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The trigonal-to-pseudotetragonal structural first-order transition in L111]-stressed SrTi03, real-

izing the three-state Potts model, is studied in the close vicinity of the bicritical point (BCP).
The exponents describing the effects of fluctuations on this transition are shown to cross over

from XY- to Gaussian-model values as the BCP is approached. The first-order line is sho~n to

approach the BCP tangentially to the temperature axis.

The phase diagrams exhibiting the displacive phase
transition of SrTi03 under uniaxial stress have been
of great interest in recent years, providing the first
experimental verification of many' of the predictions
of renormalization-group theory at multicritical
points. ' In particular, it has been shown that
stress p along the [100] axis leads to a bicritical point
(BCP, with p = 0 and T = T, = 103 K), at which the
two critical lines separating the two ordered phases
(with the order parameter along [100] or perpendicu-
lar to it) from the disordered phase approach the
temperature axis tangentially; as (T —Tb) ~ p
where Q is the Heisenberg model crossover ex-
ponent ($ = 1.25 at three dimensions). ' Stress p
along [111]led to a more complicated phase diagram,
shown schematically in Fig. 1." At constant

p & 0 there appear two phase transitions, first a
second-order (Ising-like) transition [at T~(p)] from
the "pseudocubic" (disordered) phase to the trigonal
one, and then a first order transition -[at T2(p)] into a
"pseudotetragonal" (intermediate between trigonal
and tetragonal) phase. The nature of this first-order
transition remained a mystery for a long time, until it
was realized that it should be described by the con-
tinuous version of the three state Potts m-odel The mag-.

nitude of the Potts symmetry-breaking term, ~, was

shown to be proportional to the trigonal order param-
eter M, and the prediction of earlier renormalization-

group analyses that the discontinuity should behave

as IM ~ ~, with 8' =0.6 at three dimensions, was

confirmed experimentally. This was a clear indica-
tion that critical fluctuations (due to the underlying
almost-second-order XY-model transition occurring
at a =0) are important over a wide range of values
of T2(p).

In spite of this success, details concerning this
Potts-model transition in the close vicinity of the BCP
remained unresolved. In this note we concentrate on

studying this vicinity. Our most surprising result
concerns the nature of the critical fluctuations affecting
the Potts-mode1 transition. %e show, that although
these fluctuations are governed by the LY-model ex-
ponents for a wide range of values of Tq(p) (as con-
firmed experimentally in Ref. 6), they will undergo a
crossover to Gaussian (or Landau-)model -exponentsin
the close vicinity of the BCP The expo. nent S', ap-
proximately equal to 0.6 along most of the line

T2(p), will thus cross over to the value 1 (which it

also has far away from the second-order transition,
for sufficiently large w). This crossover, which
results from the "irrelevance" of the cubic symmetry
interactions, is rather slow, characterized by the cubic
crossover exponent $„(Ref. 10) (which is negative
and small). The same type of crossover (to Gaussian
behavior) has previously been predicted for the
second-order transition into the intermediate phase in

the vicinity of a tetracritieal point. " %e emphasize
here the generality of that result, and its conse-
quences for the Potts-model first-order transition. Mea-
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FIG. 1. Schematic phase diagram of SrTi03 for positive

stress along the [111]diagonal.
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surement of the exponent 5' may be the easiest con-
firmation of this crossover.

Our second new result concerns the shape of the
line T2(p). We find that near the BCP one has
[ Tb —T2(p) l ~ p' b with iIi = $ —$„&&f. & 1. The
line T, (p) should thus approach the T axis tangential
ly. The line, Ti(p) should also approach the T axis
tangentially, as p' ~." Although conjectured in Ref.
5, this is the first explicit calculation of the shape of a
first order -line. Both the early EPR experiments' and
the more recent neutron scattering experiments"
seem to disagree with these results, giving linear
dependences of T

&
and T2 on p. These experiments

probably involved internal strains raising the BCP to
finite values of p. '' We hope that this paper will

stimulate more detailed experiments in the closer

vicinity of Tb.
The first few steps of our analysis are the same as

in Ref. 6. Using the pseudocubic axial vector of the
soft optic mode which lies at the [111]corner of the
Briilouin zone, Q, as the order parameter, and as-

suming stress p along [111],the reduced Ginzburg-
Landau-Wilson Hamiltonian has (in addition to the
usual lQl' and lQ{' terms) a cubic term,
v(Qi + Q2 + Q3 ), and a stress term,
—,pL3(QiQ2+Q2Q3+Q3Qi). The parameter v,

measuring the cubic anisotropy, is negative and
small. ' "We next define Si = (Qt + Q2+ Q3)/J3,
S2=(Qi —Q2)/J2, and S3=(Qi+Q2 —2Q3)/J6,
and find that for p & 0, the stress term will yield an
ordering of (Si) =M, i.e. , Q II [111](trigonal phase).
Replacing S~ by S~+Iwe finally obtain

H = d x {2 [F~Si +F2(S2 +S3 ) + les l']+ulS l'

+ v [—S ib + 2S i2 (S22 + S32 ) + 242S iS3 (S22 ——S3 ) + —(S22 + S32 )2]

+ [ri+ 4(u + —'v)M ]MS' +4(u + v)MS/(S2 +S3 )

+4(u+ —'v)MS& +2&2vMS3(S2 3S3 )+ ' ' ]

with

+u2(S2 +S3 ) + wS3(S2 3S3 )l

(2)

w =242vM, u2= —v(7u+5v)/(6u+2v) . (3)

The second part of Eq. (3), i.e., u2 ~ —v, is responsi-
ble for the new crossover predicted in this paper. As
v 0, one expects the trigonal-to-pseudotetragonal
phase transition to disappear (no more competition
between symmetries), so that all the higher-order
terms in H, ~q should also vanish as u 0." Note
that similar effects occur at the boundaries of the in-
termediate phase near a tetracritical point, as dis-
cussed by Domany and Fisher. " In that case this will

imply a shrinking of the critical region as the tetracriti-
cal point is approached along the boundaries of the

where ri=r, +4(3u+v)M', r2=r2+4(u+v)M,
r] =ro+ 3L3p, r2=ro ——,L3p, ro iS linear in Tand p
(vanishing at p = 0, T = Tb), and the dots represent
higher-order terms (neglected in what follows).

lf fluctuations in Si are negligible [Fi is sufficiently
large, i.e., T « Ti(p) ], we have
M' = —r, /4(u + , v), r, = —2r—i & 1, and we can in-

tegrate S~ out of H to obtain

intermediate phase.
If the parameter u2 is not too far from its fixed-

point value at the XY-model second-order transition,

@~&, then we may use the scaling properties near this
fixed point to obtain the results of Ref. 6. The ex-

perimental observation of LLM ~ w~ ~ M' indeed
justifies that analysis for intermediate values of T2(p).

When T2(p) approaches Tb it is no longer justified
to ignore fluctuations in S~. One must first carry out
a finite number of iterations of the renormalization
group, li, so that the renormalized value r i (I i ) be-
comes of order unity. ' " These iterations are per-
formed in the vicinity of the Heisenberg multicritical
point (p =0, T = Tb), where v is believed to be ir
relevant. ' ' Thus, the renormalized variable
v(li) = v exp(@„li/v) (v is the correlation length ex-
ponent) decreases with increasing Ii, i.e., with de-
creasing r]. To leading order in « = 4 —d it turns out
that after li iterations Eq. (1) maintains the same
form, with F[, r~, u, v, and M being replaced by their
renormalized values. " As soon as Fi(li) = 1 one can
integrate Si out, and remain with (renormalized)
Eqs. (2) and (3). Noting the fact that
lv(li) I «u(li) = un (uJ is the Heisenberg fixed-
point value), and using M(li)' = 1/(8utt), we find
that both w =2&2v(li)M(li) = —v(li)/ ju(ii) and
u, = —7v(li)/6 become small for sufficiently large
I]. We are thus not very far from the Gaussian
(two-component) fixed point, at which w"= u2 =0,
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and we must consider crossovers from the Gaussian to

both the XY and the first ord-er behavior N. ote that the
higher-order terms [e.g. , the coefficient of
(S2 +S2 )'] are quite small after /t iterations.

%e now proceed to iterate the renormalization-
group recursion relations for the effective Hamiltoni-
an (2). The results, to order a=4 —d, may be writ-
ten"

t2(l) = t2(0)e '/g (I), t2(0) = Fq(0) +0(e)
u2(i) = u, e"/Q (I), w (I) = w exp[(1+ e/2) I]/g (i)'i'

(4)

where the factor Q (I) = 1+(e"—I ) u2/uzr reflects
the Gaussian to XY crossover. If Eqs. (4) are iterat-
ed until t, (i,) = I, and Landau theory is then used, "
one finds the first-order Potts transition at
F2(/2) = a (i2)'/2u2(i2) = 0 (1). Thus,

el
2e '~ (iv'/u2) ''~ Ju(i, )/utt[ 'i', and we have

g (I2) —I cc )u(lt) )' ' ~ (Tt, —T2), where
&= lit, l(I —Oiv), cu=a+O(e') being the exponent
associated with u2. For T approaching T& this be-
comes small, g (I2) becomes of order unity and Eqs.
(4) reduce to Gaussian scaling, i.e., to Landau ex-
ponents. As T2(p) decreases, It will decrease, and
we may have a range of T2(p) for which Q (I2) » 1,
yielding XY-like exponents. One should note that
~@„~ is rather small [probably smaller than 0.1 (Ref.
10)], so that the range over which g (i~) = I may be
small. The experiments analyzed in Ref. 6,- which
had Tt, —T2(p) & 1.5 K, must have been outside of
this range.

The result concerning the shape of Tt(p) follows
in the same way. After It iterations, F2(lt) is also a

combination of t(i, ) cc (Tb —T)e and
l )/v

t]p/yp(lt) ~pe . Combining the conditions of
Ft(/i) = I and F2(/t) = vv /2u2 ~ rt(lt) we finally find

that at T2(p) one has p(li) ~u(lt), yielding

It should be noted that combining the parameters
used in the Landau-theory calculations"" with the
coefficients of the gradient terms'2 (ignoring all
higher-order terms), one finds (dimensionless)
values of u and v which are too small to yield any re-
gime of nonclassical exponents (even at p =0)." In
fact there are many transient irrelevant variables [e.g. ,
the coefficient f of —X (V g )', see Refs. 18 and

19], which cause an increase in u and v in the first fea
iterations. This initial growth in u may be responsible
for the observed intermediate XY-like regime.

Because of these conflicting transient effects, there
is no theoretical quantitative way to estimate the size
of the crossover region below which the new Gaus-
sian behavior will be observed. Since the earlier ex-
periments had t = ( Tt, —T2)/Tt, & 10 ', further stud-
ies with smaller values of t may yield upper bounds
on this region, or begin to show the new behavior.
%'e hope this paper will stimulate such experiments.

In addition to the present calculation we have also
calculated the tricritical and critical points into which
the Potts transition turns under stress along
[(I+ 8) (I + 5) (I —28) ]. The universal ratio of the
values of 8, and 8, at these points also exhibits an
XY-to-Gaussian crossover as Tb is approached. "

Finally, it should be noted that similar results apply
to all the other cases in which the phase diagram of
Fig. 1 applies, e.g. , a cubic ferromagnet in a magnetic
field along [111].'o
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