eth+ E~. Klein" observed that when

E~ is chosen as 3Es/2, e = 2.8E„close to the ob-
served"'" correlation found in many semiconduc-
tors, c =2.73E~+ E„, where E„-0.5 eV. This
choice of E~ follows from conservation of both en-
ergy and momentum" during the scattering event.
Klein also states that impact ionization experi-
ments point to this value of Eras the "most Bp-
propriate. " The quantity E„ is ascribed to the
super threshold phonon losses.

In contrast, the scattering-rate assumption is
mathematically difficult to use. Van Roosbroeck'
used an analysis verified by a Monte Carlo calcu-
lation, in what he called "crazy carpentry, " and
was the first to obtain a nonuniform distribution of
the final states. Drummond and Moll" used the Si
band structure of Kane" to obtain e for Si without
adjustabj, e parameters. They also show a nonuni-
form final-state distribution. However, their e
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was not close to the measured value. Here we give
an improved derivation of e, use the free-particle
band structure, and obtain e as a function of the
band gap E~, the phonon energy k~„and a param-
eter A. , proportional to the ratio of the mean free
path for pair creation to that for phonon emission.
We then get good accord with the measured e for
many semiconductors.

The exact calculation of the rate of scattering by
ionization, i.e. , by pair creation, is exceedingly
expensive and so we utilize Kane's random-4 ap-
proximation. " In this approximation, the influence
of momentum conservation on the scattering rate
is not apparent. We propose that momentum con-
servation is manifested mainly in the threshold en-
ergy E~, below which the ionization scattering rate
is zero. Calculations were done here for two val-
ues of the threshold energy as described in Sec.
II D. We find e to be insensitive to these values
except for semiconductors in which scattering by
phonon emission is very weak, and there are few
experimental data for such semiconductors.

The calculated e values depend upon whether
plasmons are included in the model. Plasmon ex-
citation was suggested for semiconductors by
Zareba" and others, "following Pines" who showed
this process to be the dominant loss mechanism for
high-energy particles in metals. Plasmons are
collective electron excitations with energy S(d~ be-
tween 10 and 25 eV. Rothwarf' calculated e as-
suming plasmon excitation. In his picture a high-
energy particle creates plasmons without loss. The
plasmon then decays into an electron and a hole of
equal energy, as required by momentum conserva-
tion at A=0; the hole and electron both may form
additional pairs. We consider in Sec. II E both this
case and also the case that plasmon decay requires
energy conservation only. We find e insensitive to
the presence of plasmons except for very small
km~/E~ ratios, a condition for which there are few
experimental data.

In our approach, the pair-creation energy e is
obtained by a new "probability method" which is
described qualitatively in Sec. I B and mathematic-
ally in Sec. II.

8. Approach

The band structure above and below the energy
gap is taken to be that of the free-particle model,
and the optical-phonon energy S(do is taken to be
constant. The rates of scattering by pair genera-
tion r(E) and by phonon generation r'(E) are de-
fined in accord with the "golden rule" of quantum
mechanics. Each of these rates contains a matrix
element of the scattering interaction, . and the
squared ratio of these matrix elements is included

in an empirical constant A. .
Two probability distributions are used. One,

P (E) is the probability that a particle of energy E
generates exactly m phonons before scattering by
ionization. The other, P„(E), is the probability
that a particle of energy E ultimately creates ex-
actly n pairs. The probability, P,(E), that a par-
ticle of energy E thermalizes without any pair pro-
duction is obtained from the P (E). The probabil-
ities P„(E) are obtained from P,(E) by a recursion
formula.

From the P„(E), the first and second moments are

&n(E)& =g nP. (E),
n=o

&n'(E)) =g n'P„(E) .
n=o

(2)

These moments give the average pair-creation en-
ergy e and the Pano factor""'" I', a measure of
the width of the distribution, as

c = E/&n& (3)

If, in an ensemble of primary particles of energy
E, the number which yields n pairs is plotted ver-
sus n, this distribution peaks at n=E/e and, if it
were Gaussian, would have the width [(8EE ln2)/
~]"at hfdf-height.

The quantities (n) and &n'), or e and E, are
measured most directly in experiments, such as
gamma-ray detection, "'"which display the P„(E)
distribution. These experiments are done with very
large initial particle energies and give the asymp-
totic values e =e(~) and E=F(~). However, as de-
scribed in Sec. III B, for photon or low-energy-
electron excitation, quantum-yield measurements
give (n(E)), where E is measured from the conduc-
tion-band minimum. For E large, &n(E)) is ex-
pected to be linear in E. As will be seen, the ex-
perimental data establish this linearity for ener-
gies above a few times E,. Thus the P„(E) distri-
bution needs to be evaluated only for energies up to
a few times E, ~

In contrast to the probability method introduced
here, a different method, called here the "final-
state method, " was used in some earlier work. "'"
A function, denoted L (E', E) here, namely the fin-
al-state distribution function, was calculated;
I, (E', E)dE' is the fraction of thermalized particles
in the ensemble of cascades initiated by primary
particles of energy E which have occupied a state
with energy between E' and E'+dE' immediately
following an ionization event and have subsequently
thermalized entirely by phonon emission. Because
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of the importance of I, (E', E) in the literature, the
procedure for its exact calculation will be given in
Sec. II F. Inasmuch as I (E', E) cannot be mea-
sured, it will not be calculated here. Drummond
and Moll" did calculate I, (z', E) and we have re-
produced their results, as shown in Sec. IVA.

A diagram depicting a.representative cascade is
shown in Fig. 1. The equations that describe the
scattering rates in cascades like this are given in
Sec. II; calculations using these equations are dis-
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FIG. 1. Diagram of a representative cascade. The
kinetic energy of particles, represented by dots, is
plotted vertically, increasing upward from the conduc-
tion-band edge for electrons and increasing downward
from the valence-band edge for holes. This energy is
shown in units of E» at right, and the energy thresholds
for ionization are shown at left. No meaning is assigned
to the horizontal direction. The phonon energy is 0.2E»
and phonon scattering events are indicated by connected
dots separated vertically by this energy. Ionization
scattering events are indicated by three lines originating
on a dot. Each line terminates on a dot representing
one of the scattered particles. The center line is drawn
to the particle with charge opposite to that of the scat-
tered particle. The arrows indicate the direction of the
cascade. This cascade originated with an electron hav-
ing 12E» of kinetic energy and resulted in four pairs;
cascades resulting in four pairs would occur with prob-
ability p4(12E»). In this cascade two phonons are created
before the first pair creation; cascades with two phonons
created before the first pair creation would occur with
probability P2(12E»). The large dots are final-state par-
ticles whose normalized distribution function is
L (E', 12E»), where E' is the ordinate of the large dot.
If an experiment were to consist entirely of two primary
particles, one of which is the origin of this cascade and
the other of which is the origin of a cascade. resulting in
six pairs, then e=(12+ 12)E /(4+ 6)=2.4E», not 2.5E»
obtained by averaging the average cascade-pair-creation .

energies of 3E» and 2E».

cussed in Sec. III; and the results of these calcula-
tions are discussed in Sec. IV.

C. Two-level approximation

Before considering the general theory and calcu-
lations, we give here a simple model, called the
"two-level approximation, " as a useful paradigm.
In this paradigm, particles above the threshold
energy E~ are assumed to lose energy only by pair
generation; particles below Eth lose energy only by
phonon generation. We assume further that there
are two states near E&with energies E~+ 5 where
5 is small and that all particles in the pair cascade
pass through one of these two states. Since the two
states are nearly equal in energy, they are oc-
cupied with equal probability.

Particles in the state Ez- 6 are final-state par-
ticles, decay further only by phonon generation,
and generate E~ in phonon energy. Particles in the
state E+6 create one more pair, yield three final-
state particles with energy (E,„-E~)/3,"and gen-
erate, in total, E,h-E» in phonon energy. The
states with energies (E~-E,)/3 and E,„-li are the
only two possible final states and the lower-energy
state is populated with three times as many partic-
les as the higher-energy state. Thus the distribu-
tion of the final states is not uniform.

The average energy E& generated in phonons for
each final particle, i.e., the average energy of the
final states, is [E,„+(E,„E,)]/4=-,' -E,„--,' E, The.
average energy required for each final pair is e
= 2E&+E» =Eth+2 E». This particular analysis ex-
emplifies the final-state. method discussed in Sec.
II F.

More particularly, in Sec. II F, E& is calculated
using the distribution function, I.(E,E), describing
particles in the final states E'. We have just seen
that one-quarter of the final-state particles have
energy -E~ and three-quarters have energy (E,„
—Eg)/3. Thus

d(z') =- »m r. (z', z)
=-,' v(z' -z )+-,' 5[z' --,' (E~-z, )] .

The average loss per final particle is

E,= E'd E' dE'=-,'E~-4'E,

and e =Eth+ —,
'

E» as fou" a ve
We now address this problem according to our

probability method. A particle of energy E»Eth
initiates a cascade resulting in, for example, t
pairs, that is, 2t+ 1 particles distributed in the two
levels near E~. In this cascade, t units of E, are
expended. Thus, using 2t+ 1= 2t, energy conserva-
tion requires E —tE, =2tz~ and therefore &= E/
(2E&+E~). A number, s, of these 2f particles will
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be in the state at E,„+&, with probability given by
the binomial distribution, B„(s)= (', )2 ". This bi-~ 2t
binomial distribution has the moments Z, ,B2((s)
= 1, {s)= f, and (s') =t(t+-,'). The s particles in the
state Ez+6 produce s additional pairs for a total
of f+s pairs. Thus the distribution function P„(E)
is P„,(E) =B„(s) Us. ing Eq. (1), {n)=Z, —,(f
+s)B„(s)=2t; from Eq. (3), e=z,„+2E,

A value of E can be calculated using the P„,(E)
distribution of the two-level approximation. Using
Eq. (2), {n') =2, 0 (f +s) B„(s)= 4t'+ —,

' t, and, from
Eq. (4), E= ,' (Ref.-24). These analyses exemplify
the new probability method set forth in Sec. II A.

In this paper we use E~=E~ and E~= 3E~/2. The
e's predicted for the two-level approximation are
then 3E,/2 and 2z„respectively. Similarly, the
free-particle model used here gives values of c de-
pendent upon E~. However, when phonon scattering
above E~ is included, this difference in the e values
decreases and is very small for strong phonon
scattering. The I" values calculated for the two-
level approximation and for the free-particle model
are insensitive to Et/.

II. THEORY

A. Model equations

In this section formulas for the rates at which a
particle is scattered by either phonon emission or
by ionization are derived and then used to construct
the probability functions P„(E)

The rate at which a particle of energy E scatters
by ionization is, by the golden rule,

~(z)= ~ +III(l'5(z-E;-E, ),

where Irf is the matrix element of the Coulomb in-
teraction. " The index j denotes the states of the
recoil particle, the new electron, and the new
hole. The energy Ef is the sum of the kinetic
energies of these three particles. All phonon
generation accompanying the ionization event is
ignored in the use of Eq. (5).

Likewise, the rate at which the particle of energy
E scatters by emission of a phononof energy k~o is

~'(E) = P la/i'&(E Ef -II~ )-
f

where IIf' is the matrix element of the electron-
phonon interaction. Here j denotes the states of the
recoil particle and the phonons, and Ef is the kine-
tic energy of the recoil particle.

The probability that a particle of energy E scat-
ters first by ionization is"

P.(z) =.(E)/[.(E)+' (E)],
and 1-P,(E) is the probability that the particle of

energy E scatters first by phonon emission. Thus
the probability that a particle scatters by ioniza-
tion after creating just one phonon is

P,(z) = [1-P.(z)] P.(z —I~.),
and the probability that it scatters by ionization
after creating m phonons is

P.(z) = [1 P, (-z)] P. ,(z ff~—,) . (9)

Applying this recursion formula m times, one has"
1(l» 1

P.(Z)=P,(z-ma~, ) [I-P,(z-fr~, )]. (10)
)=O

The P {E) distribution does not sum to unity. The
remnant is P,(z), the probability that a particle of
energy E decays to zero kinetic energy without
scattering by ionization, "

P.(z) = I-g P.(z).
m=0

In Eq. (11), P (E) is zero for m &(E E,b)/If—&u„
from Eq. (10).

B. The probability method

%e are now in a position to develop the pair-
number probability distribution P„(E) central to our
probability method. The probability P„(E)that a
primary particle of energy E will be the origin of
a cascade containing ri and orily n ionization events
is equal to the sum of two products: the probabil-
ity, P,(E), that the primary particle will ionize
first before producing phonons, times the probabil-
ity, r„,(E)/r(E), that the three-product particles
will cause a total of n —1ionizations, plus the prob-
ability, 1 P,(E), that -the primary particle first
creates a phonon, times the probability, P„(E
—h&u, ), that this particle —which is now at energy
E —A{do—will be the origin of a cascade containing
the n ionizations. Thus

P„(z)=P (E) " ' + [1-P,(E))P„(E—If(0,), n~ 1

(12)

is the resulting recursion relation. Here r„,(z)
is the ionization rate of Eq. (5) but reduced by the
probability that the three product particles will
lead to the total of n —1 further ionizations:

27r~. ,(z) = Q l&fgjgl P((zf)Pf(z )P (E )f,e,h j,f,h

x5(z-zf-z, -z„-z,) (13)

where the subscripts f, e, and h denote the recoil
particle and the newly created electron and hole,
and i, j, and k are non-negative integers such that
i+j+k=n —1. For example, if the particle of en-
ergy E results in only one ionization event, then
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ro(z)= ~ Q IIfg.),l'P.(z,)u.(z.)P.(z,)
f,e, h

x 5(z -E, -E -E, -E,) .

C. Assumptions

(14)

where
I
M'I'= IIf,'I' and

P (E) = (V/2m') (2m/k')' 'E' ' (16)

The scattering-rate assumption, i.e., equal prob-
abilities for occupation of all allowed states in each
scattering event, means that all the nonzero H& in
Eq. (5) are identical and that all nonzero HJ in Eq.
(6) are identical. Since the energy R&u, of all the
phonon states is assumed to be the same,

2'r'(Z) = —IM'I'~5(z-z, -a.~,)

I
M'I' p(E —sco,),

is the density of states in the free-particle model
in which the band structure is parabolic and iso-
tropic. Here V is the semiconductor volume and
m is the free-particle mass.

Because, the free-particle band structure is para-
bolic, the selection of the II& which are nonzero
because of momentum conservation is not trivial.
However, it is clear that H; is 0 when E &E~.
Above E~ the random-A approximation of Kane"'"
was used to evaluate r(E), i.e.,

"(~) ), v l~=)l I"~&f"~ f"&"'Ã'~ E'9Ã" ~Ã ~' E'
2r

r(z)=0 for z&z,
where

I
MI'= IH~I' for all j and A is the atomic volume per electronic state. Then, "using Eq. (16),

21r V'b. &2m')'~' &1r(E-E )''
r(Z)= -IMI', I, I

' for Z&Z,„,8m' ~S') (18)

that is, the rate r(E) in Eq. (18) rises smoothly from zero when E,„=E~ but rises abruptly from zero to a
nonzero value at E~when E@&E~. Likewise, in the calculation of r„,(E), r„,(E)= 0 for E&z,„„where
E,„„is the threshold energy for a cascade containing n ionization events, and for E - E~ „,

2m
(&)= ~ v IMI ) d&y f d& f dÃiP(@y)P(& )p(Ea)P&(&I)Ps(E )P &g(@a) (@ &y —& — -Ea @ ). —

k, f

(19)

(20)

where the par'ameter A is

IM'I' 4 ' t'I'l'
M. =-

IMI' (21)

The calculation of P„(E) then requires only the
ratio of Eqs. (15) and (18), i.e.,

r'(Z) 105 (Z -I~ )"'
r(z) 2v (E -Z,)"' '

other hand, van Roosbroeck, '0 Drummond and
Moll, "and others use the scattering-rate assump-
tion and do not discuss momentum conservation
explicitly in calculating e.

Momentum is certainly conserved in ionization
scattering: See, for example, recent measure-
ments of impact ionization. " For the free-particle
model with momentum conservation, one can-then
obtain" thresholds E,„„for creating n pairs:

This parameter is the one adjustable constant of
the calculation; it will be assumed independent of
the particle energy and invariant for electrons and
holes, for different materials, and for all ambient
conditions.

E,„=E,„,=8E /2

E,„,„,+ E, + E /8E~ „,+ ~ ~ ~ for n& 2.

(22)

D. Threshold values

The literature is obscure about the necessity for
including momentum conservation in the calcula-
tion of e. Using the assumption of uniform popula-
tion, '"momentum conservation is essential for
accord between theory and experiment. If momen-
tum conservation is ignored, E~= E~ and c =6E~/5
+ E~=2.2E~, far from the slope of 2.73. On the

However, there may be phenomena in the semi-
conductor, e.g., band-structure complexities or
phonon creation accompanying the pair-creation
.event, which these thresholds do not describe. We
believe that these phenomena are describable, at
least roughly, by the free-particle picture if the
thresholds are lowered toward those for energy
conservation only:
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&~=- &u. ~= &~

E~ „=Es, „~+E~ for n ~ 2 .
(23)

These phenomena will be described here using Eg.
(23), that is, by neglecting momentum conservation
in the free-particle model. The values of c calcu-
lated with Eq. (23) will be overscored; those cal-
culated with Eq. (22) will be unmarked.

E. Plasmons

All semiconductor materials exhibit" a charac-
teristic plasmon energy k+~ that generally exceeds
the band gap, and it is generally believed that a
particle with energy much greater than k&~ dissi-
pates most of its energy into plasmons. '"'" In
considering plasmons we assume that a high-ener-
gy primary particle deposits all its energy into
plasmons without loss. The cascade of particles
and phonons from the primary particle is then the
aggregate of the small cascades originating with the
plasmons. If the plasmon energy is a large multi-
ple of the band gap, then the small cascade will ap-
pear similar to a cascade originating with a par-
ticle of the plasmon energy. For these energies,
e is expected to be independent of the energy as in-
dicated by the linearity in energy of the quantum
yield. Therefore the value of e calculated for a
small cascade will be very close to the value of e
calculated for the cascade produced by the primary
particle in the absence of plasmons. However, if
the plasmon energy is only slightly larger than the
band-gap energy, as may be the case in SiO„"the

I

intervention of plasmons in the cascade could
change the average pair-creation energy signifi-
cantly.

If energy is assumed to be deposited into plas-
mons, then it must be determined whether momen-
tum is explicitly conserved in the plasmon decay.
Hothwarf' assumes momentum is conserved and
decay occurs only from the zero-momentum state.
However, there may be phenomena, as described
in the preceding section, which cause the decay to
appear to occur with only energy conservation. We
calculate both cases here. The c for plasmons de-
caying with momentum conservation are labeled
~„ those decaying with energy conservation only
are labeled e&. The e can also be overscored or
not to denote, as in Sec. IID, the threshold energy
used to describe ionization.

If momentum is conserved in the plasmon decay,
then each plasmon produces two particles of energy
E*/2 where E*=h&o~ -E~. Then, by analogy to Eq.
(3), the pair-creation energy is

e„(kw~) =%a~/[2(n(E*/2)) + 1], (24)

e—„(If(u~) = k(u~/( J(I'u)~)), (26)

where ( J(km~)), the average number of pairs cre-
ated by' the plasmon, is given by

where the denominator is the average number of
pairs created by the plasmon and (n(E*/2)) is given
by Eq. (1).

If momentum is not conserved, then

g+ gQ

1+ &0,= " p (E')P, (E*—E')P(E')P(E* —E')dE'
1 2 fo (n(E'))p(E') p(E+-E')dE'

g+ gg
fo P (E') P(E* E')dE' -f, p(E') p(E ~ -E')dE'

(26)

with p„(E) given by Eq. (12) and p(E) by Eq. (16)."
From Eqs. (24) and (25) these pair-creation en-

ergies have the limits for large arguments e =—e (~)
= e, (~) = e;(~) and e -=Z(~) = e,(~) = Z-, (~). These
identities reflect the fact that in this limit the two
particles created by the plasmon are formed dom-
inantly at energies E where e (E) or e(E) is con-
stant.

F. Final-state method

The final-state distribution function I (E, E) de-
scribed in the Introduction and utilized in previous
treatments is

N)zl=. f N(z', B)dz
0

(28)

X(E', E) =P,(E) &(E', E)+g Z (E)

and N(E', E)dE' is the average, over an ensemble
of cascades originating from primary particles of
energy E, of the number of particles which arrive
at a state with energy between E' and E'+dE' as a
direct result of an ionization event and which decay
from E' entirely by phonon emission.

The N(E', E) can be calculated as

L (E', E) =K(E', E)/1V(E),

where

(27) (29)
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S(Z', Z-mEid ) f=dE, f dd„ f dE&P(E)P(E )ll(Zi) il(Z mZ-+, -E —Z, —E -Zi)

x (N(E', EE) + N(E', E),) + N(E', Eg)I, (3o)

and P,(E), P (E), r(E-mt'&, ), and p(E) are de-
fined in Eqs. (11), (10), (18), and (16), respective-
ly. That is, in Eq. (29), N(E', E) for an ensemble
of primary particles at energy E is expressed in
terms of the N(E', E") for the three products of the
first ionization event of the primary particle. The
first term onthe right-hand side of Eq. (29) is the
fraction of the primary particles which never scat-
ter by ionization. The second term is the average
number of final-state particles at E' created by the
hole and the electron and recoil particle from this
first ionization event. This first ionization event
occurs with probability P„(E)only after the pri-
mary particle has created m phonons and has lost
mh ~p in energy.

Equation (29) is a recursion formula defining
N(E', Z) in terms of N(E', E") for E"&E. This re-
cursion formula is initiated with the values

N(E', Z) = 5 (E', E) (31)

for E &E~. One recognizes, by similarity of defini-
tion, that N(E) satisfies

N(Z) = 1+2(n(Z)), (32)

where (n(E)) is given by Eq. (1). Thus Eq. (28) is
an alternate calculation of (n(E)) and, through Eq.
(3), of e. We are, however, unable to find a pro-
cedure for calculating (n'(E)) using the final-state
method.

The function f, (Z', E) for E-~ is the d(E') of
Ref. (12).'2 For the assumption of uniform popula-
tion, it is zero for E' &Z~ and is ,'(E'/Eu, ) ' ' —for

EI &E

III. CALCULATIONS

A. Pair-creation energies

The calculations were done by computer" for
specific values of E~ and S~p. Each function of en-
ergy was expressed as a table for E,„~E & 16E~ in
steps of S(dp. For a specified value of A in Eq.
(20), the function P,(E) was calculated. Then Eq.
(10) was used to obtain the functions P (Z) and Eq.
(11) to obtain P,(E). The functions P„(E) for 1 ~n
~ 7 were calculated using Eqs. (12) and (19); the
double integration required to obtain r„,(E) was
done using Simpson's rule. Finally c(E) was cal-
culated using Eqs. (1) and (3).

The values of E, and h(dp for each semiconductor
are shown in Table I, together with measured val-
ues of & taken from the literature. The band gap
was chosen to be the smallest of the direct and in-

I

direct gaps. Since energy losses in phonon scat-
tering are believed to be due to the long-wavelength
longitudinal-optical phonon, "this value was chosen
for k~p.

The values of E, and k~p for Si were used in the
initial calculations. Figure 2 shows calculated val-
ues of e (E) and e (E) for 4 = 0 and 5.2 eV'. For A,

=0, e=E for E,„-E-Eth,, and e=E for Eth&E
&Ez, „since a particle with energy in this range
scatters once and only once by ionization. For
large Z, e (E) and e(E) approach constant values e

and e. For A E"-0, e(E) and e(E) become large as E
decreases toward the threshold energy due to the
strong competition of scattering by phonon emission
at low energies. For the value A = 5.2 eV', c(E)
and e(E) are indistinguishable within and above the
energy range shown here, and they approach a con-
stant value e = e for large E.

Figure 3 shows the asymptotic values e and e

plotted versus A. for Si; the values at A = 0 and 5.2
eV' are identical to those approached in Fig. 2. A

'

difference in the values of e and e at A. = 0 is ex-
pected from the two-level approximation and the
convergence of the values at large A is expected
from the dominance of scattering by phonon emis-
sion. The value of A. at which the convergence of

and e occurs, seen to be approximately 0.1 eV'
in Fig. 3 for Si, varies with E, and A4)p.

The ratio r'(E)/r(E), defined in Eq. (20), is the
ratio l,./l~ of the mean free paths for electron scat-
tering by ionization and by phonon emission.
At E = 5 eV in Si the aforementioned value
A =0.1 eV' implies l, /lP =0.03. There have
been a number of studies" of Si from which values
of f;/l~ for E = 5 eV have been inferred While thes.e
values are widely scattered, lying between 0.1 and
20, they all exceed 0.03. Therefore we conclude
that the values of the thresholds have a negligible
effect on the value of e for Si.

To find the effect of plasmon intervention in the
cascade of scattering events, Eqs. (24) and (25)
were evaluated using values of E,„„and E „ from
Eqs. (22) and (23). This yields four values for the
pair-creation energy: E), (5(d)p) EE (k(d)~) cd, (A(d)~)

and e&(h&u~), where h&u~ is given in Table I. As
functions of S~~, the first two of these for A. =0 in
Si are plotted in Fig. 4; e(E) for A, =0 from Fig. 2

is also shown. For A =0, there is no phonon scat-
tering for E ~ E~; so kwp is no longer a parameter
of the calculations. Then c, E, and S~~ can be
scaled in units of E~; Fig. 4 shows these functions
thus scaled. The functions e(E), e-, (he~), and
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TABLE I. The measured band gaps, E~, long-wavelength optical-phonon energies, @cup,

and pair-creaction energies, e, are tabulated below together with the plasmon energies, Sco&,
calculated from the lattice parameter. All quantities are given in units of eV.

Semiconductor N cop Reference Reference

12.7
14.5
15.6
16.6
15.6
12.8
13.7
16.5
15.0
15.2
16.7
23.2
16.0
21.5
16.7
15.4
31.0
24.2

d

e
f
g

h
1

j
k
l

n
0
p
q

s
t

0.17
0.41
0.735
1.12
1.42
1.52
2.13
2.22
2.41
2.68
2.76
2.86
3.25
3.35
3.87
4.8
5.47
89c

2.96
3.63
4.35
4.46
4.2
6.54
6.3
5.8
8
6.9
7.5

InSb
PbS
Ge u
Si v
GaAs w
CdTe
HgI2
GaP z
Cds a'
AgBr b'
PbO c
SiC d'

AgCl e'
ZnO
ZnS
CaS
C 13.1
Si02 18

Unless otherwise indicated, the band gaps are from W. H. Strehlow and E. L. Cook, S.
Phys. Chem. Ref. Data 2, 163 (1973).

"R. W. G. Wyckoff, Crystal St~ctmres, 2nd ed. (Wiley Interscience, New York, 1963),
Vol. 1; see also Ref. 2.

'D. L. Griscom, J. Non-Cryst. Solids 24, 155 (1977).
M. Hass and B. W. Henvis, J. Phys. Chem. Solids 23, 1099 (1962).

'R. Geick, Phys. Lett. 10, 51 (1964).
B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747 (1958).

~H. Palevsky, D. J. Hughes, W. Kley, and E. Tunkelo, Phys. Rev. Lett. 2, 258 (1959).
"M. Selders, E. Yi Chen, and R. K. Chang, Solid State Commun. 12, 1057 (1973).
~ T. Goto and Y. Nishina, Solid State Commun. 25, 123 (1978). The average energy of the

three longitudinal-optical-phonon energies of 0.0024, 0.004, and 0.0145 eV was taken.
~ J. L. Yarnell, J. L. Warren, R. G. Wenzel, and P. J. Dean, inNemtron Inelastic Scat-

tering, (IAEA, Vienna, 1968), Vol. 1, p. 301.
"R. J. Collins, J. Appl. Phys. 30, 1135 (1959).

W. von der Osten and B. Dorner, Solid State Commun. 16, 431 (1975).
D. M. Adams and D. C. Stevens, J. Chem. Soc. 1096 (1977).

'J. F. Vetelino and S. S. Mitra, Phys. Hev. 178, 1349 (1969).
P. R. Vijayaraghavan, R. M. Nicklow, H. G. Smith, and M. K. Wilkinson, Phys. Rev.

B 1, 4819 (1970).
~R. J. Collins and D. A. Kleinman, J. Phys. Chem. Solids 11, 190 (1959).
~N. Vagelatos, D. Wehe, and J. S. King, J. Chem. Phys. 60, 3613 (1974).
'M. Drofenik and A. Azman, J. Phys. Chem. Solids 33, 761 (1971).
'The Properties of Diamond, edited by J. E. Field (Academic, New York, 1.979).
J. F. Scott and S. P. S. Porto, Phys. Rev. 161, 903 (1967). The average of the eight

longitudinal-optical-phonon energies was taken.
"R. H. Pehl, F. S. Goulding, D. A. Landis, and M. Lenglinger, Nucl. Instrum. Methods

59, 45 (1968).
. 'Reference 38.
~T. Kobayashi, T. Sugita, M. Koyama, and S. Takayanagi, IEEE Trans. Nucl. Sci.

NS-19, 324 0.972).
"A. Cornet, P. Siffert, A. Coche, and R. Triboulet, Appl. Phys. Lett. 17, 432 (1970).
"J. P. Ponpon, R. Stuck, P. Siffert, B. Meyer, and C. Schwab, IEEE Trans. Nucl. Sci.

NS-22, 182 (1975); see also M. Slapa, G. C. Huth, W. Seibt, M. M. Schieber, and P. T.
Randtke, ibid. NS-23, 102 (1976).

'T. Kobayashi, Appl. Phys. Lett. 21, 150 (1972).
~ P. Eichinger and H. Kallmann, Appl. Phys. Lett. 25, 676 (1974).
"' K. A. Yamakawa, Phys. Rev. 82, 522 (1951).
c Reference 8.
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~ V. V. Makarov, Fiz. Tekh. Poluprovodn. 9, 798 (1975); 9, 1098 (1975) tSov. Phys. —
Semicond. 9, 526 (1975); 9, 722 (1975)].-

. ' F. C. Brown, Phys. Rev. 97, 355 (1955).
S. F. Kozlov, R. Stuck, M. Hage-Ali, and P. Siffert, IEEE Trans. Nucl. Sci. NS-22,

160 (1975).
~ Reference 30.

spotty~) for A = 0 have a form similar to the func-
tions shown in Fig. 4. For A = 5.2 eV', e(E),
e„(h&u~), and e—„(tt&u~) are shown in Fig. 5; e(E),
ea(Inc~), and er, (Etc~) for this A are indistinguishable
from these functions. All three functions shown in
Fig. 4 closely approach a common value at ener-
gies even below 15E», the value of h~~ for Si.
Likewise, all three functions shown in Fig. 5

closely approach a common value at energies even
below S&~= 16.6 eV for Si. Therefore we conclude
that plasmon intervention has a insignificant effect
on the value of e for Si.

The functions P„(E) for 0 &n & 7 and 0 &E &15 eV
are shown in Figs. 6 and 7 for A = 0 and 5.2 eV',
respectively. These functions in Figs. 6 and 7
were used in the calculations of the e curves of
Figs. 2-5. The P„(E) distributions used for e and

are different for A = 0 but are indistinguishable
for A=5.2 eP'.

The maxima of the P„(E) in Fig. 7 lie at larger
energies than those of Fig. 6. These increases are
due to competition with phonon generation above the
threshold energies E~ „These P.„(E) functions for

A = 5.2 eV' have non-negligible values only at ener-
gies substantially above the E,„„.Thus the precise
values of E~ „are unimportant, and p„(E) for E~ „
and E~ „are indistinguishable.

The values of c(E) and e(E) shown in Fig. 2 do ap-
proach a constant value at large E, but they do so
only at E large compared to 10E», an energy region
for which the calculations become prohibitively"
expensive. Thus we cannot obtain & by examining
its asymptotic behavior. %e do, however, know
that s =e„(~)=s;(~) and e =e, (~) =r;(~), and that
the quantum-yield curves are closely linear for
energies above a few times the band gap. In Figs.
4 and 5, e; (Iftc~) appears to approach a constant
value at lower energies than do e(E) and e, (8 &c~);

the overscored functions behave the same way.
Therefore we have adopted the operational defini-
tions e = s; (VE,) and r=e-, (6E,).

These choices reflect limitations imposed by
cost considerations. They allow obtaining e.and e

with the n index in Eq. (1) restricted to 0 &n & 4.
The energies 7E» for e and 6E» for c are the larg-
est energies for which P,(E) is insignificant, be-
cause E~,= 5.67E~ from Eq. (22) and Es, , = 5E,
from Eq. (23). With some expense, we have ex-
tended" the Si calculations to 0 &n + 7, as shown
in Figs. 2-7, and e changed by less than leuc.

Since there have been many"" measurements of

tx
4l 4z
laj

)A D

zW
ILJ

0
0 4

ENERGY (eV)

FIG. 2. Pair-creation energies for particles of energy
E are plotted for the band gap and phonon energy of Si.
These energies, calculated with E&& and Et&., namely
e(E) and 7(E), respectively, are shown both for no
phonon scattering above the ionization threshold energy
(A = 0), and also for a selected amount of phonon scat-
tering (A =5.2 ev ). In this latter case the two curves
are identical. The calculation of &(E) extends to larger
energies than that of Y(E) because the Et& „exceed the

Ellen'

000000I
I

O,OOOI
I I

OA)l

A (eV~)

I

I.O

FIG. 3. Pair-creation energies e and ~ are plotted
versus the parameter A, which describes the relative
amounts of scattering by phonon emission and by ioniza-
tion. These values of & and & were calculated for the
band gap and phonon energy of Si.
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FIG. 4. Pair-creation energies e(E), &&(jg~&), and e&(jim&) are plotted versus E and g~&. These functions describe

pair creation by a particle of energy E and by a plasmon of energy $cu&,. momentum conservation and nonconservation
in the plasmon decay are indicated by the subscripts k and K. The values were calculated with Eq. (22) and with A. = 0.
Since phonon scattering above the ionization threshold is ignored, energies are scaled in units of E~ and these curves
apply to all semiconductors.

the pair-creation energy in Si, all of which yield
values close to 3.63 eV, this value was used with
Fig. 3 to assign the value 5.2 eV' to A. for all sub-
sequent calculations. Using this value of A. and the
values of E„k&„and S&~ given in Table I, the
pair-creation energies shown in Table II were cal-
culated for many semiconductors. These are in
good accord with the measured pair-creation ener-
gies shown in Table I, as illustrated in Fig. 8.

The insensitivity of e to the threshold energy and
to plasmon intervention found in Si extends to many
many, but not all, other semiconductors sh. own in
Table II. For example, for SiO„e and e differ
considerably. The source of this difference is its
large band gap; a large band gap reduces the ratio
r'(E)/r(E). For a large enough band gap, when Ez
&Er, this ratio, as shown in Eq. (20), will be less
than unity for all E &E~. Then values of c and of e
calculated with A. = 5.2 eV' will differ little from

their values calculated with A =0. As seen in Fig.
2, however, when A =0, q and & differ consider-
ably. As another example, also for Sio„where
8 m~/E, is small, e~(8+~) and e~ (8'e, ) differ from
the constant values approached by these functions
at large 5~~, and so these pair-creation energies
differ from g. These differences will be reduced
when e~(k~, ) and e~ (h~~) are averaged over the
width of the plasmon resonance. In particular,
the discontinuity in e„(ll+~) shown in Fig. 4 for
5 ~~ near 4E, would be softened by this averaging.

In any event, these differences among the pair-
creation energies shown in Table II are insuf-
ficient to establish the importance of either the
threshold energy or plasmon intervention; for
example, a plot of the measured pair-creation
energies versus s~(8~~) shows agreement equal
to that shown in Fig. 8.

B. Quantum yield

As was mentioned in the Introduction, the quan-
tum yield is the average number of pairs created

I.O

C9
K
UJ 4—
Z
UJ

Z0
~l-

IJJ
IL
O
n:

o. 2—

IE

Kl

C)a 0.5—
h.

P6

Pg

I

0 5 IO l5 20

E Pcs& (eV)

FIG. 5. Pair-creation energies c(E), e&(1~&), and

e&(Ice&) are plotted versus E and Ice& as in Fig. 4. These
values were calculated for A = 5.2 eV for the haudgap
and phonon energy of Si. The values are indistinguish-
able from those of 7(E), Y~(I cu&), and 7~(1'cu&) for this
value of A.

0
IQ

ENERGY {Eg)

FIG. 6. Functions p„(E) for 1 ~n & 7 are plotted versus
energy E. These functions were calculated with Eq. (22)
and with A = 0; thus, as in Fig. 4, they are universal for
all band gap s Ez.
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from photons is

q(k v) =hv/e~(h v), (33)

where lt v is the photon energy and e„(h v) is identi-
cal to c„(h&u~) defined in Eq. (24) with keg~ replaced
by It v. Measurements of ti(h v) have been made in

Si," '~ Ge,~' ' PbS,"' ' and InSb. ' Measured val-
ues of q(h v) for these materials and values calcu-
lated with A = 5.2 eV' are shown in Figs. 10 and 11.

C. Temperature dependence

0--
0

ENERG Y (eV )

FIG. 7. Functions p„(E) for O~n «5 are plotted versus
energy E. These functions were calculated for A. =5.2
eV for the band gap and phonon energy of Si. Functions
calculated with Eq. (22) and with Eq. (23) were indis-
tinguishable at all energies.

by a particle entering a semiconductor; the quan-
tum yield will be a function of the particle energy
in the semiconductor. The particles for which
quantum-yield measurements have been made in-
clude electrons and photons. For electrons the
quantum yield is (n(E)) from Eq. (1), where E is
the particle kinetic energy in the semiconductor.
For flat bands, unaffected by injected charge, this
energy is the kinetic energy in vacuum plus the
electron affinity of the semiconductor. Measure-
ments of (n(E)) have been reported only for CdS
(Ref. 40) and ZnO (Ref. 41). These are compared
with values calculated with A = 5.2 eV' in Figs. 9(a)
and 9(b).

Since photons decay with momentum conserva-
tion from a state near k = 0, the quantum yield

In the model described in the previous sections,
a temperature dependence for & arises only from
temperature dependences of E, and h&„ i.e.,

Se (T) = sEg(T) +
@

ah(o, (T) . (34)

D. Fano factor

The Fano factor, being a measure of (n'), pro-
vides additional information about the p„(E) distri-

For the semiconductors listed in Table I, the tem-
perature dependence of I~, is very weak so
ah~, (T) was set to zero. By calculating the Se
associated with a b,E~, values of Be/BE~ were ob-

-tained.
Recent measurements of Be/BE~ have been made

in Si (Refs. 38 and 48); the measured values extend
from 1.8 to 2.9 and are larger than the value cal-
culated" here of 1.6. There is considerable scat-
ter in the measured Bc/BE~ values in Si and other
materials. " Thus any meaningful comparison of
these calculations with experiment is not possible
at present.

TABLE II. Calculated values of the pair-creation energy & and Fano factor E are tabulated
below. Six values of e, inunits of eV, were calculated, i.e., values of e, e&(Scop), and g&(S~p)
calculated with Eq. (22), and &, &&{Scop), and &&(Scop) calculated with Eq. (23). Of the six
values of the Pano factor, only E is listed.

Sexniconductor

Ge
si
GaAs
CdTe
Hgl2
GaP
cds
AgBr
PbO
SiC
AgCl
ZnO
ZnS
CaS
C
Si02

2.78
3.63
3.90
3.90
4.65
5.37
5.63
5.82
6.36
6.88
6.94
7.50
8.23

10.0
11.6
18.3

&y(Sct)p)

2.78
3.63
3.90
3.91

- 4.64
5.37
5.62
5.80
6.35
6.89
6.87
7.49
8.03

10,1
11.6
21,0

2.78
3.67
3.99
3.98
4.55
5.36
5.02
5.07
5.63
7.11
5.35
7.18
5.57

15.4
10.4
24.2

2.78
3.63
3.87
3.87
4.58
5.33
5.59
5.73
6.31
6.84
6.81
7.42
8.06
9.6

11e3
16.6

&j(Scop)

2.78
3.63
3.87
3.87
4.58
5.33
5.59
5.73
6.31
6.84
6.75
7.43
7.88
9.5

11.3
17.3

2.78
3.67
3.98
3.97
4.53
5.34
5.00
5.07
5.57
7.08
5.32
7.14
5.57
5.13

10.3
24.2

0.13
0.115
0.10
0.10
0.08
0.09
0.09
0.08
0.09
0.09

. 0.08
0.09
0.08
0.08
0.08
0.08
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FIG. 8. Measured values of the pair-creation energy,
listed in Table I, are plotted versus the calculated values
of c listed in Table II. The straight line has unit slope
and is the locus of perfect agreement.

bution. The procedures used in the calculation of
the pair-creation energy were repeated in the cal-
culation of the Fano factor. We have evaluated the
Fano factor both for E~ and E~ in the scattering by
ionization. The values of F and F calculated for Si

2—

0
0

hv (eV)

A

2—
V

FIG. 10. Quantum-yield curves for photon excitation
p(hv) are plotted versus photon energy hv in (a} and (b)
for Si and Ge. The calculated curves are shown by solid
lines. The measurements marked (x) were taken from
Ref. 43; those marked (o} from Ref. 42, and those
marked (&) from Ref. 44.

0 I

10

ENERGY (eV)
20

tb)

0
I

IO

ENERGY (eV)

20

FIG. 9. Quantum-yield curves for electron excitation,
(n{E)), are plotted vereue electron energy E in (a) and
(b) for CdS and ZnO. The calculated curves are shown
by solid lines and the measurements by dashed lines.
The measurements, given in Ref. 40 for CdS and in Ref.
41 for ZnO, are presented in arbitrary units. The cal-
culations for CdS were done with E =2.57 eV, the band
gap at the measurement temperature, 80 K.

are plotted as a function of A, in Fig. 12. These
curves are analogous to the curves of e and e in
Fig. 3. Unlike those values, the values of F and E
coincide for all A, as expected from the two-level
approximation.

By analogy to Eqs. (24) and (25) for e, (hz~) and
e~ (h&u~), equations for the Fano factors F, (h~~) and
F& (h&c~) can be written for the assumption of energy
deposition into the plasmons and plasmon decay
with and without momentum conservation. Plots of
the functions F(E), F,(K~~), and F, (h&u~) are shown-
in Fig. 13 for A. =0, analogous to the plots of the
pair-creation energy in Fig. 4. Also plots of these
functions are shown in Fig. 14 for A. = 5.2 e7',
analogous to the plots of the pair-creation energy
in Fig. 5. The F(E), FI,(h&g~), and F~ (h~~) converge
toward a common value as E and 8+~ increase.
Figures 13 and 14 were calculated using E „of
Eq. (22). The functions E(E), F„(It&u~), and Fgh&o~)
using E& „of Eq. (23) are very similar to F(E),
Fa(h&o~), and F» (h~~), respectively, for both A
= 5.2 eV' and 0.
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FIG. 11. Quantum-yield curves g(hv), as in Fig. 10,
are shown in (a) and (b) for PbS and InSb. For PbS the
measurements marked by (Q) were taken from Ref. 45,
and those marked by ( ) from Ref. 46. For InSb the
measurements marked by (0) were taken from Ref. 47.

IV. DISCUSSION

A. Precedents

Several calculations of the pair -creation energy
in the literature were repeated during the course
of this work. These calculations will be described
here. Van Roosbroeck, "using the assumption that
only energy is conserved in the scattering pro-
cesses, calculated E&, the average energy loss to

The measured" Fano factors in Si and Ge are
near 0.1 and 0.13, respectively; the calculated val-
ues of 0.115 and 0.13 shown in Table II are in good
accord with these measurements. Although six
values of the Pano factor were calculated, analo-
gous to the six values of the pair-creation energy
shown in Table II, the differences among these six
values were much less than the uncertainties in the
experimental data, so only the value of I' was in-
cluded in Table II.

the lattice by a final particle; he found, for no pho-
non losses above threshold, this loss E~ to be
0.285E~; hence, e =2EE+ E, = 1.5VE, . This calcula-
tion was done under the same conditions as our
calculation of e for A = 0; as shown in Fig. 3, &

=1.62+~ for A. =0.
Drummond and Moll" used E,„and they departed

from the free-particle approximation by using
Kane's x(E) and r'(E) which Kane calculated using
his electron-band structure and phonon dispersion
for Si. With two different values of the ratios of
the rates of scattering by phonon emission and ion-
ization, i.e., of ratios analogous to A. , they calcu-
lated values of 4.02 and 3.53 eV for e, excluding
their phonon contributions, (Es). When these de-
partures from the free-particle approximation were
incorporated into our calculation of P,(E) for these

.two ratios, their published curves for Pl(E) —= 1
-p, (E) were reproduced. These functions p, (E)
were used" to obtain P„(E) from which values of
4.07 and 3.59 eV for e were calculated.

Rothwarf' developed a set of thresholds for the
creation of multiple pairs in the decay of a plas-
mon, assuming the energy of the incident particle
is deposited into plasmons. He assumes that the
plasmons decay with momentum conservation and
he used E& as giveri by Eq. (22). He neglects pho-
non scattering above the threshold energy. His cal-
culation was done under the same conditions as our
calculation of c~(h&~) for A. =0 shown in Fig. 4. He
finds e~(k~~) should have unit slope for 1 «h&u~/E
«4 and slope ~ for 4«5&v~/E~ «12. For N~~«6E~
these features are clearly evident in the plot of
e~(h+&) shown in Fig. 4; for K&u~&6E~ particles cre-
ated by the plasmon scatter to several states and

e„(k&u~) approaches e.

B. Ion-pair creation energy
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FIG. 12. Fano factors E and E are plotted versus A
for silicon; this figure is the analog of Fig. 3.

The calculation of the pair-creation energy in
semiconductors uses many concepts which also ap-
pear in the calculation of the mean energy~expended
in producing an ion pair in a gas by an energetic char-
gedparticle. "For example, the direct calculationof
the number of ion pairs from the excitation cro ss sec-
tions"'" closely resembles the calculation of the
number of final particles using the final-state
method, Eq. (28). The calculations differ in that
only two, instead of three, energetic charged par-
ticles result from the creation of an ion pair; the
ion corresponds to a very heavy hole. Also,
whereas a semiconductor may be treated as having
only one nonionizing scattering mechanism, viz. ,
the creation of monoenergetic phonons, a molecule
must be treated as having a number of nonionizing
excitations. In another example, the moments of
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FIG. 13. Fano factors E(E), E&(Km&), and F&(5(d&) are plotted versus E and S~& for A = 0; this figure is the analog of
Fig. 4.

the probabilities that a particle of energy E creates
n ion pairs, analogous to the P„(E) used here, have
been related" to the Spencer-Pano degradation
spectrum, used" in the calculation of H.

C. Scattering-rate ratio

The parameter A, defined in Eq. (21), is propor-
tional to the ratio of the matrix elements for elec-
tron scattering by phonon emission and, by ioniza-
tion. It seems inexplicable that A. is independent
of particle energy, i.e., that (~M'~/~M~)' in Eq.
(21) is a constant independent of the initial particle
energy, although this is known from the work of

Kane. It is surprising that Eq. (20), obtained from
the free-particle model, with A. a constant, should
describe the energy dependence of the ratio of the
scattering rates, as illustrated by the quantum-
yield data. It is astonishing that the experimental
data in a dozen different semiconductors can be de-
scribed so well with a single value of this param-
eter. The success of Eq. (20) implies a lack of de-
pendence on the details of electron-band structure.
The value of A is an empirical result of the work
described here and we do not attempt to account
for it.

Although we shall not account for this value of A. ,
a dimensional analysis of A is interesting. Using

0,IO—

0—
0 205 IO l5

E,k~p (ev)

FIG. 14. Fano factors E(E), E&(5'~&), and E&(5'~&) are plotted versus E and gm& for A =5.2 eV in Si; this is the analog
of Fig. 5.
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l, ' r'(E) (105A/2v)E'~'
l, r(E) (E —E,}"' (37)

from Eq. (20). Measurements of these mean free
paths have been made" by avalanche breakdown,
electron emission, nonavalanche injection, etc. ,
and theoretical calculations" have also been pub-
lished. The values of /; and E~ generally lie around
100 A for kinetic energies near 5 eV in Si. For A.
= 5.2 eV', Eq. (37) yields l;/1~=1.7 for E= 5 eV in

Si, in good accord with the published data.
Although scattering by ionization is possible for

all energies above the threshold energy, the mean
free path for ionization may greatly exceed that for
phonon emission at some of these energies, as seen
from Eq. (37). The energy E, at which these two

mean free paths are equal depends on the band gap.
Thus for E~= 0 eV, E,= 4.4 eV while for E, =10 eV,
E, = 1.5E~, assuming A. = 5.2 eV' in Eq. (37).
Therefore, the value of h v at which ri(h v) in Eq.
(33) rises from 1 to 3 may greatly exceed 4E~
This behavior is exhibited in Figs. 10 and ll, and
it is particularly evident for InSb, where g & 1.5
was calculated for E &1VE~.

In calculating the upper theoretical limit of ef-
ficiency of P-n junction solar cells, Shockley and
Queisser" note that this limit is restricted to unit
quantum yield for solar photons. As they observe,
the quantum yields of Si, Ge, and other materials,
shown in Figs. 10 and 11, do not appreciably ex-
ceed unity for A, v ~ 3 eV, the upper bound on the
terrestrial solar photon energy. One might at first
expect that by going to small-band-gap materials
the quantum yield would rise above unity within the

the Bohr radius, a, = h'/me', Eq. (21) becomes

[M'[ ' e'a',
2 [M[

From the electron-phonon interaction, "
~

M'~' is
approximately ve'8+, /2Vq', where kq is the mo-
mentum transfer in the scattering process. From
the Coulomb interaction, "M is approximately
4ve'/q'V. Therefore A is of order (k~,)(e'q)'(a', /g.
Taking q to be a reciprocal screening length of the
valence band, q is of order 2/a, . Then for h&u,

-0.05 eV and 6-100 a'„A is of order 1 eV'. Thus
the value found empirically, 5.2 eV', is of the ex-
pected order of magnitude. This estimate contains
only the contribution from the interaction with the
polar optical phonons; there is also a contribution
from the optical-mode def ormation potential. "
This latter contribution may in fact be dominant
since a single value of g describes both polar and
nonpolar semiconductors.

The ratio of the mean free paths for scattering
by ionization and by phonon emission is related to
the scattering rates by"

range of available solar photons, and this would
thus enhance the solar-cell efficiency at low tem-
peratures. Such is true, however, only for very
small A, values. As was discussed in a previous
paragraph, the usual values of A. imply strong
phonon competition hand give the energies for high-
er-than-unity quantum yields well above the upper
cutoff of the solar spectrum. A similar conclusion
has been reached" through the use of Shockley's'
approximation to the quantum-yield curve.

D. General formulas for e

As was noted in the Introduction, the assumption'
of uniform population has acquired some degree of
popular support because it yields a general formula
for e(E~), viz. , e =A'Eg+8', which is in good ac-
cord with the measured correlation between c and

E, in many semiconductors. In addition the value
of 3, ' estimated kinematically is close to that found
empirically. " In contrast, up to now a general
formula for computing e has not been given using
the scattering-rate assumption. In this paper this
scatter ing-rate assumption is used and the general
formula for computing e =e(A, E~, Ra&,) is obtained,
which is, adopting a single value of A, in good ac-
cord with the observed values of e, E~, and k+, in
many semiconductors, as shown in Fig. 8.

Except for HgI„ the measured values of e equal
or exceed the calculated values shown in Fig. 8,
neglecting the small difference for SiQ, . Although
another value of 3, would yield better accord be-
tween these measured and calculated values, it
would yield a poorer accord for Si, on which there
is a wealth"'" of consistent measurements. Fur-
thermore, the measured values of e have generally
decreased as new measurements, with presumably
better collection efficiencies, are done. For ex-
ample, the measured values of & have changed
from 7.8 to 6.54 eV (Ref. 61) for GaP, from 16 to
13.1 eV (Ref. 62) for diamond, from 9.0 to 6.9 eV
(Ref. 63) for Sic, and from 7.2 to 6.3 eV (Ref. 64)
for CdS; in contrast, there have been no measure-
ments of e which have resulted in a larger value.
It is anticipated that future measurements of e will
be yet lower than those shown in Fig. 8. There-
fore, at present the most reasonable value of A.

seems to be that fitted to & for Si.
For HgI„ the measured value of the pair-crea-

tion energy is inexplicable with A = 5.2 eV' within
the theory presented here. It is indeed impossible
that e with any A. will afford agreement. It is true
that ~ for some A. &5.2 eV' will match the mea-
sured pair-creation energy in HgI„but values of c
calculated with this A. would be discordant with the
measured values for all the other semiconductors.
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E. Cathodoluminescence efficiency

The efficiency $ of cathode-ray phosphors is""
$ =SE,/e, where E, is the energy of the emitted
photon, e is the pair -creation energy, and S is the
efficiency of radiative recombination. Since S & 1,
then e & E,/g, and so measurements of E, and $
provide a measured upper bound on e. For two of
the most efficient phosphors, CaS: Ce and ZnS: Cu,
the measured E, is 2.3 eV for both and the mea-
sured $ are 0.22 and 0.23, respectively; thus the
measured upper bounds on e are 10.5 and 10.0 eV
in CaS and ZnS. For ZnS, as shown in Table II,
the calculated pair-creation energies are all well
below this upper bound. In fact, the calculated val-
ue of e, 8.2 eP, yields S=0.82 for ) =0.23, and it
would imply g =0.28 for S = 1. For CaS, as shown
in Table II, except" for e„(k&u~) and ea(km~), the
calculated pair-creation energies are all near, but
below, the measured upper bound, 10.5 eV. The
calculated value of e, 10.0 eV, yields $=0.95 for
$ = 0.22. For other cathode-ray phosphors, the
measured upper bounds on e greatly exceed the
calculated values, i.e., S is significantly less than
unity.

V. CONCLUSIONS

The scattering-rate assumption is adopted, in
preference to the assumption of uniform popula-
tion, because it allows calculation of the population
of the final states and is found to give nonuniform
population of these states.

Using the scattering-rate assumption, we intro-
duce a new probability method, and extend the
earlier final-state method for solving the model
equations. In the probability method, the pair-
number probability distribution, p„(E), for the
number n of pairs created by a primary particle
of energy E is calculated. In the final-state meth-
od, the final-state distribution function, L(E,E),
is calculated. The P„(E) distribution is directly
measurable and the pair-creation energy e and
Fano factor F are readily calculable from (n) and
(n'). In contrast, the final-state distribution is not
measurable and we cannot calculate the Fano factor
using it.

We use the free-electron approximation in calcu-
lating these p„(E) distributions; and we obtain e
and I' as parametric functions of the band gap E~, .
the long-wavelength longitudinal-optical phonon en-
ergy k~„and a parameter A. proportional to the
ratio of the mean free paths for scattering by ion-
ization and by phonon emission. A single value of
A, namely, that which makes the e of Si agree with
the experimental value, is found to give also good
agreement for e, I', and the quantum yield in many
other semiconductors. Also, this value of 3, is
consistent with existing measurements of the mean
free paths. In addition, the calculated ~ and I' are
found insensitive in many semiconductors to elec-
tron-energy loss to plasmons and to differences in
the threshold energy for ionization representing
real band-structure features.
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