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The spin-fluctuation contribution to the electronic specific-heat enhancement and to the resistivity is

calculated in the presence of a magnetic field using the random-phase approximation. The result is a

depression of these contributions in the presence of the field thus providing a test of the paramagnon

theory. A comparison with experiments on UAl, is presented and a measurable effect of several percent is

predicted in very high magnetic fields of the order of 100 k6.

I. INTRODUCTION

The theory of persistent spin fluctuations, or
paramagnons, in nearly ferromagnetic metals
is first formulated by Doniach and Engelsberg'
and by Berk and Schrieffer. ' These authors show
that the absorption and reemission of paramagnons
renormalize the electron self-energy leading to
an enhanced effective mass at low temperatures.
This effect manifests itself as a low-temperature
enhancement of the electronic specific-heat co-
efficient. The paramagnons also influence the
electron transport properties. In analogy to the
conventional scattering of electrons by phonons
the particles will be scattered by the paramagnons.
The temperature dependence of the electrical
resistivity predicted by the theory" displays a
T' dependence at low temperatures and a linear
region at high temperatures.

.Experimental1y, the best-suited systems in
which the paramagnon effects are expected to be
seen are the uniform nearly ferromagnetic metals
Pd, Rh, and Pt and their alloys with one another.
In these metals, there exists a strong intra-
atomic Coulomb interaction between d-band elec-
trons of opposite spins. Recent measurements
on the narrow-band intermetallic compound UAl,
(Ref. 5) indicate the presence of spin fluctuations
associated with a narrow f band. Although it is
generally believed that, for example, Pd exhibits
an effective-mass enhancement due to paramag-
nons, an unambiguous experimental verification
for their existence in such a uniformly exchange-
enhanced metal has been unsuccessful for the most
part."The reason is that it is difficult to sepa-
rate the spin-fluctuation contribution to the spe-
cific heat from that due to the phonons. Resis-
tivity measurements, for example, in Pd, ' dis-
play the expected features predicted by the spin-
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fluctuation theory, namely, the T' dependence
at low temperatures. However, these experi-
ments may be explained equally well by Baber
scattering. ' Baber scattering may be regarded
as a scattering process in which conduction elec-
trons of the s band scatter off d electrons via the
screened, Coulomb interaction without spin flip.
The screened Coulomb interaction is mediated
by the exchange of charge density and longitudinal
spin fluctuations. Paramagnon scattering, on the
other hand, is defined as the electron scattering
by transverse spin fluctuations whereby the elec-
trons flip their spins.

In this brief paper we consider the magnetic
field dependence of the electron —paramagnon
interaction"'" and we discuss in particular the
field dependence of the mass enhancement and of
the resistivity. It was pointed out before by
Brinkman and Engelsberg" that the application
of large magnetic fields offers at least one way
of testing the paramagnon theory. If the magnetic
field is sufficiently large so that the Zeeman
splitting energy of opposite spin states is com-
parable to or larger than the characteristic spin-
fluctuation energy, then the paramagnons no

longer have enough energy to flip the spins and,
therefore, the inelastic spin-flip scattering is
quenched. Hence a decrease of the specific-heat
enhancement and of the resistivity with increasing
magnetic field is to be expected. However, to see
such an effect one needs a metallic substance with
a low Fermi energy so that the paramagnon en-
ergy becomes comparable to the Zeeman energy.
Such substances are more likely to be found among
the narrow-band and the f-band metals where the
density of states is large, corresponding to "flat"
bands. So far there exists only one narrow-band
intermetallic compound, namely, UAl„' where
an experimental indication is given for a small
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magnetic field dependence of the electronic mass
enhancement, whereas recent measurements of
the field dependence of the electrical resistivity
of Pd containing 1.V ppm of Fe do not support a
spin-fluctuation contribution to the magnetoresis-
tance. "

The model used in this paper to study the mag-
netic field effects on the electron-paramagnon
interaction is based on the random-phase ap-
proximation (RPA) with an effective interaction
describing the particle-hole correlation function.
Since we are not interested in ferromagnetic phase
transitions we believe the RPA to be valid, al-
though it breaks down near the Curie temperature
of a ferromagnet. It is also true that there is
currently no other approach in which the particle-
hole correlation function may be readily obtained.
For the effective-exchange interaction it is known
that a zero-range model results in a gross over-
estimation of the mass enhancement. The in-
clusion of a momentum-dependent exchange inter-
action reduces this enhancement. " For sim-
plicity, that is, to avoid a large numerical effort
the results of which cannot be easily assessed,
we adopt the simplest generalization of the origi-
nal one-parameter interaction model. As pro-
posed by Pay and Appel, "we replace the effective
interaction constant I by I(q) = Ia'/(a'+ q') where
the parameter a is of the order of the Fermi
wave vector. This two-parameter model must
of course be considered as a phenomenological
model allowing for a reasonable fit of the para-
magnon mass enhancement.

II. SPECIFIC-HEAT ENHANCEMENT

The shift in the electron entropy due to the elec-
tron-phonon and the electron-spin-fluctuation
interaction is given by

ReZ, (p, c~, H)
0 2m 3

-=P kaN(P~) dk e ReZ, (Pz, e~P ', H) .af(e)

Fermi momentum

p~g = [2m(e~ -cpgH)]

The main contribution to the integral comes from
the region near e~ =0. The shift in the specific
heat in the zero-temperature limit is then given
by

bC„=T =T Q SION(PJ~)~ Z(P~~, (u, H)~
0 I ~=0

3 2X
~E'

= —T&a
3 Q N(Pea)) s„~(Pg-o~~, H))

(2)

It should be remarked that a bosonlike term in
Eq. (1) has been neglected which has, as its lead-
ing contribution, a T'lnT temperature depen-
dence ' '"

For the calculation of the self-energy we use
. the Green's function

G, (p, (u) '= (u —ep+o gsH —1'"~(p, (o, H)

-or "~(p, (u, II) -1;,(p, (u, H) . (3)

Here Z"'=-,'(Z& +Z~) and Z""= ~(Z'i -1't) are the
symmetric and antisymmetric Hartree self-en-
ergy contributions; 2, is the sum of the electron-
phonon and the electron-paramagnon. self-ener-
gies. We define an effective magnetic field

S
~AH =H — -Z"'(H) ~HBH )

and retain in Z"", which is antisymmetric with
respect to H, only the term linear in p&H. The
symmetric Hartree term can be incorporated into
the chemical potential and will be neglected. The
self-energy Z, does not lead to a significant con-
tribution to the effective magnetic field as is
shown by Doniach and Engelsberg. ' The self-
energy Z"" is readily calculated; we get

4 Gt p, ~, H -G) p, ~, H I O

This is a generalization of the equation given by
Abrikosov et al."in the absence of an external
field. In Eq. (1), e~=e~-o&BH (v=+1 for spin
up, a = -1 for spin down) is the quasiparticle
energy and H is the effective magnetic field. The
quantity Z, is the electron self-energy including
the contributions from phonons and longitudinal
and transverse spin fluctuations. Since the self-
energy depends only weakly on the momentum P,
in the self-energy we set p equal to the appropriate

I(o)
d~ N(e) [f(apy ) —f(g~))], (4)

BH
Z's" = + I(0) de N(e) f(e)=-N(0)I(0) .
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The effective field is then calculated as

H = [1-N(0)I(0)] 'H = SH,

where S is the Stoner factor. This result indi-

(6)

where f, is the quasiparticle distribution function
of the interacting system. From Eq. (4) we have
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cates that S should be calculated using the bare
band mass. Hence the Green's function is given
by.

G '(p, cu, H) = v —el, -cr gsH —Z, (p, e, H) . (7)

The electron self-energy calculated in the zero-

temperature limit is evaluated using the standard
procedure and the approximations analogous to
the calculation of the electron-phonon self-en-
ergy. " Although we do not calculate here the pho-
non contribution we retain it in the following to
exhibit the analogy between phonons and paramag-
nons. The result is

3 l &, [Img2D(q, Q)+ImT (q, Q, H)] ln
Z& (Pp') q (q)q H ~ Ps& o 0+a

dqq m "do+, [Imr '(q, Q, H) InlQ —(dl —Imr' (q, Q, H)inlQ+(dll q

G

where ImD is the phonon-spectral function. T' and T" describe the longitudinal and transverse spin
fluctuations:

(8)

with

I'(q)x'(q, ~, H)
I-I'(q)X (q, (dH)X'(q, ~, H)'

I'(q)x '(q ~, H)
I-&(q)x "(q, ~, II) ' (10)

and

q '(q, , lt=qi Hf ), G&(p, ~', H)G&(q+p, tq+q', H),

X'( , , q)tq=iHf, t(pG, Htq)G&(q+p, +tq', H). (12)

An expression analogous to Eq. (8) is obtained for the spin-down self-energy by reversing the spins (and
exchanging+ and -). Note that for the calculation of the susceptibilities, Eqs. (11) and (12), the Green's
function, Eq. (7), is used neglecting Z, . This neglect is justified as shown elsewhere. -"

The specific-heat shift, Eq. (2), is calculated from Eq. (8). The result is
2 2(1+&)

hC„=T ks2 X(0) d q q [g 'D (q, Q = 0) + T (q, Q = 0, Il )]
0

2(1-II) 1/2

+ dqq g'D q, O=O +T' q, Q=O,-h
0

(1+h) 1/2+(1-h) 1/2
+ + mPp+ dq q [T
'

(q, Q = 0, Il, ) + T' (q, Q = 0, Il )]
((1+Ig) 1/2-(1»-P) 1/2

t
4~2 '

where q corresponds to /Pq„an Idl corresponds to g~H/e„.

(13)

III. TRANSPORT PROPERTIES

In this section we formulate the Boltzmann equation to describe the electron scattering from phonons
and from paramagnons in the presence of a magnetic field. %e consider the approach to equilibrium of
the one-particle distribution function defined for the Hartree one-particle states. Following Baym and
Kadanoff" the collision term in the Boltzmann equation is formulated by using the retarded and advanced
self-energy functions Z&(k, &u) for the emission and readsorption of a phonon and a paramagnon taken on
the bare-particle energy shell,

= —f(c-„,)Z,'(k, g„-„H)+ [1 —f(a-„,)]Z', (k, e-„„H),
coll

where g-„,= g-„-op,~B; here and in the following we write B instead of B. The retarded and advanced self-



22 EFFECT OF MAGNETIC FIELDS ON SPIN FLUCTUATIONS IN. . .

energies are written explicitly in Appendix A. The spin-down distribution function is given by

&fit dq dQ 2[Im g'D (q, Q) + ImT'(q, Q, H) ]v & ((-„-) —c;g + Q)

x4f(ea4)[1-f(c-„;t)][1+n(Q)]-[I -f((~g)]f(e;,g)n(Q))

+ '

3'
' ImT' (q) Q) H)IT'ti(t), qt el, ) + Q)

dq '"dA
2r' m

x(f(~-„q)[1-f(~„-;l)][1+n(Q)] - [1-f(&-„))]f(&"„,- t)&(Q))

The spin-up distribution function is given by an analogous equation. The condition for detailed balance is
satisfied for the equilibrium distribution

f(e)[1-f(z')][1+n (Q)] = [1-f(e)]f(z ')n(&) if E' - c+Q = 0.
The Boltzmann transport equation is given by

- sf(.- )-e(E+v;, xH) "' =f-„,
&k coo

In the following it is assumed that the phonon and paramagnon relaxation times are large in comparison
with the relaxation time of the electrons. Writing the deviation oi f~, from its equilibrium value f„as

we obtain the linearized Boltzmann equation in the form

where the transition rates are given by

V(k'4, k0, H)= Jtdq5(k-k' —q) [Img D(q, Q)+ImT'(q, Q, H)j
O F

x v6(a-„.
&

—e;i + Q) n(Q)[1 -f'(e-„i)]f'(»„-,
& ) (2O)

(2i))'(k'), k) B)=Jd (il(k-ki'-q) Jl Im2" (i(, (), H)n()(a i —C +i)n()( )[(1)f4. ~)]f (C. i). -
7T

The transition rate is symmetric:

V(k'a,'hy) = V(ka, k'o') . (22)

We solve the Boltzmann transport equation with a
variational procedure. The usual approach of
solving the Boltzmann transport equation by mini-
mizing the dissipation function breaks down in the
presence of a magnetic field. The reason is that
the magnetic scattering operator is not self-ad-
joint. ~o The variational method can be extended
in the presence of a magnetic field" if the fol-
lowing dissipation function is used:

= Q (t)((k&x)u, ,

p~ = Q u)+ Q)(kg).

(24)

Although in the case without magnetic field
one knows whether D in Eq. (23) is maximal or
minimal, in the present case we can conclude
only that D is stationary.

The variational problem is then solved by ex-
panding the unknown function P-„, in a set of trial
functions:

dk
T g (2v) 4)(() k()

@or the calculation of the electrical conductivity
the following trial function is used:

where (t)-„, stands for (t)-„,(-H), and y-„, Ior y;,(H). (t))(k(7) =v)( g~))e'I =x)p)z . (25)
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The velocities v, are independent of the spin in-
dices assuming that the effective band masses
in the two-spin states are the same. Further-
more, . we assume an isotropic system.

With this trial function E(l. (25), the variational
solution for the electrical resistivity tensor is
given by

it is readily seen that Onsager's reciprocity re-
lations are satisfied: p ~(H) =p, ( H-) T. he Hall
resistivity coefficient h, (H) is calculated up to
order h', h = pea/az, for low temperatures:

p, (H) -h, (H)H,

p(H) = ., h, (H)H, p, (a)
1

~0
—h, (H)H„h, (H)H„

h, (H)H,

—h, (H)H„

p, (H)

(26)
p, (a) =f(a)k,T, (32)

The evaluation of the magnetoresistance coef-
ficient p, (H) may be performed in the ca.se of high
and low temperatures (for details see Appendix B).
For the paramagnon contribution to p, (H) one ob-
tains for high temperatures

where
1 1 dk
6 2 T, ;f ( )'qr

dk'
x —(v(k')- v(k))'V(k'&x', ko),

(2n)3

(27)

where

2(qy (2 - h ) ~2

f(H) =
6 2 s dqq'T'(q, O, H)62m'

2PF (1+h)
+

ding

T /~OMAH
0

1 e ~ dk, sf '(e-„,)
3 m~ (2&)'

~,(a) =mh, .

(28)

(29)

P f(1+h)1/2+(1 h)l/2]
+2 dqq'T '(q, O, TT) .

& I (1+h) - (1-h )

(33)

For very low temperatures one obtains

From the symmetry properties

p, (H) =p, ( H), h, (H) =—h, ( H), - (30)
p, (H) =g(H)(ksT)',

where

(34)

2P (1-h) I T' QH
(Iq 6(2 )2 3 qq llm

™
l0 A 0 0 P $ (1+h) - (1-h) ] Q 0 0 ).

(35)

These equations for the magnetoresistance are applied to Pd and UAl, in the following section.

IV. RESULTS.

In calculating the longitudinal and transverse
susceptibilities in the presence of a magnetic
field we have used the RPA expressions and as-
sumed a parabolic band. Furthermore, we have
neglected effects due to the quantization of the
electron states in the presence of a magnetic field.
The effect of orbital quantization is difficult to
assess and has not been considered in this paper.

Tn Fig. 1 we show for a typical paramagnetic
me'. al, such as Pd, the results for the effective-
mass enhancement and the high- and low-tem-
perature resistivity coefficients p, (H) as functions

I

of the magnetic field h =Sp +/e„. The Stoner
factor is assumed to be 10 and the effective-mass
enhancement due to paramagnons is assumed to
be 0.37. The fit of the potential parameter gives
then a2 =0.5k~. For increasing values of h the
effective-mass enhancement and the low-tem-
perature resistivity coefficient are decreasing.
However, the effects in general are small, the
reason being that the spin-fluctuation temperature
TSF =&F/ksS is large (250 K) and, therefore, the
value of h is sma. ll, of order of 0.026, for an ex-
ternal field of 100 kQ (p, ea-6.7 x 10 'ksT, H mea-
sured in G). For this field, the depression of the
mass enhancement is smaller than 1/0. However,
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FIG. 1. The effective-mass enhancement, the high-
temperature coefficient po(H) =f(H)T, and the low tem-
perature coefficient po(H) =g(H)T are shown as func-
tions of the-magnetic field h=Sp~H/&z for a metal with
$= 10, m*(H = 0) = 0.37.

of about 1%, consistent with the experiments.
Furthermore, note that we have assumed a para-
bolic band. In f-band metals, such as UA1»
band-structure effects can also be important. In
order to di.stinguish between band-structure effects
and paramagnon effects it is of some interest to
perform resistivity measurements in very high
fields by comparing the Hall resistivity with the
normal resistivity. In the Hall resistivity, which
is independent of the spin-fluctuation scattering,
band-structure effects should be seen. Further-
more, we would like to remind the reader that we
have used a phenomenological q-dependent ex-
change interaction potential. In Fig. 3 it is shown
how the choice of the potential parameters in-
fluences the magnetic field dependence of the mass
enhancement.

the situation is much improved if we consider
UA1, . The specific-heat, susceptibility, and
resistivity measurements provide a unified pic-
ture of paramagnon effects in UAI, .' The value
of the Stoner factor S and of the mass enhancement
due to spin fluctuations is found to be 4 and 0.3-
0.6, respectively. The spin-fluctuation tempera-
ture T» is small, about 16 K. Hence the para-
meter h may be as large aS 0.4 for 100 kQ. So far
measurements have been performed up to 43 ko
corresponding to h =0.18, and a depression of the
mass enhancement of about 1.5% has been ob-
served. From Fig. 2 we predict a decrease of the
electron-mass enhancement of about 5%. This
prediction, however, depends sensitively on the
va.lue of T». The authors of Ref. 5 claim that the
low-temperature variation of X satisfies a tem-
perature dependence consistent with a charac-
teristic temperature T» =40 K. With this value
of T» we obtain a decrease of the effective mass

V. CONCLUSIONS

The experimental situation regarding proof of the
existence of persistent spin fluctuations in uniform
nearly ferromagnetic metals has much improved
with the discovery that in UAl~ paramagnons play
a pertinent role for the mass enhancement of the
conduction electrons. In particular, measurements
in the presence of a magnetic field of 43 ko in-
dicate a small field deperidence of the electron-
mass enhancement. It would be of interest to
perform the experiments at larger fields, such as
100 kG or more, since, as our semiquantitative
calculations show, an effect of at least several
percent should be expected in UAl, . Such mea-
surements would provide a test of the extent to
which spin fluctuations contribute to the electron-
mass enhancement and to the resistivity. If band-
structure effects are not the dominant feature, it
should be possible to separate the phonon con-

rn (H)/m (0)

05-
0.5- Cl OO

a~ 1k'
a~ =0.5k)
a~ =0.2k)

0.1 0.2 0.3 0.4 0.5
0.2 0.3 0.5

FIG. 2. The effective-mass enhancement and the
high- and the low-temperature resistivity coefficients
(cf. Fig. 1) are shown as functions of Jz for UA12
[S=4; m*(H = 0) = 0.345].

FIG. 3. The effective-mass enhancement is shown as
a function of h for different values of the potential pa-
rameter a for a metal with S= 50.
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tribution from the spin-fluctuation contribution
to the mass enhancement since the phonon-mass
enhancement is independent of the magnetic field.
Similary the resistivity measurement at low tem-
peratures in high magnetic fields should decide
whether the resistivity is due to spin-fluctuation
scattering or due to Baber scattering (or due to

some other mechanism such as the anisotropy of .

the Fermi surface""). Since Baber scattering is
a spin-independent scattering due to the screened
Coulomb interaction whereby the spin states do
not change, an appreciable dependence on the
magnetic field is not to be expected, in contrast
to the spin-flip scattering due to paramagnons.

APPENDIX A: THE RETARDED AND ADVANCED SELF-ENERGIES

The retarded and advanced seU-energies are given by

Z'(k, c;(,H)= —j,I [(mg D(q'(()+ ,(mT'g; ((, H)]

x 7/6(&;; l- c"„l+Q) [1+n(Q)][1 -f(e-„;l)]
dq '" dQ—ImT' (q, Q, H))T5(e-„-

&
—&-„&+Q) [1+n(Q)][1 —f(e-„;i) ] (A1)

and

Z (k, e„-&,H)=—, [Img'L){q, Q)+ T'(q, Q, H)])] ~ 6(e„- -, -c;&+ Q) f(c„- -&}n(Q)

dq '" dQ ImT' (q, Q, H)w5(e-„-i—e„-&+ Q) f(e„" -l)n(Q) . (A2)

APPENDIX B: EVALUATION OF THE RESISTIVITY COEFFICIENT po(H)

lt is sufficient to consider the contribution from the transversal spin fluctuations, the other contributions
being evaluated analogously. From Eqs. (27) and (21) one finds

dk'

3 q2 ImT '{q,Q, H)B(q, Q, H)n(Q),

where

B(q, Q, H)=,5 — + Q+ 2H Pe i

dk q' 2k q

)

x 1+exp -P —p,~H-p 1+exp P - — + p,~H —p, l

2m 2m 2m ~
]~„

m2
de[1+ exp(-Pe)] '(I+exp[P(e —Q)]]-' .

0( ) -)) geH+[q/2+())/q(o+2g~H)] /2))(
(B2)

Because of the Fermi functions the main contributions to the integral come from the region

~q/2+m(Q+ 2I/. H)//I~'- 2m(a + ]/, H).

Since the characteristic spin-fluctuation energy is small in comparison with the Fermi energy the lower
limit in Eq. (B2) may be effectively set equal to -~ if we restrict the allowed q values to the region

~

q/2+ 2m]/~H/q~- 2m(c~+ p, H) .
One then obtains

m2 0
(2 )' 1 ( PQ)'
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Inserting Eq. (B3) into Eq. (Bl) yields

j ' qmRX 0
6(2 )'k T,„„[1— (-PQ)][ (PA) —1]

with q „=p~[(1+k)' '-(1-h)' '], q =p~[(1+k)' '+ (1-h)' ']. In the case of high temperatures (but small
in comparison with the Fermi energy) exp(+PA) can be expanded:

™~ ~" d'n 1
P, '(H) = » dqq' (AT)'ImT '(q, A, H)—

B

amer

n QQ

qmaz

dq q'T '(q, O, H) .
@man

(B5)

In the case of low temperatures (that is, small in comparison with the spin-fluctuation energy) one finds

(2m)' 6k' T, „„m [1 -exp(-x)][exp(x) -1] ~ks T

(B6)
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