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The nearest-neighbor random-exchange Heisenberg antiferromagnetic Heisenberg chain

(s = —) is studied at low temperatures via an approximate renormalization-group method. This
2

entails renormalization of the random-exchange coupling constant J and of the probability law

for J, Pp(J) ~ After n iterations we find that the renormalized probability function P„(J " ), a

function of the renormalized coupling J ",develops singular behavior for small J ", indepen-

dent of the initial form of Pp(J). This happens both for Pp(J) that diverge or go to zero as

J 0. The singular form of P„(J " ) is such that it leads to a specific heat and susceptibility
I aC(T) -a~( T)

that behave like C —T and X —T " . oc(T) and o.z(T) are exponents weakly

dependent on temperature ( T) that go to one as T 0 and satisfy nz( T) ) o.&(T), for arbitrary

initial probability laws. The classical n-vector models, and in particular the classical Heisenberg

model are also studied using a renormalization-group approach and it is found that their

behavior is different than that of the quantum model: singular behavior in the thermodynamic

properties is only obtained if the starting Pp(J) is singular. An explanation of these results in

terms of the scaling theory of localization is suggested. The relevance of our results to the ex-

perimental findings on the magnetic properties of tetracyanoquinodimethanide complexes is

also discussed.

I. INTRODUCTION a function of magnetic field behaves as

The organic charge transfer salts of tetracyano-
quinodimethanide (TCNQ) have been the subject of
extensive study in the past few years. Among their
most remarkable properties is the one-dimensionality
of their electronic and magnetic behavior. Examples
of these substances are acridinium di-tetracyanoquin-
odimethanide [Ad-(TCNQ)2] and quinolinium
(TCNQ)2 [Qn(TCNQ) 2]. In this paper we will con-
centrate on their static magnetic properties and will

have in mind Qn(TCNQ)2, which is the most stud-
ied compound in this respect. It is found experi-
mentally that the magnetic susceptibility grows as

x —T

for temperature below 20 K down to 10 mK." The
measured value's of o,„range from 0.72 to 0.84,
depending on sample preparation. Measurements of
the magnetic contributions to the specific heat lead
to'

C —T (1.2)

with T between 0.07 and 5 K and o.&
= o.„within ex-

perimental accuracy. The high-field magnetization as

for temperatures down to 30 mK and magnetic fields
h bigger than —5 kG. 4 Again, nM = n„ for a given
sample.

It is currently accepted' that the magnetic behavior
of Qn(TCNQ)2 can be described by a random-
exchange Heisenberg-antiferromagnetic-chain model
(RHAF), defined by the Hamiltonian

H=XJS; S+; (1.4)

Here J, is a positive random variable and [ S; ] are
the usual Pauli spin- —, operators. This interpretation

was first suggested by Bulaevskii et al. ' To calculate
the thermodynamic properties of the RHAF they
started by transforming H into its fermion represen-
tation: the XV part of H leads to a free spinless
Fermi-gas problem whereas the z component gives
the interactions between the fermions. This canoni-
cal transformation is exact but the solution to the in-

teracting fermion problem is not known. Bulaevskii
et al, ' made the assumption that the low-lying excita-
tions in the interacting problem could be described by
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bution for the couplings Po(J; ) is singular at the ori-
gin [n ) 0 in Eq. (1.5)l.

To further support this conclusion, TC considered
the behavior of classical n-vector models, with n the

(n)
number of components of the vector spin S
(n =3, 2, and 1 correspond to the classical Heisen-
berg, XY, and Ising models, respectively). In the ab-
sence of a magnetic field the disordered n-vector
model can be solved exactly using the transfer-matrix
technique for an arbitrary probability distribution
Po(J; ), and here again one obtains n„= n (see Sec.
IV for a discussion of this point). We shall find how-

ever from our renormalization-group analysis that the
quantum and classical disordered Heisenberg models
are in different universality classes: for the classical
model, a nonsingular Po(J) gives nonsingular
behavior, while in the quantum case any arbitrary
Po(J) yields singular thermodynamic properties.

In a more recent paper, Clark and Tippie' (CT)
studied the problem defined by Eqs. (1.4) and (1.5)
within the approximation of taking the exchange con-
stant between every other spin equal to zero. In this
case the evaluation of (F) can be done exactly to
zero. In this case the evaluation of .(F) can be done
exactly even in the presence of a magnetic field.
Their results can be expressed as in Eqs. (1.1)—(1.3)
with o.„=o.~ =o.~ =o.. Thus, their results coincide
with the TC results in that a singular Po(J) is needed
to yield singular thermodynamic properties. Howev-
er, as we will see in Sec. II, the reason is that both
approaches are essentially equivalent in that the ther-
modynamic properties are determined by the proba-
bility of a single coupling being less than the tem-
perature. In the fully coupled chain we find, howev-
er, . that correlations between different couplings are
important and lead to different results.

In order to study the relevance of the CT results
for the fully coupled chain we studied, as a first step,
the stability of these results when taking the ex-
change coupling J equal to zero every four spins. As
we show in Sec. II, the results change and the ther-
modynamic behavior becomes more singular at low

temperatures. Due to this fact, we are led to consid-
er the fully interacting random problem in its own
right. Of course, our analysis is approximate. The
method is based on the idea of thinning of degrees of
freedom, or renormalization-group (RG) method,
properly extended to deal with quantum random
problems at low temperatures. This RG method was
introduced by Drell et al. 8 to calculate ground-state
properties of quantum Hamiltonians and it has been
shown to be useful in treating various quantum prob-
lems. '" The method has been extended to calculate
approximately finite temperature properties" of the
periodic problem and to deal with random prob-
lems. " In the random problem, the procedure en-
tails renormalizing simultaneously J, and Po(J; ), with

Po(J;) the initial probability law for J;. Thus, we find

Fermi quasiparticles, with an unknown density of
states p(e). In order to explain their experimental
results, they were led to assume a singular density of
states with the form

p(~) —I/I~I ',
with o.& a constant. From these two assumptions
they obtain results like in Eqs. (1.1)—(1.3) with

o.& = o,„=o;~ = o,M, in agreement with the experimen-
tal findings. However from the theoretical point of
view it is not clear how the fully interacting Heisen-
berg Hamiltonian leads to a free-fermion problem.
Also, it is not clear how to derive the singular density
of states that was proposed to fit the experimental
results.

Some progress in understanding this problem from
a more microscopic point of view was achieved by
Theordorou and Cohen (TC). ' Starting from a

Hubbard Hamiltonian with random on-site energies
and small transfer matrix elements, they were able to
show that: (i) The molecular orbitals in TCNQ go
over to localized states because of disorder. This
leads to localized spin states distributed randomly
along the chain. (ii) At low temperature, the spins
interact via an antiferromagnetic Heisenberg random
exchange coupling J;, obeying the probability law

Po(J;) —1/J (1.5)

(1.6)

where N is the number of sites in the chain and k8 is

the Boltzmann constant (taken equal to I from now

on). The evaluation of the free energy is highly non-
trivial in the periodic case, let alone in the random
case. Faced with this difficulty, TC resorted to an ap-
proximate cluster argument to compute the thermo-
dynamic properties of the RHAF. Within that ap-
proximation (which we will discuss in Sec. II) they
obtain for a Po(J;) as given in Eq. (1.5) thermo-
dynamic properties as given by Eqs. (1.1) and (1.2),
with o,„=o., = o, . Therefore, they conclude that
singularities in the thermodynamic properties will

only be obtained if the underlying probability distri-

with o. & 1 depending on the microscopic parameters
of the underlying Hubbard model, and 0»J, »Jo
(Jo is a cutoff). For a ) 0, the probability distribu-
tion (1.5) has a singularity at the origin. The result
(1.5) is in fact not dependent on the model but only
on the facts that the spins are located randomly along
the chain and the exchange constant decays exponen-
tially with distance. This last point is related to the
localization of the spin moments in the chain.

Equations (1.4) and (1.5) define the problem com-
pletely. To evaluate the thermodynamic properties of
this model we should calculate the averaged free en-

ergy

(F) 1 I' HIk r-= —lim —'~ gdJ;P(J;)In(Tri-sic s )
k&T ~- N" I
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a renormalized J, '"' and a renormalized P„(J "') at
every stage of the rescaling. The form of the renor-
mal'ized P„(J "') is directly related to the recursion
relation for J "', and (F ) is in turn related to the
form of P„(J "'). We find that it does not matter
what the initial Po(J) is because after the first few
iterations of the RG the new P's tend to be more and
more singular towards J =0. This in turn leads to a
X and a C that can be written as in Eqs. (1.1) and
(1.2) but with n, = n, ( T), n„= n„( T), and ~x «c.
This temperature dependence in a„and nc turns out
to be rather weak (—lnl/T) and possibly difficult to
check experimentally. Perhaps easier to check may
be the result that n„( T) is always bigger than nc ( T).
The exponents n„(T) and uc(T) tend slowly to one
as T 0, meaning that the effective coupling
between spins becomes weaker and weaker as T goes
down leading to a paramagneticlike susceptibility. Of
course, experimentally the interaction between chains
may become more relevant at lower temperatures and
this result may not be seen. The relevance of inter-
chain coupling has not been studied and it is still not
understood why at the lowest tempertaures studied
experimentally so far no signature of two- or three-
dimensional effects have been reported.

The paper is organized as follows: In Sec. II, we
undertake a numerical evaluation of (F) for the two
and four-spin-cell problems. A theoretical under-
standing of the results arises when recognizing that
the main contributions to (F) come from calculating
the probability of having an energy gap between the
ground state and first excited states that is smaller
than the temperature. Here it is found that in the
four-spin-cell analysis the exponents n„and nz ac-
quire a lnT correction to their two-spin-cell values.
In Sec. III we carry out the RG evaluation of (F) as
applied to the RHAF. We take cells with three spins.
It is important to take an odd number of sites per cell
to make sure that we map a spin- —, problem into a

spin- —problem. First we find the recursion relation
2

for J;. Next we calculate the renormalized probability
law P;(J') from the recursion relation. Here is where
we note that the form of P„(J'"') after a few renor-
malizations is nearly independent of the initial form
of Po(J). We illustrate this fact by looking at the
probability laws given by (i) Po(J) —1/J' (a ) 0),
(ii) Po(J) = I, and (iii) Po(J) =2J. They are (i)
singular, (ii) flat, and (iii) Po(J) 0 as J 0. We
find that in all cases P„(J'"') after a few iterations
becomes strongly peaked near the origin. This fact
leads to a X and C of the form given in Eqs. (1.1)
and (1.2). The evaluation of (F) requires taking
into account higher excited states within the cells.
This is done within the approximation of treating the
higher cell states as decoupled. This approximation
has been sho~n to give good answers for the periodic
case, " and will therefore be used here too. We end
Sec. III with plots of InX vs ln T, lnC vs ln T, u„( T) vs

ln T, and uc( T) vs ln T, plus some discussion about
the accuracy of the results.

Similar results to the ones given in Sec. III were re-
ported in a parallel study by Ma et al. " They used a
decimation procedure that eliminates strongly in-

teracting spins on each iteration. This leads then to a
problem with renormalized P's and renormalized cut-
offs for J. We mention along the paper what we see
as advantages and disadvantages of their approach as
compared to ours. However, we stress that the two
methods lead to qualitatively analogous results for
the RHAF, thus strengthening our belief in their
correctness. Further, recent finite cell calculations of
Soos et al. ' show also qualitatively similar results at
higher temperatures.

In Sec. IV we study the classical random n-vector
models, and in particular the classical Heisenberg
chain (n =3). In the absence of a magnetic field this
problem can be solved exactly for arbitrary Po(J). It
is immediately apparent that these models are not
in the same universality class as the RHAF. In order
to shed further light into this difference we study the
renormalization properties of Po(J), by using a RG
method of the decimation variety. There we find
that if Po(J) —1/J, P~(J;) —I/J . That is, the re-
normalized P (J ) remains of the same form as the
original one. Thos, if we start with a nonsingular
Po(J) we do not expect that the renormalized P~(J')
will develop singularities, contrary to what happens in

the RHAF.
It should be mentioned that for the quantum LY

model, exact results" ' show that one obtains singu-
lar behavior for the thermodynamic quantities for ar-
bitrary probability distributions for the couplings, as
we find here for the Heisenberg model. In another
paper, " we study the quantum anisotropic Heisen-
berg model and in particular the LY limit by the same
RG technique and find good agreement with the
known exact results in the XY limit. This gives us
confidence in the accuracy of the technique and in

the results for the Heisenberg case. One may con-
clude therefore that quantum random models with a

continuous symmetry are in a different universality
class than their classical counterparts. The quantum
fluctuations seem to be all important in determining
the low-temperature thermodynamic properties for
these models. In Sec. V we suggest a possible expla-
nation for the results found in this paper in terms of
a scaling theory of localization. "'

Part of the results presented in this paper were re-
ported briefly elsewhere. "

II. T%0- AND FOUR-SPIN-CELL ANALYSIS

As a first step in our study of the RHAF we will

try to understand the relevance of correlations
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between different coupling strengths. This is
motivated because of the apparent success by the TC
and CT approximations when compared with experi-
ments. In this section we calculate numerically the
averaged free energy (F) defined in Eq. (1.6) within
an approximation that divides the chain into decou-
pled sets of spins, The simplest case is that con-
sidered by CT in which they consider two-site spin
cells. In this case the calculation can be done analyti-
cally for any Po(J;). In particular when taking

Po(J, ) = (1 —a)/J; (2.1)

with 0 ( o. ( 1 and the cutoff Jp=1, CT obtain, at
low temperatures, the forms for X, C, and M given
Eqs. (1.1)—(1.3) with u„=uc =nM =n.

Our numerical method consists in generating a

large number of sets of spins with random couplings
chosen to obey Po(J;), and then the direct evaluation
of (F) by computing the exact cell eigenvalues. As
a check to the method we calculated the susceptibility
and the specific heat for a chain of 1 x 104 two-spin
sets, with o. =0.3 and 0.6, respectively. The number
of cells is determined by the requirement of getting
good statistics in the results. Of course we recover
the results obtained by CT.

%e can understand the two-spin set calculation by
the following simple argument, that will prove to be
useful when we consider a set with four spins. In the
two-spin set we have two energy levels, the singlet
(ground state) and the triplet (three degenerate excit-
ed states). When we put the ground-state energy
equal to zero, the energy of the triplet is J;, with J;
the coupling between the spins at i and i + 1 ~ The
free energy per pair is given as

F(J,)=—Tln(I+3e ' ) . (2.2)

F(J )—0 ifJ;»T
—Tln4 if J;((T. (2.3)

Using the probability law given in Eq. (2.1) we get

P(J & T)=(1- ) J~
——TdJ

p JA
(2.4)

Here we have taken k8 =1. The total averaged free
energy (F) is obtained straightforwardly from Eq.
(2.2) because of the independence of P(J, ) for dif-
ferent J s. Thus we see that the averaged free ener-

gy per pair is essentially determined by the probability
of having J; ( T, since

= 1 or P (J) = 2J the corresponding susceptibilities go
like X —const, X —T when T goes to zero, respec-
tively. Thus, it is essential to take Po(J) —I/J, with
0 ( o. & 1 to get a singular X within this approxima-
tion. As we show later in this paper, this happens to
be true also for the classical n-vector models but not
for the fully coupled quantum Heisenberg model.

The same type of conclusions were reached by TC
using a cluster argument. For a given temperature T,
they define a cluster by a set of spins coupled by
"strong couplings" J; & T, separated from the rest by
"weak couplings" J; ( T. Next, they consider only
the contribution to the low-temperature thermo-
dynamic properties due to the degenerate ground
state of the clusters with an odd number of spins.
These odd clusters will contribute to X with a Curie-
like susceptibility Xc —1/T. The chain susceptibility
is then equal to

)r —A, td(dT )x, (2.6)

Odd( T) is the number of odd cluster, a func-
tion of temperature. From Eqs. (2.1) and (2.4) it
follows that N«d —NT', so that X —T . A sirni-
lar argument gives C —T' for the specific heat. Of
course, the treatment is approximate in that the
internal excitations in the clusters are completely
neglected. The point to be made here is that the CT
and TC arguments are equivalent in that they deter-
mine the low-temperature properties of the system in
terms of the probability of having only one coupling
being smaller than the temperature. The question
then arises about how relevant is it to consider more
couplings in the problem. After all the RHAF is a
many body problem and we would expect that corre-
lations between spins should be of relevance.

To shed some light into this question next we take
cells of four spins. The Hamiltonian for the cell is
(see Fig. 1)

H4 =J( S) S2+ J2S2 S3+J3S3 S4 (2.7)

In this case we take 1 && 10 four-spin cell with n =0.3
and 0.6 and calculate the susceptibility and the specif-
ic heat. The results are shown in Figs. 2 and 3 over a
range of three orders of magnitude in temperature.
The circles are the result of the numerical calculation,
with the vertical bars being the standard deviations.
The dashed lines are the results that would be ob-
tained by taking two-spin cells (nx = ar = o ). It is
immediately apparent that our numerical results devi-
ate considerably from these, in particular the trend is

leading to an averaged free energy

(F ) ——T' (2.5)

that gives a specific heat C = —TB~F/BT2 —T' . A
similar argument with a magnetic field present leads
to x —T . Note that the form of Po(J) is crucial to
obtain these results. If we take for example Po(J)

Jl JP Jp

FIG. 1. Four-spin cell.
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(b)

-8

FIG. 2. (a) Specific heat and (b) susceptibility vs temperature for a four-spin cell with P(J) given by Eq. (2.1) with o. =0.3.
The circles are the numerical calculation and the full lines the theoretical estimates (see text). The dashed lines are the corre-
sponding two-spin-cell results.

towards more singular behavior. The full lines were
obtained from the theoretical calculation described
below, and they correspond to

0.43,
0!g=Ap ='

0.71,
o. =0.3
a =0.6. (2.8)

We can understand the four-spin-cell results by us-
ing an argument analogous to the one given above
fo" the two-spin cell. As in that case here the ther-
modynamic properties will be determined by the

probability of having the energy gap between the
ground state and the first excited state being smaller
than T. In this case, however, there are several pos-
sible ways in which this can happen,

We will obtain a small energy gap if at least one of
the couplings is small. If only J2 is small however
(see Fig. l), spins I —4 will be frozen in singlet states
and the energy gap will still be large (of order of the
minimum between J~ and J3). We therefore need
one of the couplings at the. boundaries to be small,
and choose this to be J3. The gap between the

FIG. 3. Same as Fig. 2 with a=06.
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ground state and the first excited states can then be
expressed as (to first order in J3)

turbation is given by

V = J383.S4 (2.10)
AE =A (J(,J2)J3 (2.9)

which to lowest order in perturbation theory leads to
A (J~,J2) can be evaluated explicitly by solving the
three-spin-cell problem. The calculation of AE as
given in Eq. (2.9) will also be needed in Sec. IV, thus
we shall describe it here for future reference.

In the three-spin-cell problem we have eight-
independent states that are formed with the vectors
I+++&, I++—

&, I+—+&, I
—++&, I+—&, I

—+—
&,

I

—+ ), and I

——). The eigenvalues and eigen-
states of the three-spin-cell Hamiltonian are found in

the usual way and are listed in Table I. Note that the
ground state is degenerate. This degeneracy is lifted
in first order of perturbation theory. In the four-
spin-cell case we have 16 states. Without having to
enumerate them we note that the ground state is not
degenerate with S, =0. The first excited states are a
triplet with S, =+1,0, Thus in order to calculate AE
it is sufficient to consider the S, =0 states. The per-

A (J).J2) = — (3+b)8 b

3 3+b
with b defined as

J/+ J2+2(J[' +J) —J]J,)' '
b= J1-J2

(2.11)

(2.12)

—J)J3/J2, (i) J( « J2

hE ='
—,J3, (ii) J~ = J2

J3 (iii) J~ ))J2.

(2.13)

(2.14)

(2.15)

In order to understand the implications of the previ-
ous result we consider the three limiting cases (see
Fig. 4)

TAltLE 1. Figenstates and eigenvalues of the three-spin-cell problem. I+), and I
—), are the ground states for the ceil. &E;

denotes the difference between the higher-lying cell-state energies and the ground-state energy.

State Energy

I+&, = 1

( l + b2)1/2

1

(r +—b2)'/2

1

I++—&-I-++& t I++-&-2I+-+&+I—++&

T

I

—+& —I+—& h
I

—+& —2I —+—&+I+—&

(Jl + J2) 2(J2 +J2 J J )1/2]

I+, 1) = 1

{) + c2)1/2

1

I++—) —
I

—++) c I++—) —2 I+—+)+ I
—++)

E1 =—I (J1+J2) +2(J1 +J —J J ) / ]

(] + c2)1/2
I
—+)-I+—

&
c I

—+&-2I-+-&+I+—
& ~E = —(J +J —J J )'/

I+, 2) = I++—)+I+—+&+I—++)
3

I
—+)+I—+—&+I+——

&J—, 2) =

1E2=
4 (J1+J2)

2 ~J1+J +(J2+J2 J J )1/2]
2 4

I+, 3) = I+++)

I
—,3& =

I
——)

I /

E3 = (J1+J2)

f 1 +J2+(J1+J2J1J2)]

J1+J2+ (J1 +J2 —J1J2) 1+ 2
—2{J1 + 2

— 1J2)b=- C
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~gas ~ ~ ~ ea

FIG. 4. Different cases that give rise to a small energy
gap in the four-spin cell. A dashed line represents a weak
coupling, a full line a strong coupling.

Within the region defined by (ii) and (iii), (J2 & J~),
the probability of having a small energy gap is
P(hE & T) —T', as in the two-spin cells, since
the gap is proportional to only one coupling (J3).

The case (i) however leads to a more interesting
conclusion. The probability of hE & T in this case is

r

1

J3J~ ' dJ~ ,

' dJ3

2J "0 J, "0 J J

—T I —(I —n) ln 2T (J2&

a
, (2.16)

Here a is some cutoff above which Eq. (2.13) is not
valid. We have substituted J~ by its average because
it does not. change hE significantly. The important
feature of this result is that although P(hE & T) is

still proportional to T' there is a logarithmic correc-
tion. As we shall see in the following section this
fact will turn out to be of central importance for the
fully coupled chain problem.

I

Of course we can always write P(hE & T) —T'
From Eq. (2.16) we see that

1 —o.
N =A+

I —(1 —n) ln2((J2)/a ) T
(2.17)

Note that replacing Jq by (J,) Eq. (2.16) gives ap-

proximately the energy gap of the case (i), such that

we can take a = I in Eqs. (2.16) and (2.17). By a

reasoning similar to the one used in the two-spin-cell

case, we can conclude that n„= ac = u'. (In fact,
there are corrections to uc proportional to Bu'/BT
which we neglect here. ) The value of o.

'
given by Eq.

(2.17) is always bigger than n and weakly tempera-

ture dependent. There is however no significant

change in n' over the three orders of magnitude in T
studied numerically and our error bars are too large
to clearly detect it. The full lines in Figs. 2 and 3
correspond to the prediction of Eq. (2.17) for an in-

termediate temperature (in T = —5). Clearly, the fit
to the numerical results is quite good. In Fig. 3(b),
where the statistics is best, one can even appreciate
the small change in a' with temperature predicted by

Eq. (2.17).
The main conclusion from these results is that the

many-body effects in this problem are very impor-
tant, and that the tendency when considering larger
sets of spins is towards more singular behavior. We
could imagine going to larger and larger cells numeri-
cally but it would become very time consuming and
the theoretical analysis, in the spirit followed in this
section, becomes increasingly more difficult. Even
when considering larger cells we would always
wonder about extrapolating the finite cell results to
the infinite-chain properties. Rather than doing that
in Sec. III we undertake the study of the RHAF us-

ing a renormalization group (RCJ) prescription that
deals with the whole chain.

III. RANDOM HEISENBERG ANTIFERROMAGNETIC
CHAIN. RENORMALIZATION GROUP APPROACH

We have learned from Sec. II that significant
changes occur when we incorporate more than two

spins in the analysis. At the same time we found
that a good approximation to the numerical results
comes from considering the probability of having
small energy gaps. We shall see that this fact will

continue being useful when looking at the chain as a

whole in the low-temperature approximation.
As mentioned in the Introduction our method is

based on a RG method introduced by Drell et al. in

the same spirit as that used by Wilson in his analysis
of the Kondo problem. This method has been mostly
used by different authors to calculate ground-state
properties, and an extension to finite temperatures
has been reported by one of us (J.H. ) elsewhere. "
We use this finite temperature method extended ap-

propriately to deal with random problems.
In Sec. III A we derive the recursion relations. In

Sec. III 8 we study the recursion properties for the
probability law P(J). There we show that, due to the
form of the recursion relations found in A, the form
of the renormalized P (J) is to a large extent in-

dependent from the. intial form of P(J) These.
universal results are interpreted in Sec. V in terms of
the scaling theory of localization. ""From the
results of Sec. III 8 it follows that the thermodynamic
functions, which are directly related to the set of P„'s
are universal too. Similar universal behavior for P„
was found by Ma et al. too." At the end of this sec-
tion we compare our approach to that of Ma et al.
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A. RG recursion relations

The main idea of the RG method for quantum sys-
tems on a lattice can be traced back to the original
Kadanoff block-spin transformation, appropriately ex-
tended to quantum models. This starts by dividing
the chain into cells of spins. In our case the number
of spins per cell is chosen to be on-odd number (3}
such that we map spin- —Hamiltonians into spin-—

2 2

Hamiltonians. The intracell Hamiltonian is diagonal-
ized exactly and a subset of the eigenstates, usually
the low-lying states, are used to construct the renor-
malized Hamiltonian cell operator. For the three-
spin-cell Hamiltonian the eigenvalues and eigenstates
are listed in Table I. As usual we keep the two
lowest-lying states ( ~

+ ), and ~

—), ) to write

Hp = $ J~ S~.Sp+) + XE~
IJ IP

(3.1)

J3 J3A (J(,J3)A (J3,J4) (3.2)

to lowest order in J3. The function A is the same as
found in Sec. II [Eqs. (2.11) and (2.12)]. From the
form A we see that the explicit form of the recursion
relation Eq. (3.2) is a rather complicated function of
(J),J3,J4,J3). However, from what we learned in the
four-spin-cell analysis, we can look at the limiting
forms of A that will give a small coupling J3. From
Eqs. (2.13)—(2.15) we see that A (J(,J&) goes to zero
as J)/2J3 if J) (( J& while A (J(,J3) remains of 0(1)
if J2 & J1. This leads us to approximate the recursion
relation (3.2) by

J' J3J1J5

Jo J()
(3.3)

Jo is the new cutoff of the probability distribution,
which is related to "a typical value" of J2 and J4.
We will defer the question of the precise choice of Jo
to the end of Sec. III B where it can be addressed
more clearly.

The approximate recursion relation (3.3) is a good
approximation for all values of the J's except when

L
Jg r--J4- --J5- ~

l

FIG. 5. Three-spin cells involved in the renormalization-
group transformation.

Here S~ are the cell spin operators for cell p. The lat-
tice spacing for the cell lattice is 3 and the constant
term in Eq. (3.1} represents the contribution to the
ground-state energy associated with the S~ states.

J~ represents the renormalized coupling constant of
the cell Hamiltonian. For the case at hand (see Fig.
5 for definition of the labels)

J, —J, && J, or J5 —J4« Jo. As we shall see
when we calculate the thermodynamic functions nu-
merically, using Eq. (3.2) leads us to results that
differ from those obtained from Eq. (3.3) by about
10%. The importance of using the recursion relation
given in Eq. (3.3) is that we are able to follow the
analysis analytically and this will provide further in-

sight in the physics of the problem.

B. Renormalized probability laws

It is clear that when changing the problem from
one lattice with one lattice spacing to a new problem
with a new lattice spacing we should find the proba-
bility law for the new coupling constants. In order to
find out how Pp(J) does change when going to the
rescaled problem we ought to solve the integral equa-
tion

Solving this integral equation analytically using the
explicit form of the function A looks rather compli-
cated. Instead we use the simpler recursion relation
given in Eq. (3.3), to have

( t (J' I J; J3 J3J1J5

Jo, i 1, 3, 5

(3.5)

As we mentioned before, this approximation will lead
to qualitatively the same results than using Eq. (3.4)
explicitly. At this point we have to specify Pp(J;) to
solve Eq. (3.5). For the particular case of a power-
law distribution

(3.6)

with 0 ~ J ~ I, the integral (3.5) can be done analyti-
cally and we obtain

P, (J') = —(I —a) ln'J'/J'
2

and after iterating this procedure n times we get

(3.7)

(I )3 ln3 )J(tl)

(3tt I ) ) ( ( J))tt
(3.8)

In order to see more graphically what happens to
P„(J) as a function of n we have plotted in Fig. 6(a)
the probability function for different values of n

tA)hen a =0.6. Note that after n =2 P (J) becomes
strongly peaked at J =0 and has very long tails. One
could think that this behavior only happens because
we start with. a singular Pp(J) and the RG only am-
plifies this after a few iterations. In Fig. 6(b) we
have taken a = 0 (fiat probability function) and see
that essentially the same thing happens, except that

P((J3) =g gdJ;Pp(J;) 5(J3 —J3A (J, ,J, )A (J,,J4))
i 1

(3.4)
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6(c) the renormalized P„(J'"') associated with Eq.
(3.9). Again we see that after a few iterations
P„(J'"') becomes singular around J =0. This hap-
pens in a rather different way than in the previous
cases. P„(J'"') has in fact a maximum. For n = I,
P„,„(J).=2.165 for J =0.135. When n =2,
P„,„(J).= 66 at J = 9 x 10 ~, and for n = 3,
P„,, „(J)= 1 && 10"at J = 1.4 && 10 ". Again a singular
P(J) centered around J =0. As we shall see in Sec.
III C, the fact that P„becomes singular around J =0
determines that the thermodynamic properties be-
come singular at low temperatures. This is so be-
cause the averaged free energy will be written as a
series in terms of the P„'s.

We turn now to the renormalized cutoff for J'"'.
In the microscopic problem we had 0 ~ J ~ Jo, and
for simplicity defined our units of energy such that
J0=1. The question is to find the value of Jo"' when
0 ~ J'"' ~ Jo"'. This question is important in the
analysis of Ma et a/. where Jo gets renormalized with
their rescaling method, In our case we have implicit-
ly taken Jo"' =1 for all n in the derivation of
P„(J'"'). In order to see how this comes about, note
that the maximum value that the function A, defined
in Eq. (2.11), can take is one, thence

(c)

which implies that Jo ~ Jo. In general J3 J3" "
and Jo" ~ Jo" '. Because of the singular character
of P„(J'"') favoring values of J'"' close to zero the
actual value of Jo"' is in fact irrelevant in our
analysis.

C. Thermodynamic properties

0.5
J

I.o

FIG. 6. Evolution of the probability distribution P„(J)
under iterations. The initial form for Po(J) is the power law

given by Eq. (2.1), with (a) o. =0,6; (b) o. =0; (c) o. = —l.

Po(J) =2J (3.9)

This probability distribution is completely different
from one with a ) 0 in Eq. (3.6). Instead of having
most of the couplings being zero, here we have that
most of the J's are strong. We have plotted in Fig.

slower than in the previous case (strongly peaked at
J =0 for n ~3).

Note that we derived Eq. (3.8) for arbitrary o. and
in particular we can take o. = —1 that corresponds to a
triangular distribution

H = H(I + HIp, + Hpp (3.10)

where I stands for the set of states in our Hilbert
space formed by only the low-lying cell states, and h

for the remaining states. H«represents the projec-

In this subsection we consider the extension of the
previous analysis to finite temperatures. It is clear
that we will not be able to calculate the thermo-
dynamic properties if we keep only the two lowest-
lying cell states: we have to take into account the
higher-lying cell states as well. For calculating low-
temperature properties, however, it is reasonable to
treat the higher cell states in a more approximate way

by taking them to be decoupled between different
cells. Later one could include corrections via pertur-
bation theory. This procedure has been used to treat
the thermodynamic properties of the periodic Heisen-
berg antiferromagnetic chains and reasonable results
were obtained. "

The method is rather simple and can be described
as follows: we start by rewriting the Hamiltonian as
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tion of the Harniltonian onto the subspace spanned
by the "low states, "

H((, the projection onto the sub-
space of h states and H~& the cross terms. The zero
temperature approach consists in neglecting HN and

H(, I, entirely, and taking as renormalized Hamiltonian
H' = H(( (3.11)

To extend this approach to finite temperatures, we
will keep H((, from Eq. (3.10) but still neglect H».
This approximation will be best if the low and high
cell states are well separated in energy, and can al-
ways be corrected by perturbation theory in the inter-
cell coupling (H» is first order in the intercell cou-
pling). The partition function is now

Z, (k) = fr(exp( H((/—T) (3.13)

and similarly, for tracing only over high cell states

Z(((k) = Tr((exp( —H((((/T) (3.14)

The two pieces of the Hamiltonian now commute,
since they are defined on different subspaces of our
Hilbert space, so that we can separate the above ex-
ponential into a product of two exponentials. Let us
define the partition function for a chain of k cells
where we trace only over the low cell states:

Z = Tr exp[ —(H((+ H(,(, )/T] (3.12) The full partition function then reads

Z((k()Z (((1)Z((N' —k( —1) Z((k()z (((1)Z((k2 —k( —1)z ((l)Z, (N' —k, )
Z =Z((N') 1+X Z (N')

Z, (k, )Z„(2)Z, (N' —k, —2) Z„(k, )Z, (l )Z„(N' k, 1) —Z„—(N')
+

z, (N') Z, (N') Z((N')
( 1

J

Z =Z((N') 1+N', Z(, 1

Z( (1)

Z(, (1)+ N'(N' —1) ———+
Z((1)

= Z, (N') 1+
Z((1)

(3.16)

The free energy per site obeys then the recursion re-
lation

where W' is the number of cells in our system. We
have taken Z((N') as a common factor, which is
what we can evaluate more accurately by the zero-
temperature RG method. For the terms inside the
bracket, one has to do some further approximation.
As the simplest approximation, we will treat every-
thing inside the brackets as decoupled. We have then

I

usual we iterate Eq. (3.17) n times to get the recur-
sion relation

1 1 Z(, (n )
. n 3. n+1f = f ——T ln 1+—

(l
(3,19)

Here the n index in Z(, and Z( denote the partition
functions in terms of the J'"' variables. In the
n ~ limit, Eq. (3.19) becomes

T Z((n )F=——g —ln 1+' „p 3" Z((n)
(3.20)

(F) = , T X —
„ i-n -1+ Z(, (n )

„p 3" Z((n)
(3.21)

The physical free-energy results from averaging F
to give

f' T Z(((1)f=———ln 1+
s s Z((l )

(3.17)

with the configurational average ( )„defined by

(A )„= J dJ'"'P, (J "') 3 (J" ) . (3

where s is the number of sites per cell, and f' is the
free energy for the "renormalized system. " The par-
tition functions for the high- and low-lying states for
the three-spin-cell case are given by

Z( -«((r -«2» cosh(3h/T)+e +
cosh(h/T)

At low temperatures Eq. (3.21) can be written as
(for h =0)

(F) = ——,
' T X —[P„(AE((n) or /sE, (n) ( T)]1

n 0

(3.23)

Equivalently (F) can be generally reexpressed as
where the energy gaps AE] and EE2 are given in

Table I, and h is a small magnetic field applied. As (F ) T2—a(T) (3.24)
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(3.25)

where a(T) is essentially related to the specific-heat
exponent as defined in Eq. (1.2).

From Eq. (3.23) it is now clear why the thermo-
dynamic properties of the model are universal and in-

herently connected to the form of the renormalized
probability law. In particular we note that the first
term in the series in Eq. (3.21) at low temperatures is
smaller than the second and third, whereas the con-
tributions of the higher order terms in n are small on
account of the 3 "factor. Thence we see that the
main contributions to (F) come from intermediate
values of n. The number of terms that are important
to keep in the series depends on the value of the
temperature.

%e have evaluated the thermodynamic derivatives
of the sum given in Eq. (3.21) and computed the
thermodynamic quantities by direct integration. In
order to get smooth behavior for C and X as we11 as
the exponents uc(T) and a~(T) defined as

d lnC =1 uc(T)—,
d lnT

Qc

0.5—

&x
0.5—

a =0.8

dl Td lnT
(3.26)

I

-8
I

-4

FIG. 8. Exponents for the susceptibility (a) and specific
heat (b), as defined by Eqs. . (1.1) and .(1.2) vs temperature
for different values of o. .

we have analytically continued the result (3.23) to
continuous values of the lattice spacing 3 s and
then taken the limit s 1. This procedure is occa-
sionally used in RG calculations. The results are
given in Figs. 7 and 8 for various initial probability
distributions.

a =0.8 (bj a=0.8

a=03 a=

n T

I

—4 0.0 I

-8
I

-4

FIG. 7. (a) Susceptibility and (b) specific heat vs tem-
perature for different values of a. The temperature ranges
from 0.14 to 0.12 X10 in units of Jo, the cutoff in the

probability distribution.

FIG. 9. Exponents for the susceptibility vs temperature
from the numerical renormalization-group calculation for
different values of n,
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The thermodynamic properties have also been cal-
culated numerically, using the full recursion relation
given in Eq. (3.2) and the results for cxx(T) are
shown in Fig. 9. As already mentioned, they differ.
from the analytic results by about 100k.

IV. CLASSICAL RANDOM MODELS

To complete our discussion of isotropic random

magnetic chains in this section we sha11 consider the

classical n-vector models defined by the Hamiltonian

He = XJiSi Si+'&+ h XSi (4.1)

Z[[J;}]=Trl-,
l Q Ti(S;. S;+i,j;)

i 1

(4.2)

where the TrIs 1
means the usual integration in the

I

n —1 dimensional sphere in spin space, and T; is the

usual transfer matrix

T, =exp[PJiSi'Si+l+ p
l't (Si+ Si+I)] (4.3)

for the n-vector model. In the case of h =0 the T s

can be diagonalized at once leading to"

Here the spins S; are classical n-component unitary

vectors, with J; chosen according to the probability

law Pp(J;). In the absence of a field these models

can be solved exactly for arbitrary n and arbitrary

Pp(j, ). To see why this is the case we write the par-

tition function as

Note that this result depends intrinsically on the fact
that the magnetic field is zero and the random in-

dependence of the J's. %ith the change of variables

Pj=x
Eq. (4.7) reads

pPJ()
(F),=-P -'

~ dx P, (x) [lnl„„,(x)

+(1—,'n)—lnx] . (4.8)

Here we have assumed that Pp(J) = (I —a)/J».
the low-temperature limit, the region of interest in

this paper, we can take igjp ~ and the specific heat
corresponding to (F) goes like

(4.9)

which is the same result obtained in the two-spin-cell
approximation in Sec. II. We can obtain the equiv-
a1ent result for the susceptibility of the antiferromag-
netic problem at low temperatures by noting that the
spin-spin correlation function of the random problem
can be expressed as'9

(4.10)

This result arises from a similar argument to obtain

(F) using the transfer matrix T, Taking the .con-
figurational average of Eq. (4.10) with respect to

Pp( Ji ), and using the fluctuation dissipation theorem

N-l

Z [ [ J; }] = (I + 8, „) g ( ,
'

pJ, ) ' —"r'I(,
'

n )'— Nx=P g ((S, S (4.11)

xi l l2 —i (13j' ) (4 4) where' ( ),„stands for the average over J, , the
low-temperature limit of the antiferromagnetic case
leads to

Here we have not written the temperature-indepen-
dent constants. In the case where there is no correla-
tion between the random variables

P(ji*j2 J ) = QPp(ji) (4.6)

and taking Jp as a cutoff for Pp(J, ), the averaged free
energy is simply written as

P(F)1 ———
&~~ dj Pp(J) [(1—, n ) InPJ—t'Jo

1

+Inl„i2 i(pj)] . (4.7)

with I„ the modified Bessel function of the first kind

of order v. In the limit N ~ the configurational
free energy is

N-1

PF [[J,}]= —g [(1—, n ) Inpj;+—In/„l2,(pj, )]

(4.5)

x-T-O . (4.12)

Here again we used Pp(J) = (I —Q. )/J . It is clear
that the results of Eqs. (4.9) and (4.12) depend
strongly on the form of Pp(J). This fact led TC to

suggest that this result was general and extended to
the quantum cases as well. As we have shown in

Sec. III this is not the case, and the classical and

quantum random problems belong to a different
universality class. This is physically clear when we

note that the results of Eqs. (4.9) and (4.12) corre-
spond to the one bond approximation of Sec. II, thus

implying that the quantum many body interference
effects are of crucial importance for this problem.

We have pointed out in Sec. III, that the universal
results found for the RHAF are intrinsically related
to the scaling properties of the probability law. To
further our understanding of the differences between

the classical and quantum problems we consider next
the scaiing properties of Pp(J;) in the classical case.
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At sufficiently low temperatures the spins have small
fluctuations in their orientation and then the trace in

Eq. (4.13) becomes an integral over Gaussian in-

tegrals leading to

1 1 1+
J3 Jl J2

(4.14)

This result has been obtained previously for the
homogeneous problem' and has also been used in
the spin-glass problem. ' The RG equation for the
probability function P(J) in this case is given by

t

J1J2
P)(J3) = dJidJzPo(J&)Po(J2) g J3

1+ 2
i

(4.15)

This equation is solved in the Appendix, where it is
shown that, when taking Po(J) = (1 —a)/J,

P, (J3 Jp) =Pp(J3, —,Jp)+g(J3) (4.16)

Here the function g (J3) has at most a weaker singu-
larity than Pp(J). Therefore in the limit when

J3 (( 1 the behavior of P~ (J3) is essentially dom-
inated by the first term in Eq. (4.16). The singulari-
ties in g (J3) appear when n )O.S but they are always

weaker than those in Pp(J3). The cutoff in Pp(J } is

reduced by a factor of 2, but the behavior near J = 0
remains unchanged.

The essential point of the result given in Eq. (4.16)
is that in contrast to the quantum case, the micro-
scopic probability law is basically scale invariant, and
therefore the form of Pp(J) is crucial in determining
the form of the thermodynamic functions.

From the discussions of Secs. III and IV it is clear
that the isotropic random quantum problems and
their classical counterparts are in a different univer-
sality class at very low temperatures, where quantum
fluctuations are important. Note, however, that this ap-
plies to the antiferromagnetic problem where zero point-
J7uctuations are important. This explains the differences
between the results found in this paper and the results

found in the quantum Heisenberg ferromagnetic chain
There we do not have zero-point fluctuations, and
the model is in some sense classical.

For simplicity we will restrict our analysis to the clas-
sical planar and Heisenberg models in the limit when

P ~. In this limit the behavior of both problems is

qualitatively the same and thus what applies to one
applies to the other. %e use an RG prescription
known as decimation. It consists of taking the tl'ace
over spin variables of every other spin in the chain.
Explicitly,

Trl-,
l
exp(pJi Sl Sz+ pJz S, S 3)= exp(pJ3S ( S3)'2

(4.13)

V. CONNECTIONS %ITH THE SCALING THEORY
OF LOCALIZATION

As we have mentioned before the results presented
in Sec. III are qualitatively equivalent to the ones ob-
tained by Ma et al. " and briefly reported by us else-
where. ' In both papers, however, a physical expla-
nation of the results was not given. It is the purpose
of this section to suggest such an explanation in
terms of the scaling theory of localization'8 as recent-
lv formulated by Anderson et al. " %e will assume
no knowledge of the results derived in Sec. III and
will reobtain them under rather general and straight-
forward conditions.

One of the interesting points of the Anderson et al,
paper is their remarking on the relevance of the prop-
erties of the probability distribution for the random
variables in a disordered problem. After all, we are
talking of a statistical problem and questions like
well-behaved moments and the central limit theorem
should be addressed to make sure that indeed the
theory is statistically well defined. It turns out that
the theory is statistically sound when it is expressed
in terms of the scaling variable Y." In terms of this
variable, that we shall define below, the probability
function T( V) satisfies the central limit theorem,
thus leading to a good statistical theory for Y.

As usual, the scaling procedure consists in adding
"blocks" of material A; with the total system being
A = U .n, A, . In each block A, we define a physical

quantity x; 6 A;. This quantity can be the exchange
constant within the block in a magnetic system or the
resistance in an electronic problem. The scaling vari-
able Y; is a function of x; that satisfies

N iV

Ytt UA, =QY, (x, ) (5.1)

This additivity condition is of course satisfied by
the average

IV N

Yn U A; = $(Y(x;))
, i 1

J
i

(5.2)

taken with respect to the probability law for Y&.
However this is not necessarily the case for higher
order moments of Y, as in the electronic problem
studies in Ref. 17. However, if the random variables
( Y; } are randomly independent among each other all
the higher order moments satisfy an equation similar
to Eq. (S.2). This question of dependence or in-
dependence of the random variables is of great im-
portance in the proof of the central limit theorem for
T( } Y, }). When the dependence is weak, as is the
case studied in this paper and in Ref. 17, the scaling
equation given in Eq. (5.1) is also satisfied for the
moments. Note that Eq. (5.1) for two blocks reads

Y= Yl+ Y2
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which solution is

V(x) =Na+c, (5.3)

ing the central limit theorem.
Note that none of this is apparently satisfied by the

probability law derived in Sec. III that leads to

where N is the size of the block A =A) U A2, u is a

random variable if Y is, and c is a constant that we
take equal to zero. It is clear from the definition
given in Eq. (5.1) that the order in which each of the
A s are added to obtain A is irrelevant. Next let us
assume that the variables [ Y; j are positive, indepen-
dent, and equally distributed exponential random
functions; i.e.,

T) ( Y) (x;)) = )) exp[ —X Y) (x;) I (5.4)

Here A. & 0 is a scale parameter and 0 & Y & ~. We
shall see that this is indeed the appropriate form for
the RHAF problem and for other problems as well.
Now we ask what is the form of the renormalized
probability law P~( Y)) ) corresponding to A = X,. A;?
The answer follows from using the RG as applied to
the probability law and the fact that Y is the scaling
variable. Namely, to obtain the probability law for
the block A)Y+) ——An) U 2 ), with A)Y = U, , A;, we

solve

( X Yg ) -X Yg

F(N)
(5.6)

Here V))) = X,.", Y(x;) and I" is the usual I function.
It is evident that we could have added two blocks of
size N and N' and the resulting T would have the
form (5.6) with N +N' instead of N.

The probability function given in Eq. (5.6) appears
often in the theory of Markov processes and is

known as the I distribution. It plays an important
role in the theory of random variables bounded at
one side.

It follows from Eq. (5.6) that the mean goes like

(V) =N/)

whereas the standard deviation

o = N'i'/)).

(5.7)

(5.8)

are such that the fluctuations y,

(V)
tw

are statistically small in the required way. Then it is

easy to show that in the limit when N ~ the distri-
bution T& tends to a Gaussian distribution thus obey-

TN+)( Y)Y~)) =
J dYN dY) Tn)( Yg) T)( Y))

x 8(V)))+) —( Y~+ Y, ))

= Jr dY) Tg( Yj)
—Y)) T)( Y)) . (5.5)

It is easy to see that with P) ( Y) ) of the form given
in Eq. (5.4) the solution to Eq. (5.5) is

(gJ(n))2)/(J(n))2 ~~ I (5.9)

as n is large for any o. . Thus, as pointed out by
Anderson et al. in many cases the probability func-
tion of a random problem is defined in terms of a

variable for which the previous statements valid for Y

do not hold. We can now make contact with the
results given in Sec. III. - From the form of the ap-

proximate recursion relation given in Eq. (3.3) it is

apparent that

+ Y=+ llnJl (5.10)

and for the power-law I'orm (3.6) for Po(J) we obtain
for Y an exponential distribution of the form (5.4),
with

X= (1 —)2. ) (5.11)

N e-/v/A (5.13)

with J, the scale exchange constant defined in parallel
to the scale resistance of Ref. 17. The result given in
Eq. (5.13) is often identified with localization. From
these statements we conclude that the universal
results derived by Ma et al. and us may be interpret-
ed in terms of the scaling theory of localization.

By contrast, we found in the classical case the re-
cursion relations

1 1 1—=—+-
J J[ J2

(5.14)

that imply that the scaling variable in this case is

Y, =1/J (5.15)

From the general arguments given before we see
that the renormalized T~ [Eq. (5.6)j takes exactly the
form given in Eq. (3.8), if we take N S"—1, with S
the spin cell size in the RG analysis. From this iden-
tification we find immediately from Eq. (5.7) that the

P function is given by

=(V)d(V)
(5.12)

d lnN

This equation for )8 is of exactly the same form as
the scaling equation written by Abrahams et a/. ' in

the localized region if we identify ( Y) —lng with g
the conductance. This rather straightforward deriva-
tion of P is nevertheless illuminating. We notice that
this result has arisen first, based in the neglecting of
correlations between the different Ys. This approxi-
mation is valid in our case as well as in the Anderson
et al. analysis because the correlations are weak.
Second, we see that Eq. (5.12) follows from the
behavior of the mean of Y which is appropriate for a
good statistical theory. Integrating Eq. (5.12) leads to



SINGULAR THERMODYNAMIC PROPERTIES IN RANDOM. . . 5353

'We can repeat again the analysis we presented
above for Y, starting with P, ( Y, ) given as in Eq.
(5.4). In this case we obtain for the "scaling-
exchange constant"

J, —I/N (5.16)

This result is interesting if we note that the form of
J, is reminiscent of a J, —I//1/~ behavior, where d is

the dimensionality. When d = 3 this has essentially
the form of the Rudaman-Kittel-Kasuya- Yosida
(RKKY) interaction valid in the extended regime.
Therefore, we see that the behavior in the s =—
quantum case gives a localized behavior for J,
whereas the s = ~ case leads to an extended'like
result. Of course, we would like to calculate the
crossover from localized to extended as a function of
s. 'We leave this as an open question.
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APPENDIX: DERIVATION OF Eq. (4.16)

The recursion relation for the probability law in
this case reads [Eq. (4.15)]

P(J2) = ' dJ1dJ2P11(J1)P11(J2)5 J2 — . (Al)

Note that the recursion relation given in Eq. (4.14)
is similar to the addition of classical resistance in

parallel. Also J2 &min(J1, J2), thus leading to small-

er values for the renormalized couplings in every
iteration of Eq. (4.14). Again we take the cutoff for
P11(J) to be J11=1. From the J1 integration in Eq.
(Al) we get

1

J, J,J,
P(J3) = ' dJ2 1 —— Po P,(j,)J J3/(1-J3) J2 J2 J3

(A2)

Within the spirit of this paper we take again
Po= (I —n)/J', leading to

(I — )' J3P(J3) = ' dJ2J2 I ——
J 4 J3/(1-J3)

3 2,

With the change of variable

t = J3/J2

Eq. (A3) reads

r~ ]-J3
p(J2) = (I n)2 J1 dr r (I r)0 J3

(A3)

(A4)

(AS)

Note that 0 & J3 ( —, now, so that the cutoff is re-

duced by —.Using the binomial expansion

&& [ J—a+k + (I J )a—1+kj1—2a ]

(A6)

Neglecting Jj over the J3 terms (J3 & I), Eq. (A6)
reads

k —o, +1
P(J, ) =(I —n)' $

k 0 1

( 1)k
o. —1+k

X ( J—a+k+ Jl—2a) (A7)

It is clear that the most singular term is the first term
with k = 0 (since n ) 2n —I for n '& I) so that

1 —eP(J )= +JCt
(Ag)

where the ellipsis represents less singular terms
(0& J&& —,').

1

k —o, +1
( I r )a—2 X ( I )krk

k~o 1

the integration in Eq. (AS) can be evaluated term by
term giving

1
2

k —o. +1
P(J3) = (I —n)' X k (—I)"

k 0
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