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The low-temperature thermodynamic properties of a spin- —one-dimensional random aniso-
2

tropic (Heisenberg-Ising) antiferromagnet described by the Hamiltonian H = X,J,(o'o'+'
+ cd cd + p cfog c7z ) are studied as a function of disorder and anisotropy. The Jl' ~ 0 are in-

dependent random variables obeying a probability distribution P (J), and 0»y»~. The ap-

proach used is a numerical implementation of a real-space renormalization-group (RG) method
previously introduced. The isotropic Heisenberg case (y =1), the XY case (y =0), and the Is-

ing case (y = ~) are fixed points of the RG transformation. It is found that in the XY region
y» 1, including the Heisenberg point, the system exhibits singular behavior in the thermo-
dynamic properties for arbitrary probability distributions for the couplings. For the XY limit

(y =0) this is in agreement with known exact results. The functional form for the low-

temperature susceptibility is found to be X —1/(Tln~(T/To)) in the entire region 0» y» 1 for

arbitrary probability distributions. In the Ising region (y & 1) the susceptibility shows an ap-

proximate power-law divergence for small anisotropy but goes eventually to zero as T 0. Pos-
sible relevance of these results to recent experiments on Qn(TCNQ)2 is discussed.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I) the
low-temperature thermodynamic properties of a ran-

dom antiferromagnetic Heisenberg chain (S =-
2 )

were studied via an approximate renormalization-
group (RG) technique. The results obtained were in

striking contradiction with previous work on this
model": The antiferromagnetic Heisenberg chain
was found to display singular behavior in the low-

temperature thermodynamic properties for any form
of randomness present. An independent study by
Ma et al. 4 found similar results, while previous work
had suggested that singular behavior would only be
obtained if the underlying probability distribution for
the couplings, P(J), was singular at the origin (as
happens in the classical Heisenberg-chain model. 5

As pointed out earlier by Bulaevskii et al. 6 howev-
er, our results could be expected since there exists a
related model for which similar results are known to
be exact. For the quantum XY model, an exact solu-
tion by Dyson' for a certain class of probability distri-
butions P (J) and later extended by Eggarter er al. s to
arbitrary probability distributions shows the density of
states to exhibit a singularity at zero energy of the
form

p(a)— 1

eln3e

and consequently, the low-temperature susceptibility

and specific heat behave as

X T 1

Tin'T/Tp

1

)ln'T/Tp)

(2a)

(2b)

x(T) —I/T x

C(T) —T

(3a)

(3b)

with o,„, o., slowly varying functions of temperature
that approach unity as the temperature goes to zero.
Clearly, the form [Eq. (2)] can be rewritten as Eq.
(3), with

a„(T)= I— 2

lnTp T

a, (T) =I— 3
lnTp T

(4a)

(4b)

so that a close relation between the XY and Heisen-
berg model is apparent. [In Eq. (4), we have rede-
fined for convenience a, = —d lnX/d inT, which
agrees with Eq. (3a) for slowly varying a„(T), and

for arbitrary P(J) [except of course P(J)
= 5(J Jp), or any other form of disorder that
can be eliminated by a simple phase transformations].
In Paper I, we found the susceptibility and specific
heat of the random Heisenberg chain to behave as
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similarly for a, ) .]
In this paper we want to shed more light on this re-

lationship by studying the general random anisotropic
(Heisenberg-Ising) antiferromagnetic chain [see Eq.
(6)]. We consider only the case of a uniform aniso-
tropy, y - J'/ J„with J,' the ith coupling in the z

direction and J, the ith coupling in the xy plane. (A
more general model would include the possibility of
different anisotropies for different bonds. ) y=1 def-
ines the isotropic Heisenberg model, y =0 the XY
model, and y = ~ the Ising model. Our model is fur-
ther defined by the probability distribution for the
couplings P(J, ). The couplings for different bonds
are taken to be independent random variables.

The method used, which is described in Sec. III, is
a numerical implementation of the renormalization-
group approach discussed in I, properly extended to
the anisotropic case. In I, a further approximation on
the recursion relations was made which allowed an
approximate analytical evaluation of the renormalized
probability distribution P„(J) for the Heisenberg
case. Having an analytic form for P„(J) gave us a
clear physical insight into the qualitative physics of
the problem, but the further approximation does lead
to small quantitative changes in the results. Here we
are interested in more quantitative results and there-
fore we perform the RG calculation numerically: we
generate in the computer a long random chain with

couplings obeying a given probability distribution
P(J) and perform the iteration procedure numerical-

ly with the full recursion relations for the couplings.
One could at each step compute the resulting renor-
malized probability distribution for the couplings but
this is not necessary if we only want to obtain the
thermodynamic properties. Also, this numerical pro-
cedure allows us to study arbitrary probability distri-
butions P (J), and to extend the calculations to the
general anisotropic case.

Our results show that in the entire XY region in-
cluding the Heisenberg point (y ~ 1) one obtains
singular thermodynamic properties of the form [Eq.
(3)] for arbitrary probability distributions. We con-
centrate on the susceptibility for which better statis-
tics is obtained. We find that the functional form

l
r(« ~lro~

fits our low-temperature numerical results over the
whole temperature range studied (about three orders
of magnitude), for all values of y ~ 1 and arbitrary
P(J). To depends strongly on P(J) and y while m

seems to be independent of P (J) and y and close to
two. For the XY model, good agreement is found
with Dyson's exact results, which gives us confidence
in the reliability of the results for the general y A 0
case. Since in the XYmodel m =2, we conjecture
this to be a universal result valid for arbitrary P(J)
and y ~ 1. However, we cannot rule out a possible

weak dependence of m with y.
In the region y & 1, qualitatively different behavior

is obtained. Except for the case of a singular proba-
bility distribution P(J), there is a gap in the spec-
trum between the ground state and the first excited
states that causes the susceptibility to go to zero at
sufficiently low temperatures. However, for suffi-
ciently large randomness and not too large anisotropy
the susceptibility shows a divergent approximate
power-law behavior over a wide temperature range
and only at very low temperatures it goes to zero.
Recent experiments' on Qn(TCNQ)2 show the sus-
ceptibility to deviate from power-law behavior and
turn towards zero at around 5 mK. Even though
other explanations are possible, we conclude that a
small anisotropy in one direction would be a possible
explanation for this effect.

The outline of this paper is as follows: In Sec. II
we define the model and review some exact results
for it in various limiting cases. In Sec. III we discuss
the renormalization-group approach to be used. The
method is an extension of a zero-temperature ap-
proach" that has been widely used to study ground-
state properties of quantum Hamiltenians. We show
how to extend it to make it applicable to compute ap-
proximately low-temperature properties. To illustrate
the accuracy of the finite-temperature method, we

apply it to the uniform Heisenberg chain and com-
pare the results with accurate numerical estimates by
Bonner and Fisher. ' In Sec. IV we obtain the recur-
sion relations for the random chain for arbitrary y
and discuss their behavior qualitatively. From the
behavior of the couplings under iterations we can an-
ticipate the low-temperature behavior as a function of
y. In Sec. V we describe the numerical procedure
used and show some representative numerical results.
Finally we summarize our conclusions in Sec. VI.

II. MODEL

The model of interest is defined by the Hamiltoni-
an

H = XJ ( era'+'+o'rr'+'+ err'cr'+')+h Xcr'

(6)
with 0 ~ y & ~ and JI ~ 0 a random variable
described by a probability distribution P(J;). o.„', ~r',
and col are the usual Pauli matrices, and h is an
external magnetic field. We will only discuss the
thermodynamic properties iri the limit h 0. Vari-
ous exact results are known in different limiting
cases. For y = ~ (Ising model) the thermodynamic
properties in zero magnetic field can be calculated ex-
actly by the transfer matrix technique. ' One finds
for the longitudinal susceptibility

1 1+ (u)
T 1 —(Q)
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with u =—tanh(J, /T). It is easily seen that X will

diverge at low temperatures only if the underlying
probability distribution for the couplings is singular:
for P(J, ) —I/J, , one finds X —I/T O.n the other
hand, if P(J, ) = 0 around J, =0 the susceptibihty will

go to zero exponentially at low temperatures. This is
of course obvious from a physical point of view since
the Ising model will have a nonzero gap if the J, 's
have a lower bound greater than zero. Similarly, for
the specific heat one obtains C (T) —T' if
P (J ) —I/J and C going to zero exponentially if
P(J, ) =0 around J, =O.

For y =0 one obtains the quantum XY model. '~

By using the jordan-signer transformation the Ham-
iltonian (6) with y =0 can be rewritten as

H = X2J;(C; C;+)+C;~(C;) (8)

Note that P„(J) is nonsingular at the origin and that
P„(J) 8(J —Jo) as n ~. Nevertheless, from
Dyson's exact solution one finds that for any n the
density of states at low energies has a singularity of
the form

p(e) = 1

6 ln 6
(10)

This is a rather surprising feature, since for a uni-
form chain the density of states goes to a constant at
the origin. It has been recently shown by Eggarter
et al. s that the singularity [Eq. (10)] appears univer-
sally on the Hamiltonian (8) for any randomness
present and is not restricted to the particular class of
probability distributions [Eq. (9)]. The thermo-
dynamics for the XY chain can be easily obtained
from the density of states since it is a free-fermion
problem. One finds for the transverse susceptibility
and the specific heat at low temperatures

1

T In'T/To

1

I
in'Tl Tpl

(1 I a)

(I lb)

i.e., an arbitrary probability distribution for the cou-

with the operators C; obeying anticommutation rela-
tions. This Hamiltonian, describing free spinless fer-
mion with "off-diagonal disorder, " has been exten-
sively studied both numerically" and analytical-
ly. ' " As pointed out by Smith, ' Dyson' solved
many years ago a particular case of a random chain of
oscillators that maps onto a Hamiltonian of the form
(8). Dyson found an exact solution for the density
of states for a particular class of probability distribu-
tions of the form

plings produces strong singularities in the density of
states and in the thermodynamic properties. For the
uniform chain instead, X nonzero constant and
C —T as the temperature goes to zero.

For the case of arbitrary y, nothing is known ex-
actly for the random case, since the o-,'0-,'+' term in-
troduces interactions between the fermions and it is
now a many-body problem. The Hamiltonian is fer-
mion language is now

H = X[2J;(C; C;+(+C;+(C;)

—2JyC;"C;+2Jy(C; C;)(CiiC+i)] . (12)

It has been argued by Theodorou~ that the diagonal
disorder term (C; C, ) in Eq. (12) should erase the
singularity in the density of states [Eq. (10)]. Even
though this would be true if the interaction term in
Eq. (12) was absent, we will find from our calculation
that the interaction term restores a singularity of the
same type as occurs for the XY model for the general
case y «1.

Finally, let us briefly revie~ some results for the
uniform Heisenberg-Ising chain, i.e., P(J)
=8(J—Jo). Various ground-state properties
have been calculated exactly from the Bethe-ansatz
solution, as well as the form of the low-lying excita-
tions. " For y «1 the spectrum is gapless and the
dispersion law for the elementary excitations goes as
sin(q )." Correspondingly, the zero-temperature
susceptibility is finite. For y & 1 there is a gap in the
spectrum and the susceptibility goes to zero exponen-
tially at zero temperature. Ground-state correlation
functions have been calculated by Luther and
Peschel' for a continuum generalization of the Ham-
iltonian (6). In the region y ~ I, correlation func-
tions decay algebraically with distance with exponents
continuously, dependent on y, while for y & 1 they
decay exponentially. This is to be expected, since
there is an exact mapping from this model to the
Baxter model'; the region y «1 maps onto the line
of critical points in the Baxter model. As for finite
temperatures, exact results are scarce" but there ex-
ist reliable finite-cell calculations extrapolated to in-
finite chains. "

In summary, for the uniform chain we find in the
entire region y «1 qualitatively similar behavior:
correlation functions decay algebraically, the spec-
trum is gapless, and the zero-temperature susceptibil-
ity is finite. Hence it will not be too surprising to
find in the random chain similar behavior to the ran-
dom XY model for the entire region y «1. Instead,
for y & 1 in the uniform chain there is a gap and the
zero-temperature susceptibility is zero, as in the
Ising-model limit. Correspondingly we will find for
the random chain that the behavior in that region
resembles the one of the random Ising model.
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III. RENORMALIZATION-GROUP METHOD

The method used in this work is a simple exten-
sion of a zero-temperature RG method" to make it
applicable to study finite-temperature properties. Let
H denote the Hamiltonian of a quantum lattice sys-
tem. We divide the lattice into cells, and the Hamil-
tonian into an intracell part Ho and an intercell cou-
pling V:

H~=Ho+ V

The intracell Hamiltonian can be written as a sum of
decoupled cell Hamiltonians

-pH
e-pNgTr~e

-PH
Tr{&le

(18)

where N is the number of sites in the system. Com-
bining Eqs. (15), (17), and (18) we obtain for the
free energy per site the recursion relation

space of low cell states. In higher order, Eq. (17)
takes into account transitions starting at a low cell
state, going through intermediate high states and re-
turning to a low state. "

The second factor in Eq. (15) we evaluate explicitly
to some order in the intercell coupling V. Let

eo- XEPo, (14) f =g+ f', —
s

where p labels the cells. Each H$ has a finite (small)
number of degrees of freedom, and can thus be ex-
actly diagonalized. Let {I }~ denote a subset of low-

lying cell eigenstates for a given cell p, and {I } the
subset of the Hilbert space formed by products of
these low-lying cell states. In the zero-temperature
method, one simply truncates the original Hamiltoni-
an to the subspace of state {I }. The resulting "re-
normalized Hamiltonian" can usually be cast into the
same form as the original one, with "cell operators"
replacing the original site operators. Iterating this
procedure, one obtains approximate answers for the
ground-state properties of the system.

We want to extend this approach to be able to
compute approximately finite-temperature properties,
with emphasis on low-temperature properties. For
that purpose, we ~rite the partition function for the
system as

-pH
-pH -pH Tr eZ=Tr e =Tr{&le

Tr{()e
(15)

In the first factor, we want to replace H by a renor-
malized operator that has only matrix elements
between the low cell states. We achieve this by intro-
ducing a mapping operator T [I(,{o], that maps the
low states in cr space to a complete set of states in a
smaller Hilbert space I(,. T [I(, {o ] is defined so that it
satisfies

Tr„T[I(,{o] =1(, (16)

(17)

Equation (17) defines the renormalized Hamiltonian

H„. To lowest order in the intercell coupling, H„ is

simply the original Hamiltonian truncated to the sub-

-where l~ denotes the identity in the subspace of cr

space spanned by the low-lying cell states. Using Eq.
(16), we can then write for the first factor in Eq. (15)

-PH -pH
Trl(le =Tr„Trl(lT[I(, {(r]e

-pH-Tr e

-pH~()
z~ =Tr{()e

(((((o-
zp = Tl {A )e

(21a)

(21b)

In this paper, we will restrict ourselves to the lowest-

order recursion relation (20). Note that at low tem-

peratures the contributions to the free energy from
the first few iterations will be very small (if T is such
that dE/T )) 1, with hE the gap between the low

and high cell states) and only after several iterations
one will obtain appreciable contributions in Eq. (20).
But at that point one has already included consider-
able structure in each "supercell" so that the decou-

pling approximations made are not as drastic as they

may seem.
To illustrate the accuracy of the method, we apply

it to a uniform Heisenberg chain and compare our
results to accurate finite-chain calculations by Bonner
and Fisher, extrapolated to infinite chains. We take
cells of three sites each and keep only the two

lowest-lying states per cell in defining the renormal-
ized Hamiltonian, which is of the same form as the
original one. The recursion relations for the general
case of arbitrary y and random J 's will be discussed
in the next section. For the particular case of the un-

iform isotropic Heisenberg chain they are simply
J'= —J, h'= h. The partition functions for the cells

where f' is the free energy per site for the renormal-
ized system, and s is the number of sites per cell.
Note that Eq. (19) is of the same form as the usual
recursion relation used for classical systems. '

In a lowest-order calculation, we truncate the Ham-
iltonian to the subspace of low-lying cell states to ob-
tain H„, and compute Eq. (18) to zeroth order in the
intercell coupling. We obtain the recursion relation

( t

Za 1f =——ln 1+—+ f'—
s z( s

(

where zt and zq are the cell partition functions for the
low- and the remaining higher-lying cell states,
respectively,
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are simply calculated from Eq. (21), and the thermo-
dynamic properties are obtained by taking derivatives
of Eq. (20).

Figure 1 shows the specific heat from the RG cal-
culation (full line) compared with the Bonner-Fisher
(BF) estimate (dashed lines). As expected, the
agreement is best at low temperatures, but it is also
reasonable at high temperatures, since we have not
discarded any of the degrees of freedom in our calcu-
lation. %e also show in Fig. 1 the specific heat for
an anisotropic case (y = 2). Here, the specific heat
goes to zero exponentially at low temperatures and
the maximum shifts to lower values. These features
are in agreement with the BF numerical calculations.
%e do not find the spurious peak at low tempera-
tures that occurs in the BF calculation due to finite-
cell effects.

The main defect of this approximate calculation
concerns the behavior of the gap. It is known that
the gap between the ground state and the first excited
state in the AF Heisenberg chain goes as 1/N, with N
the number of sites in the chain. The recursion rela-
tion J =

9 J gives a gap that goes to zero somewhat

too slowly (as 1/N ' ). This is most apparent in the
susceptibility: instead of obtaining a susceptibility
that goes to a nonzero value at T = 0 (which is
directly connected to the gap going as 1/N) we obtain
a vanishing zero-temperature susceptibility. In fact,
this also causes the specific-heat curve to go to zero
with vanishing slope instead of linearly as one ex-
pects. However, the slope goes to zero so sharply
that it cannot be distinguished in Fig. 1.

l I I I

0.20

O. I6

X O. I2

0.08

0.04

I

F16. 2. Susceptibility for the isotropic Heisenberg chain
from the RG calculation (full line) and the BF calculation
(dashed line). Also shown is the susceptibility for an aniso-
tropic case (y =2) from the RG cakulation.

Figure 2 shows the magnetic susceptibility. As ex-
pected, the RG curve goes to zero sharply at zero
temperature. Nevertheless, the overall agreement
with the BF results is reasonably good (the maximum
is almost exactly at the same position). As we will

argue in Sec. V this inaccuracy at low T for the uni-
form chain should not affect our conclusions for the
random chain. In Fig. 2 we show also the susceptibil-
ity for an anisotropic case (y = 2): it goes to zero ex-
ponentially and the maximum is somewhat shifted
and bigger, in agreement with the BF results.

IV. RECURSION REI.ATIONS

1 2 3 4 5

%e now proceed to solve the general anisotropic
random model. As in the previous section, we divide
the chain in cells of three sites, as shown in Fig. 3.
Note that we have labeled each bond J; with a dif-
ferent anisotropy y;. The reason is that after the first
iteration we will generate different anisotropies for
different bonds. Again, we diagonalize the intracell
Hamiltonian and keep only the two lowest-lyi'ng ener-
gy states in each cell. The resulting renormalized
Hami1tonian is of the same form as the origina1 one.
The recursion relations for the renormalized coupling
and anisotropy are (see Fig. 3 for reference)

FIG. 1. Specific heat for the isotropic Heisenberg chain

(y =1) from the RG calculation (full line) and the Bonner-
Fisher calculation (dashed line). Also shown is the specific
heat for an anisotropic case (y =2) from the RG calculation.

J'=~ (J,, &, ,J,, y, )~ (J,, &,,x,, y, )J, ,

y'=~(Ji, yi, J~, y2)~ (Js. ys J4 y4)y3 (22b)
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with

A =2a}aq,

8 = (a)'+a j —ap )/2a, a, ,

(23a)

(23b)

2Jg

0

2J)
—y}J}—y~J~

2J}

0

2J}

yzJ~ —y}J}
(24)

and (a&,at, a3) the eigenvector corresponding to the
lowest eigenvalue of the matrix (for the left cell in

Fig. 3)

In the region y & 1, the flow is to the Ising limit

y = ~, and the coupling in the z direction J, goes to a
nonzero value J, & 0, which indicates a finite gap
between the ground state and first excited states.
Further, ground-state correlation functions decay ex-
ponentially with distance in this region. ' These
features are in accordance with the known behavior.

For the disordered case, the points y; = 1, 0, and

y; = ~ for all i are still fixed points of the RG
transformation (22). Around the Heisenberg point
one obtains (for the left cell of Fig. 3) to first order
in y, —1, y, -1

It is interesting to discuss various special cases, where
the recursion relations (22) simplify. Consider first
the uniform chain (ail J s and all 7 s equal). The
recursion relations simplify to

8(J~, y~, J~, y~) =1+(y~ —1)D~(J~,J~)

+ (7 p
—1)Dg(J),Jp)

[see Eq. (22b) for the definition of 8], with

(27)

with

4a 2

(2+a')'
}

y = —a~y

4a=
(g + ~2)1/2

(25a)

(25b)

(3 —b)' J}
2b(3+b) J/+ Jp+ (J(+Jp —J/Jg)' '

(28a)

D2 (2gb)Ji+ Jp+ (Jj' +Jj —JiJp)' '

These recursion relations have been obtained and
discussed by Rabin. " The Heisenberg point (y = 1)
is an unstable fixed point. For y & 1 the flow is to
the XY point y =0. The coupling J and thus the gap
between the ground state and first excited state goes
to zero in the region y ~ 1 as one iterates, in accor-
dance with the kn'own behavior, though somewhat
too slowly (as 1/No" for y = 1 and 1/NO 6' for y = 0
instead of as 1/A/). Further, the recursion relations
(25) yield the correct algebraic decay of static
ground-state correlation functions. ~4 In the region

y ~ 1 and the exponents at the Heisenberg and xy
points are in good agreement with the known
values. ' ' However, this simple calculation will not
give exponents that vary continuously with y, since
for all y & 1 the flow is to the y =0 fixed point and
one obtains the XY exponents. A more sophisticated
RG calculation that yields a line of fixed point in the
region y ~ 1 ~ould be needed to reproduce that
feature.

I I f
I ~1 )1 I}2 ~2 l J5~3l J.,~4

J)+Jp+2(J(+ Jj —JtJt)'
J}-J)

(28c)

Ji/2J~, J& «J,
2b(b+3) Jg ((J}
3(3+b )

(

This behavior, in particular, the cases when J}& J&,
causes the couplings to renormalize to zero exponen-
tially fast on the average, instead of algebraically as
occurs in the uniform chain. As discussed in I, this
is responsible for the singular behavior of the ther-
modynamic properties at low temperatures.

Around the XY point we have, to lowest order

Since D~(J&,Jq) and Dq(J, ,Jq) are bigger than zero
for all J~,J~ Eq. (27) implies that 7', = 1 is an unstable
fixed point also with disorder. The effect of random-
ness is only to make the flow away from the fixed
point faster than in the uniform case if J}& J~ and
slower if J}& J~.

For the change in the size of the coupling at the
Heisenberg point we have, as discussed in I

J}8 (J2~ yll J2i v2) g g $/pjJ} +J& j
(30)

FIG. 3. Three-site cells involved in the RG transforma-

tion.

Since 8 ~ 1 for all J~,Jq, Eqs. (30) and (22) show
that the XY point is a stable fixed point. Again, the
effect of randomness is only to make the flow to the
XY point faster than in the uniform case if J}& J~
and slower if J}& Jq.
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For the change on the size of the couplings at the
XY point one obtains (y)

J(/Jz, J( (& Jz

A (J(Jz) = z, i,
= 1, Jz (& J(

J)

I/J2, J( = J2. (31)

Equation (31) has qualitatively the same behavior as
Eq. (29). As a consequence of this, the low-

temperature thermodynamic properties at the Heisen-
berg and XY points will be qualitatively similar.

Finally, let us discuss the recursion relations close
to the Ising point. It is convenient to define 8= 1/y
and look at the recursion relations

5'=D(J, , S, ,Jz, S,)D(J5, S,, J4, 54)53

Jg' = C(J(, 5(,Jz, Sz)C(J), 55,J4, 84) Jg3

To lowest order in 8 one obtains

2J, iD (J), 5(,Jz, Sz) = 5(
22

(32a)

(32b)

(33)

Equation (33) shows that the Ising fixed point is
stable, since D & 1. For J,2 « J,~, the expansion
that gives Eq. (33) breaks down and one obtains
D 1. The effect of randomness on the anisotropy
is similar as for the cases discussed earlier. For the
change in the coupling size one obtains
C(J(, 5(,Jz, 52) 1 as 8(, Sz 0 and this, together
with Eq. (32a) will cause the couplings in the z direc-
tion to renormalize to finite nonzero values as hap-
pens in the uniform case. Hence the thermodynamic
properties in this region will be qualitatively different
to the ones in the region y «1 for sufficiently low

temperatures.
Let us summarize the qualitative picture that em-

erges from these recursion relations. This is most
clearly done in terms of the flow diagram in Fig. 4.
For simplicity, we consider probability distributions
with a cutoff at some J= Jo, and characterize the dis-
order at a given iteration step by the average of the
variables y =—lnJ/Jp for the XI'region (lower half
of Fig. 4) and yz = —lnJ, /Jp for the Ising region
(upper half) with Jp =yJp. These variables are better
behaved statistically than the couplings themselves,
as discussed in I. For (y ) = 0 we have the ordered
chain P(J) =8(J—Jp) and as (y) ~ we obtain
free spins, and similarly for y, . On the vertical axis
we plot the average anisotropy (y) (although on the
axis (y) =0, 1, ~ and y =0, y, =0 we have the
same anisotropy for all bonds, i.e., y; = (y) for all i).
On the ordered line, the flow is away from the point

y =1 as discussed. When we introduce some disor-
der in the region y «1, the flow is to the free-spin
limit (y ) = ~; if y = 1 initially this occurs along the
y-1 line, if y & 1 the flow is also towards the y =0
axis. In either case, it implies that a singularity at the

WC

FIG. 4. Flow diagram derived from the recursion rela-
tions. On the lower half, the variable on the horizontal axis
is y = —lnJ/Jo and in the upper half y, =—lnJ, /Jo. Jo is the
cutoff in the probability distribution.

origin will be generated in the probability distribution
for the couplings after n iterations, P„(J), for any ini-

tial disorder, giving rise to singular thermodynamic
behavior at low temperatures. As mentioned earlier,
our recursion relations overestimate the flow to the
XI' limit in the y ( I region (they do not give a "line
of fixed points" in the ordered case). Hence, the
flow lines in the lower half of Fig. 4 should probably
be more "horizontal. " For the purposes of this pa-

per however this is not too serious since we will find
the thermodynamic behavior in the entire y «1 re-

gion, including the Heisenberg line, to be quite simi-
lar.

In the upper half of Fig. 4, the flow is to the fixed
line (y) = ~, and the limit (y, ) = ~ is never
reached. This implies that if one starts with a non-
singular probability distribution P(J), singularities
will not be generated and one will obtain an exponen-
tially vanishing susceptibility and specific heat at low

temperature. However, if y is not too large, the flow

to the (y) = 00 axis occurs after several iterations
and the final (y, ) can be quite large. As we will see
in the next section, this implies that there will be an
intermediate region in temperature where X appears
to diverge as a power law before it goes to zero at
lower temperatures. Qualitatively, for a given tem-
perature range T~ & T & T2 the susceptibility will be
diverging in that interval if we are on a flow line
that crosses both lines (y, ) = —inT(/Jp and (y, )
= —lnTz/Jp and will go to zero otherwise.

V. NUMERICAL PROCEDURE AND RESULTS

The free energy is obtained by iterating and averag-
ing Eq. (20), as

»~ ((r, /)f= ——X n ln 1+
(
)—

3 „p 3 z('"'(r, /()
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The average ( )„ is taken with respect to the nth
iteration probability distribution P„(J) I.n principle,
P„(J) can be obtained from the recursion relations
and the starting probability distribution, as discussed
in I. However, it looks like a formidable task to
compute P„(J) using the full recursion relations [Eq.
(22)], even for the isotropic Heisenberg case. There-
fore, in I P„(J) was evaluated approximately for that
case by taking an approximate form for the recursion
relations, and the average ( ) „was calculated by in-

tegration. Here, we choose to evaluate Eq. (34)
directly by a numerical simulation procedure to avoid
any additional approximation on the recursion rela-
tions [Eq. (22)]. ~e generate a long chain of
X = 3 sites with random couplings distributed ac-
cording to a given initial P (J) with a given initial y.
We then compute the partition functions for the cells
and obtain the first contribution to f. Explicitly

0.4

C
0.3

0.2

Nf =—T Xln 1+—+N'f '

p

(35)

i.e., a uniform spread around J =1. For a 1, the
uniform chain limit is approached. In the specific
heat, the effect of the randomness at low tempera-
tures is to yield an infinite slope at zero temperature.
This happens for any degree of randomness. At high
tern'peratures, the maximum is broadened and shifted
to higher temperatures with respect to the uniform
case. For the susceptibility, we see that the disorder
causes X to diverge at low temperatures; for small
disorder this happens at lower temperatures but it will

occur at sufficiently low temperatures even for "in-

where p labels cells, and N' =N/3. For computing
N'f 'we obtain the new couplings from the. recursion

n 0-1
relations [Eq. (22)] (we now have a chain with 3 0

sites) and repeat this procedure. After a few itera-
tions (say n

~
iterations), if we are in the y ~ 1 region

all couplings have renormalized to zero (more pre-
cisely, to values much less than the given tempera-

n&-n
&ture) so that we are left with a chain of 3 o ' free

spins and can compute their thermodynamics directly.
In the Ising region y & 1 we are after a few iterations
at the Ising point and the thermodynamics of the
sites can be computed directly from the transfer ma-
trix formalism. A chain of 3 sites was found to be
sufficiently long for the temperature range studied
(the chain has to be taken longer the lower the tem-
perature). Further, we did the calculations on 8
chains for each case to obtain better statistics.

In Figs. 5 and 6 we show the effect of various de-
grees of randomness on the specific heat and suscep-
tibility for the Heisenberg case. Qualitatively similar
results are obtained in the ~hole region y ~ 1. The
probability distribution considered here is of the form

P(J) = g(J —(I —a ))8((1+a ) —J))/2a

FIG. 5. Specific heat for the isotropic Heisenberg chain

with a probability distribution P (J ) = 8(J —(1 —a ))
& 8((1+a)—J)/2a. (a) a =0 (uniform chain); (b) a =0.5;
and (c) a =1.

finitesimal" disorder. As already mentioned, we
somewhat overestimate the gap so that we get a van-
ishing zero-temperature susceptibility instead of a fin-
ite value in the uniform case. Thus, our approximate
X at low temperatures is lower than the true value in
that case. If we assume this to still hold in the ran-
dom case, that would indicate that the susceptibility
diverges at least as strongly as found from our ap-
proximate calculation.

0.24

O. I6

0.08

0.04

FIG. 6. Susceptibility for the isotropic Heisenberg chain,
same probability law as in Fig. 5. (a) a =0; (b) a =0.2; (c)
a =05; and (d) a =1,
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(36)

(aj

In Figs. 7 we show the specific heat [Fig. 7(a)] and
susceptibility [Fig. 7(b)] for a nonsingular probability
distribution [P(J) = e(1 —J) ] and different values of
y, in a log-log plot versus temperature for the region

y ~ 1. In this and the following plots we cover a
range of three orders of magnitude in temperature,
with the highest temperature being about —of the

average value of the coupling. %e see that C and X

show approximate power-law behavior, as found in

Paper I, with slopes approaching 0 and 1, respective-
ly, as the temperature is lowered. Very similar
behavior is found for any other P(J), whether singu-
lar or nonsingular. The thermodynamic quantities
show little dependence with y for y ~ 1.

As mentioned in Sec. II, for the XF model we
know the exact asymptotic behavior at low tempera-
tures. In particular, for the class of probability distri-
butions discussed by Dyson

'2n —1P(J)2q" J
(n —I )! Jo

the low-temperature susceptibility behaves as'

x(T) = 1

Tln2(nT/Jo)
(37)

We choose to look at this particular class of P (J ) 's

since here we know the value of the parameter T0 in
Eq. (1la). Of course, this is irrelevant at sufficiently
low temperatures but going to too low temperatures
would be very computer time consuming. Figure 8
shows the exponent a„=—dlnX/dlnT for the XY
model and the cases n =0.2 and n = 1 of Eq. (36)
(with Jo= I). The full lines are the equation ob-
tained from the exact solution (37)

2 (38)

and the empty and fu11 circles the RG calculation for
8 chains of 3' sites each (the vertical bars are the
standard deviations). Note that there are no adjust-
able parameters. The agreement is quite satisfactory,
considering the simplicity of the approximation used.
As n grows, the behavior at a given temperature be-
comes less singular (nz is smaller).

In Fig. 9 we show the exponent o.„for the proba-
bility distributions just discussed and y =0.5 [Fig.
9(a)] and y =1 [Fig. 9(b)]. The behavior is qualita-.

tively similar to the y =0 case. We have fitted our
numerical results to a curve of the form

a„(T)=1-
ln T/Tp

(39)

I

-IO
I

-8
lnT

-6
with m = 2 and To an adjustable parameter. To
depends strongly on y and P (J) (for n = 1, To = 8.5

I I I I I I

ax

n =0.2

0 8 =1~=3=f—
~
—n- t~3~a~ I

N

m~ 0~
R

I

-IO
I

-8
SnT

I

-6

FIG. 7. (a) Specific heat and (b) susceptibility vs tem-
perature (log-log plot) for the probability distribution
.P(J) =8(1—J) and different anisotropies in the region

y ~~1.

I I I

tnT

I I I

FIG, 8. Susceptibility exponent az vs temperature for the
XY model and two probability distributions of the form Eq.
(36). The empty and full circles are the RG results for
n =0.2 and 1, respectively in Eq. (36), the vertical bars are
the standard deviations. The full lines are Dyson's exact
solution Eq. (38).
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l

-IO
I

-8
goT

—4

(o} y=0.5

o =0.2
O 8 ~=&7=A~—I—,

O»

x O6

changes for any y & 1 if the probability distribution is
nonsingular, and the susceptibility goes to zero. As
we increase y, the deviations from power-law
behavior occur at higher temperature. Recent experi-
ments' on the very low-temperature susceptibility of
quinolinium (TCNQ) q show the susceptibility to devi-
ate from power-law behavior and turn toward zero at
around 5 mK. %e see from Fig. 10 that some aniso-
tropy in one direction would be a possible explana-
tion for this effect. For different nonsingular proba-
bility distributions, the deviations from power-law
behavior will occur at different temperatures. For a
singular probability distribution instead, one finds
singular behavior down to zero temperature since this
occurs also in the Ising limit y = ~.

o =0.2

x O6

I

—8
EoT

FIG. 9. Susceptibility exponent az vs temperature for (a)
y =0.5 and (b) y =1 ~ith a probability distribution of the
form Eq. (36) and n =0.2 (empty circles) and 1 (full cir-
cles). The full lines are Eq. (39) ~ith m =2 and To adjusted
to give the best fit.

-IO -8
SoT
I I )

for y = 1, 2.6 for y =0.5 and 1 for y = 0 while for
n =0.2 TO=18.9 for y=1, 9.2 for y=0.5, and 5 for
y =0). Comparable fits couid be obtained by varying
slightly m from 2 and adjusting To accordingly. Even
though we cannot rule out a weak dependence of m
with y we conjecture that m =2 is the exact value for
all y ~ 1 by analogy with the XY model. Of course,
an exact argument that proves this would be desir-
able.

Finally, we show in Fig. 10 the specific heat and
susceptibility for P(J) = 8(l —J) for various values
of y in the region y & 1. For y not too large, the
results are qualitatively similar to the ones obtained
in the region @~1, i.e., approximately power-law
behavior. However, as discussed in the previous sec-
tion, at sufficiently low temperatures the behavior

I

-!0

FIG. 10. (a) Specific heat and (b) susceptibility vs tem-
perature (log-log plot) for the probability distribution
P(J) =8(1—J) and different anisotropies in the region
y &1.
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VI. SUMMARY AND CONCLUSIONS

We have performed a numerical renormalization-
group study of the low-temperature properties of a
random Heisenberg-Ising antiferromagnetic chain.
For the Heisenberg case, the results were already an-
ticipated from the analytic results in I: any disorder
in the couplings will produce singular thermodynamic
properties at low temperatures. For the entire XY re-
gion, including the Heisenberg point, the low-

temperature susceptibility was found to be of the
form X —1/Tln (T/To) for arbitrary randomness.
At the XY point, m is known to be 2 exactly and To
depends on the underlying probability distributions;
in particular, for the class of probability distributions
studied by Dyson To is known exactly as a function
of P(J). ~e compared our numerical results with
these exact results at the XY point and found good
agreement. For y WO, we fitted our result for the
susceptibility to the above form with m = 2 and found
that To depended strongly on P(J) and on y. Com-
parable fits to the ones discussed can be obtained
with m in the range 1.5 to 2.5 but not beyond, adjust-
ing To accordingly, for all cases studied. Although
we cannot rule out a possible weak dependence of m

with y, we conjecture m = 2 to be a universal result
in the region 0~y~ 1 for arbitrary P(J).

In the Ising region (y & I) it was found that the
susceptibility goes to zero at sufficiently low tempera-
tures for a nonsingular probability distribution, as
happens in the Ising limit y = ~. However, for not
too large anisotropy it was found that the susceptibili-
ty shows an approximate power-law divergence over a
wide range of temperatures and only turns towards
zero at very low temperatures. These results resem-
ble very recent experimental results on Qn(TCNQ) 2,
where X is found to deviate from power-law behavior
and turn towards zero at around 5 mK. We conclude
therefore that some anisotropy in one direction would
be a possible explanation for this effect.
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