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We present a model of the VO, phase transition which incorporates both electron-electron
and electron-lattice interactions and accounts for the presence of two d bands (7* and d}) over-
lapping at the Fermi level of the metallic phase. Attention is given to the crystallographic sym-
metry change at the transition and to the properties of the associated order parameter. To take
into account electron-electron interaction, we use the functional-integral treatment of the Hub-
bard Hamiltonian. Then, to account for the electron-lattice interaction, the center of gravity
and the shape of the d bands are chosen so as to depend explicitly on the lattice distortion. Fi-
nally spin-spin interactions are described in terms of an Ising-like model. This treatment leads
to a free energy expression which, at a given temperature, depends on two variational parame-
ters: the mean amplitude of the local moment u and the amplitude of the lattice distortion 7.
Minimization of the free energy with respect to n and u leads to the temperature dependence of
these quantities. The transition which is a first-order one, appears to be driven by electron
correlations which, below the transition temperature, stabilize a distorted phase with paired local
magnetic moments on the vanadium sites and a density of states gap between the lower Hub-
bard d and the 7* band. Our model lends itself to discussion of the magnetic susceptibility which,
in the insulating phase, is governed by the pairing of the local magnetic moments, induced by the
electron-lattice interaction. Using accepted values of the electronic structure parameters, we
find a fairly quantitative agreement with experiment. We account for all the features of the fer-

roelastic, metal-insulator transition of VO,.

I. INTRODUCTION

Vanadium dioxide offers one of the most studied
examples of a compound undergoing an insulator-to-
metal transition. This transition, at 340 K, is a first-
order one, its striking feature being to display lattice,
electronic, and magnetic aspects. Indeed there is a
spontaneous lattice distortion (i.e., a symmetry
change) and a discontinuous variation of both the
electrical conductivity and the magnetic susceptibility
with such a large amplitude that none of these
changes may be considered as a marginal conse-
quence of the primary mechanism inducing the oth-
ers.

Despite the obvious interactions of these three as-
pects, the VO, transition has long been taken as a
prototype of the metal-insulator transition induced by
the crystalline distortion, which opens a gap in the
electronic density of states.! This general scheme has
been substantiated by Goodenough? who has put for-
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ward_ a band-structure model in which the nature of
the relevant bands and the two electron-phonon cou-
pling mechanisms, associated with the displacement
of the vanadium ions (interband deformation-
potential coupling and intraband Peierls-dimerization
coupling), were identified. Later on, detailed studies
of the effect of Cr doping on magnetic properties,>
showing in particular the formation of magnetic mo-
ments localized on a vanadium chain in two inter-
mediate phases of VO,, have emphasized the primary
importance of electron-electron correlations as they
are accounted for in the Hubbard model.* These
various aspects have been synthetized in the
Zylbersztejn-Mott®> model which incorporates the elec-
tronic structure, the lattice distortion, and the Hub-
bard interaction in quantitative agreement with exper-
iments but which is relying on an implicit thermo-
dynamical calculation (e.g., calculation of the free en-
ergy versus lattice distortion) which has not been im-
plemented. Finally, a recent electronic-structure cal-
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culation® has confirmed previous conjectures but
went back to electron-lattice mechanisms by suggest-
ing the formation of a charge-density wave accom-
panied by a periodic lattice distortion, i.e., a mechan-
ism which postulates the softening of a normal pho-
non mode at the transition.

In the meantime Evanson, Schrieffer, and Wang’
(to be refered to as ESW) and Cyrot® have devised a
method of handling the thermodynamics of the Hub-
bard model in terms of a functional integral. On this
basis, approximation schemes may be specified which
enable one to perform explicit calculations; using this
method, specific problems like the one involving the
lattice? or the spin-polaron formation!® have been
studied. It thus seems that one has at one’s disposal
all that is needed to tackle a complex problem like
the one of the VO, transition which involves (i) a
multiband structure, (ii) various types of electron-
lattice coupling, and (iii) important electron-electron
interactions. i
. The aim of this paper is to attempt such a
comprehensive analysis in which all the relevant in-
teractions are introduced on the same footing, with
due attention given to the self-consistency require-
ments. Essential to our analysis is the fact that our
starting point is an unbiased one; i.e., our model does
not introduce any implicit hypothesis regarding which
of the interactions is the leading one.

To account for the symmetry change at the transi-
tion, one is bound to introduce the crystallographic
order parameter; deduced from the symmetry re-
quirements,'! this parameter 7 is identified with the
static amplitude of a normal phonon mode. On the
other hand, the ESW-Cyrot treatment of the Hub-
bard model naturally introduces another parameter u,
which specifies the electronic degrees of freedom and
which is identified with the average amplitude of the
local magnetic moments. Thus the thermodynamics
of our Hamiltonian derives from the n and u depen-
dence of the free energy of the system.

We do not find it necessary to review the abundant
literature of the VO, transition, a subject which has
been carefully covered by previous authors, most no-
ticeably in Refs. 5, 6, and 12. In the course of our
discussion, we will need actual values of some param-
eters, for most of them we will use accepted values
taken from this literature.

Although the basic method we use, namely, the
functional-integral method, has been put on a sound
basis by the work of ESW.,” Cyrot,? and others,'? its
implementation for the specific problem of VO, has
led us to introduce some improvements which are
worth quoting here. These are (i) the influence of
the Peierls dimerization on the distorted band in
terms of order-parameter n-dependent moments of
the density of states, (ii) a Hartree-like incorporation
of the interband on-site electron-electron interaction
which self-consistently accounts for the energy shift

of the center of gravity of the relevant bands as a
function of their mutual filling. With a set of param-
eters taken from the literature, our model leads to
quantitative results in fair agreement with experi-
ments regarding the transition temperature, the latent
heat, the temperature dependence of the electronic
gap, the lattice distortion, and the spin-correlation
function in the insulating phase. Variations in a wide
range of the values of the set of parameters we use;
do not change the qualitative behavior of the transi-
tion. Our thermodynamical analysis makes it clear
that the transition is a first-order one and allows us
to conclude that electron-electron interactions are the
leading mechanism of the phase transition: the grow-
ing of local moments (paired in the insulating phase)
under cooling triggers the lattice distortion. Our
statement, we believe, draws its strength from the
‘““‘unbiased”’ character of the Hamiltonian we start
from.

The organization of the paper is as follows. In Sec.
II, we review the background of the model. This
model is presented in Sec. III: the specific Hamil-
tonian is constructed (Sec. III A), the functional-
integral method is recalled to justify the approxima-
tions made (Sec. III B), then the coherent-potential
approximation, used to solve the equivalent alloy
problem (Sec. IIIC) and the way we account for the
Peierls dimerization (Sec. III D) are presented; finally
the exchange interactions between localized moments
are discussed in terms of an Ising-like model (Sec.
IIIE). The thermodynamics of the model is elaborat-
ed in Sec. IV in which numerical results are present-
ed. The magnetic properties in both phases are dis-
cussed in Sec. V, where some comments are made on
improvements to be carried on the description of the
correlated metallic phase. Our results are summa-
rized and briefly commented on in Sec. VI. Some
ancillary developments regarding the scaling of the
electron-electron interaction constants, the sketch of
the transfer matrix method in the Ising problem, and
the comparison with the phenomenological theory of
‘“‘triggered’’ phase transitions are deferred to the Ap-
pendixes. Preliminary accounts of this work have
been given in Ref. 13.

II. BACKGROUND OF THE MODEL
A. Symmetry consideration

The high-temperature phase of VO, exhibits the
rutile structure: the unit cell has two unequivalent
vanadium atoms, each of them being at the center of
a slightly distorted octahedron, these two vanadium
atoms belonging to two unequivalent chains parallel
to the c axis. The space group of the rutile structure
is P4,/nmn. The low-temperature (M,) phase be-
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longs to the space symmetry P2,/c, the twofold mono-

clinic axis being perpendicular to the tetragonal axis
of the rutile phase lost at the transition: the unit cell
has then four unequivalent vanadium atoms. As
shown by Brews,!! the transition can be described by
an order parameter transforming like an irreducible
representation of the P4,/mnm space group, associat-
ed to the R point (0,%,%) of the primitive tetragonal
Brillouin zone. This representation is a four-
dimensional one: two dimensions for the small
representation multiplied by the two branches of the
star of the wave vector. Let us call n, and m, the
order-parameter components associated with the sub-
space relative to a single branch of the star. The

R — M, phase transition corresponds to spontaneous
values of the order parameter n; =17, # 0. Howev-
er spontaneous values ;=0 and n, Z 0 or n, #0
and n,=0 would lead to another monoclinic phase
(space group B2/m) and m, # 0, 9, # 0 with 5, # 1,
to a triclinic phase (space group P1). These phases,
M, and T, respectively, have been evidenced'*!® in
Cr-doped VO, and in pure VO, under uniaxial
stress.'® Other possibilities, associated with spontane-
ous values for the four components of the order
parameter, would correspond to other phases with
fourfold multiplication of the unit cell which has not
been evidenced. By looking at the symmetry of the
lattice modes, one finds three modes of vanadium
displacements corresponding to the symmetry of the
order parameter but no oxygen displacement mode
having this symmetry. The atomic displacements at
the R — M, transition have been identified as corre-
sponding to both a pairing of V atoms along V chains
and a tilt of these atoms perpendicular to the ¢ axis,
this complex motion being common to the two un-
equivalent chains. It is worth pointing out that, con-
trary to the conjecture in Ref. 2, the two displace-
ment components of the V atoms are not indepen-
dent. Indeed symmetry arguments require that the
tilt of the V atom on chain 1 be associated to pairing
on chain 2; we may call n; the common amplitude of
these displacements, and conversely the tilt on chain
2 has to be associated to pairing on chain 1 with am-
plitude 7, (see Fig. 1). One sees that atomic dis-
placements at the R — M, transition transform like
the abstract order parameter. One also verifes that
the (n; =0, n, #0) and (n, # 0, n,=0) possibilities
correspond to both the symmetry change and the
atomic displacements at the R — M, transition and
that the (0, #0, 1, # 0, n; # n,) possibility corre-
sponds to the atomic displacements in the 7 phase
which must possess the (P1) space symmetry. From
a crystallographic viewpoint, the R — M, transition
must be described by the abstract order parameter, it-
self identified with the rutile normal modes we have
just described. Any thermodynamic description of
the transition is bound to use this order parameter,
the intermediate phases M, and T naturally appearing

(a) (b)

FIG. 1. (a) Motion of the vanadium atoms associated
with the normal-mode components transforming as n; and
m,. Circles and crossed circles are nonequivalent atoms
forming nonequivalent chains, parallel to the ¢ axis in the
rutile phase. Interchange of n; and 7, corresponds to inter-
change between tilt and pairing on a given chain. (b) Sketch
of the actual atomic displacement occurring at the phase
transition in the afB, ¢ plane. This displacement corresponds
to m; =m,=m and the same combination of tilt and pairing
on the two nonequivalent chains.

as internal possibilites of such a description. In what
follows, we will limit ourselves to study the R — M,
transition, calling n the common value of 7; and 7.

B. Electron-electron correlations (Hubbard) versus
electron-lattice interactions (Peierls)

Crystal-field and bonding considerations,? cluster
calculations,!” and band-structure calculations® '3
agree on the qualitative features of the metallic VO,
electronic structure: the conduction band is made of
crystal-field-split vanadium d orbitals, which, depend-
ing on their symmetry, are differently hybridized with
oxygen p orbitals. The Fermi level falls within two
degenerate bands, a narrow d) one essentially made
of d orbital overlapping along the ¢ axis and accomo-
dating two electrons per vanadium, and a wider anti-
bonding #* band, made of 4 orbitals pointing towards
oxygen atoms and hybridized with their p orbitals and
accomodating four electrons per vanadium. The d'
configuration of the V** ion allows a single electron
to be shared by these 4, and #* bands. Owing to (i)
their different widths and (ii) their different anisotro-
pies (d, band is highly anisotropic while 7* is more
spherical), these two bands are expected to respond
in a different way either to electron-electron interac-
tions (significant only for the narrow d band) or to a
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lattice distortion.

As first conjectured by Goodenough? and con-
firmed by cluster calculation,!” due to the lattice dis-
tortion the antibonding 7* band raises above the Fer-
mi level and the d), band becomes half filled. Further
dy-band splitting may originate from either vanadium
pairing along the c axis (Peierls mechanism) or from
the opening of a correlation gap (Hubbard mechan-
ism). There has been an active debate to ascertain
the relative importance of each mechanism: the oc-
currence of localized spin--;- moments on one chain

in the M, phase strongly favors the Hubbard
mechanism®>: on the other hand, recent band-
structure and generalized susceptibility X(g) calcula-
tions® emphasize the nesting features of the metallic
Fermi surface and suggest the formation of a
charge-density wave associated to a lattice periodic
distortion with wave vector @=TR (T being the
center of the Brillouin zone). Let us notice that the
peak in X(G) for §=TR results only from the d-
band contribution.

The Peierls mechanism acting alone seems unable
to account for all the features of the transition for the
following reasons. In the first place, current esti-
mates of both the bandwidth® '® and the electron-
lattice interaction term!” hardly lead to the opening of
a gap within the half-filled d, band. More precisely,
this mechanism would be very efficient for a distor-
tion acting on uncoupled chains whereas nesting argu-
ments® imply interchain coupling (i.e., nonvanishing
interchain-hopping integrals) and the actual distortion
with wave vector §=TR is expected to open only lo-
cal gaps in the Fermi surface but not one in the den-
sity of states. Secondly, this mechanism cannot ac-
count for the formation of local moments in the M,
phase nor for the temperature dependence of the
magnetic susceptibility in the metallic phase. One
may notice that a charge-density-wave mechanism
would be sensitive to any change in the Fermi sur-
face and especially to that brought about by Cr dop-
ing which is expected to introduce an extra electron
and thus to raise the Fermi level.'® Cr doping is
known to induce new phases while keeping the tem-
perature range of the metallic phase stability un-
changed. Finally, the latent heat associated with the
R-M, and R-M, transitions (i.e., metal-insulator
transitions) are much larger than those corresponding
to M,-T and T-M ones (crystallographic transitions
between insulating phases), a phenomenon which
would hardly be understood on a simple Peierls
mechanism basis. At this point, it is worth noticing
that, beside the electron-lattice interactions (namely,
the #*-d, band splitting and Peierls distortion), there
is experimental evidence for electron-phonon interac-
tions leading to a global softening of the phonon
modes in the metallic phase. The strongest one com-
ing from Debye-Waller factor measurements.?®
There is, however, no indication that the transition is

driven by a strong softening of lattice modes associat-
ed with the R point of the Brillouin zone.

However, the description of the transition in terms
of the Hubbard model alone suffers from obvious de-
ficiencies. First, a lattice distortion is required to lift
the dy-m* degeneracy and previously developed sym-
metry arguments show that a tilt of vanadium atoms
also implies their pairing. More generally, a Hubbard
mechanism cannot break any crystallographic sym-
metry nor account for the symmetry properties of the
order parameter. Finally, the vanishing magnetic
susceptibility in the M| phase implies some spin-
dimerization mechanism which originates in vanadi-
um pairing.

To summarize, any theory attempting to account
for the major features of the transition, namely, sym-
metry breaking, gap opening, and magnetic proper-
ties, and to give a quantitative thermodynamical
analysis must incorporate both mechanisms on an
equal footing.

C. Electronic-structure parameters

In this section, we will extract from the literature a
set of data on which the authors seem to agree and
which will constitute the framework of our model.

In the first place, we assume the metallic phase
Fermi level to lie 0.44 ¢V above the bottom of the
dy-m* complex which has itself a width of 2 eV %18
In this configuration the dy band accomodates 0.75
electrons per vanadium. Symmetry considerations
show that the upward motion of the #* band and the
downward motion of the d), band must be a quadratic
function of the order parameter n, the center of grav-
ity of the d-7* complex being stationary. Using the
cluster calculation of Sommers ef al.,!” we take for
the deformation potential constant the value E =30
eV/A [see Egs. (4.6) and (4.7) below]. Finally for
the value of the d, electron Hubbard interaction term
we will use U;=1.1 eV, which is close to the esti-
mate that Sommers and Doniach?! obtained from a
self-consistent, unrestricted Slater X a cluster calcula-
tion.

I111. MODEL
A. Hamiltonian

Within the spirit of the Hubbard model, the most
general Hamiltonian suited to our problem is

H=Hy+Hp+He e+ Hyy , 3.1

where Hg, and H g« are tight-binding terms describ-
ing, respectively, the d) and 7 band in the absence
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of electron-electron interactions:

+ +
Hy= Eeu(n)am""aif}” + 2 ti_l(")(n)aio-(")aj(") ,

o Lo
(3.2a)
+ +
Hu= 3 ex(n)aald + 3, 1/9a*Dg*0
io ij, o
1=1,2 11,2
(3.2b)

in which the n dependence of €, and € and of "
accounts for the deformation potential acting on the
dy and 7" bands and for the distortion dependence of
the d, hopping integral; creation and destruction
operators operate on Wannier states with spin o lo-
calized on site / and made from d,, wave functions
for a;,™ and ¢,\V, and from d,, (dy,, respectively),

. T .
wave functions for a;,*" and a,0*" (respectively,

t .
a;.*? and a,?), accounting for the degeneracy of

the 7" band. The sum runs over the N lattice sites
of the crystal. H,., describes the electron-electron in-
teraction and, under its most general form, H,_, is
written:

_ afys T F
H, .= 2 Ui QAiaAjglr 15

where /, j, k, and / are site indices and «, 8, y, and &
label both the orbital and the spin state of the d wave
functions: electrostatic interactions with the core
electrons are implicitly accounted for in the €, and

ex energies. In keeping with the spirit of the Hub-
bard approximation, we retain only ‘the interactions
on a single site, namely /i =j =k =/. Among the
selected terms, we retain only those including pairs of
associated creation and destruction operators

n'® =a @@ forgetting about more complex spin
and charge fluctuations. We are then left with

Heo= 31U " 0" + Us(n{™ 0™ + 050 ) + Wa(ng™ + 0™ ) (4™ + ™)
i

+ W*”(”’_(]II) +Hi(‘") )(ni([*” +ni(‘*l) +ni(1*2)

where U, and U« are the specific Hubbard terms
describing the Coulomb interaction of two electrons
of like orbitals and opposite spins and W« and Wy
account for the interactions of electrons of unlike or-
bitals. We do not distinguish, as formally we would
have to do, between direct and exchange terms in
W and Wi which are expected to have the same
order of magnitude and which will be handled within
a mean-field approximation whereas, for the prevail-
ing U, term, we will go beyond the Hartree-Fock ap-
proximation. The relative importance of the U term
with respect to the other ones comes about from the
fact that (i) U, is larger than U because the d), wave
functions are expected to be more localized than the
s ones which are more hybridized with p oxygen
wave functions, and (ii) Uy is larger than Wy, which
describes electrostatic interactions between nearly
orthogonal wave functions; these arguments will be
used to scale Ux, Wxx, and Wy, with respect to U,
using the respective radii Rx and R of the d wave
functions (see Appendix A).

Finally, H,, describes the bare potential energy as-
sociated with the normal phonon mode which is the
order parameter of the transition, but does not en-
compass the changes in the other phonon modes
which accompany the change of the electronic spec-
trum??

Hayw=Cn?+Dn* , (3.9)

+ni(l*2))] N (33)

where C and D coefficients are, respectively, the har-
monic and anharmonic contributions; symmetry
properties preclude the occurrence of n° terms.

B. Decoupling and approximations

It may first be necessary to recall the procedure
commonly used in dealing with the Hubbard Hamil-
tonian in its simplest form:

T
HH= 2 tija,,,aj,,-l— U 2’7,‘]’7,‘1 s

i a i

where #; takes the value €g and 1; (i # j) depends
only on l_{',- —}_ij. Difficulties arise from the second
two-particle term which may be expressed as a sum
of squares of operators:

UH,-In,-1=%U[(H,‘[+I’I,*1)2“(H/T“HII)Z] . (3.5)
The partition function may then be transformed in a

functional integral of partition functions for unin-
teracting electrons in fluctuating fields’- % 10-23.24;

Z =fHD/.L,'(S)D€,-(S) tr7, [exp[— j;ﬂ D(s) dsn ,

3.6)
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with 8=1/kgT and
o(s)=3, 18 (8)a, o (s)

who

——;U zu,(s)[nn(s)—n“(s)]
+%U zli(s)[”,'t(s)""n,‘l(s)]
+3U S ut(s) = ()]

where T is the chronological operator, and y,(s) and
i (s) being the magnetic moments and electric charge
fields, respectively, fluctuating with the (fictitious)
time s. On this ground, approximations may be
made, the first one being to neglect time fluctuations;
this static approximation transforms functional in-
tegrals into conventional ones. The second approxi-
mation is to neglect electric charge fluctuation

{,’(S) = (ni' +I1,~1> =n

The partition function is then approximated by

with
Z( [Mi })

1
=trexp[—/3 Et,»,a,t,a,,,—-z-U 2#[(";1—‘";1)
ijo i
1 —_
+7U’I 2(”,-“*‘",'1)
i

+1U Z(Mf—ﬁz)]] . (3.7v)

One then uses the Landau (or steepest-descent) ap-
proximation, which consists in choosing the prevail-
ing term in Eq. (3.7a)

Z=[max‘“i,20({p.,-})]g(“i} ,

where the degeneracy factor g u;) accounts for the
volume of the u; space in which Z, takes its max-
imum value. Each of these u; distributions satisfy
the equation

32

i
a condition which turns out to be identical to

= (m;;—n;). An additional simplification is to
snmulate the unknown w; distribution by the one of
an equivalent alloy, specified by a variational proba-
bility distribution ®({u;}) to be defined. Then,

Z = [max, 1 Zo({n/}) 18, )= maxgl (Zo({u;})) 85l .

(3.8)

where (Z,) is the alloy average of the electronic par-
tition function Z, given by Eq. (3.7b) and where the
degeneracy factor ggpis related to the alloy-
configuration entropy. In the absence of the magnet-
ic field and for 7 =1, the symmetry of the Hubbard
problem (i.e., the electron-hole symmetry) suggests
the probability distribution

Pp({”’i})=H[%8(I"I_M‘)+%8(l"i+ﬂ')] , (3.9

that is, the distribution
@“({Ibi})=0(ﬂu {Ei}) ,

where 'p.,- =¢;u and where ¢; takes at random the
value +1 or — 1 on site /,®, depends only on the
variational parameter u. In Eq. (3.8a), ge no longer
depends on u which is chosen from

3(Zo(p, {€: 1))

on =0, (3.10)

which is still identical to
1
=7v— 2€l<nlt nll) (311)

as far as Z is exactly calculated; u appears as the
alloy-average amplitude of the local magnetic mo-
ment. The free energy estimated from Eq. (3.8) is

F=—kgTIn(Zo) —kpT Ingg , (3.12)
®, being specified by Eq. (3.9)
Ingg=—NIn2 ;

that is F includes beside the electronic term a mag-
netic moment entropy as long as u given by Eq.
(3.11) is nonvanishing. Finally, we will estimate
(Z,) using the coherent-potential approximation®
which involves no correlation between different ¢;
and within which the alloy-average electronic free en-
ergy equals that estxmated from the alloy- average
density of states.”

Note that more sophisticated approximations like
the self-consistent sublattice approximation'®?’ would
imply others ®({¢,}) involving correlations between
nearest neighbors as additional parameters.

When one returns to our Hamiltonian Eq. (3.3)
and assumes that the d, electrons only need to be
considered beyond the Hartree-Fock approximation,
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the previous decoupling procedure leads to
H=Hy+ Hox+ Hpy

+ 3120 "0 10 = L Uheu(nf” = ")
i
+ Wy, 4 5 0) ]
+ 3 (U Uy = Uen ™2
| A Wi = w5 ")

(3.13a)
where

(D b b

n =(n,~1” +n,-l|| ),

(%) 1 1) (%2) (%2)

n =<”i(*)+”i(1* )+<”il +n;) )

(3.13b)

and where Hy, and H« are defined by Egs. (3.2a)
and (3.2b). u is a variational parameter associated
with the local d; moments only; i.e., we neglect the
local #* moments. Let us notice that, within this
formalism, the condition

ﬁ(”)+ﬁ“)=1
leads to the constraint
osp=<all. (3.14)

The fifth term of Eq. (3.13a), which contains only
the ¢ numbers ﬁm, rT(”), and u is a consequence of
our decoupling procedure but expresses simply the
necessity of not counting twice the interaction ener-
gies. _

We will assume that, when the d, and =% bands
overlap at the Fermi level, the probability distribution
of the local u; moments is still given by Eq. (3.9).
Note that in that case, minimization of the partition
function of the whole system with respect to u no
longer implies Eq. (3.11).

At this stage, we find it convenient to introduce a
fictitious configuration in which 4, and 7* bands do
overlap in absence of both lattice distortion and mag-
netic moments, at 7 =0; this configuration corre-
sponds to the band-structure calculation for the me-
tallic phase. Denoting then by N, the d, electron
concentration associated with the configuration, we
may rewrite H as:

H =H()||(7)) +ﬁ0*(7]) + E—QU”E,M(H/(IH) —n,-(lH) )

+ E[(‘;‘Uu—‘ W*||)(ﬁ(|l)_N0)”i(|[)
+(W*||—%U*—% W**)(ﬁ(”)_NO)”i(*)]
+AE;m+Hlan (3158)

with

AEiy= Z[TIUHMZ_ (%Uu'*—,l;U*— W*n)(ﬁ(”)z—Noz)
+ (W=t Us— 2wy (@ = N1,

(3.15b)

where Ho(n) and Hy«(n) incorporate the Hartree-
Fock energies corresponding to the N, configuration,
energy shifts in the fourth and fifth terms being es-
timated with respect to this configuration. It is worth
pointing out that the way we take into account the
dy-m* interaction strictly follows the prescription
given by Hubbard,*® who states that the unper-
turbed band energies of the electrons he considers in-
corporate the interaction with the electrons of all oth-
er bands. The fourth term shows explicitly that, ow-
ing to the electron-electron interaction, the positions
of the dy and 7" bands depend on their respective
populations. Finally, H depends on two parameters,
namely, the amplitude of the static distortion n and
the one of the local moment . The task is to esti-
mate, at any temperature, the partition function Z or
the free energy F associated to H, the equilibrium
state of the system being defined by the values of 5
and p which miminize F or Z.

C. CPA densitvy of states

From H, we may extract
~ | (ah (
H yioy=Hon(m) + 27U|r€1#(”i1” “”u”) ) .
i

which corresponds to the propagation of independent
spin { or spin | electrons in presence of a set of static
and, in our approach, uncorrelated scattering poten-
tials + —; U||[.L.

The average propagation in such a random field is
generally described in terms of an effective medium
which is defined by the condition that a single
scatterer embedded in this effective medium should
produce no further scattering on the average.”’ The
propagation of an electron in the effective medium is
described by the Green’s function G (z)

G(2)=Gy(z—-2(z2)) ,

where Gy(z) is the Green’s function of the unper-
turbed medium, i.e.,

Golz2)=lz—Hy(n)I™",

and where the self-energy 3(z) is defined by a self-
consistency relation. With the probability distribution
Eq. (3.9) this relation takes the simple form:

2(2)=[(3Uw)?* - 2(2)218 (2) , (3.16)
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where

1

9(z)=(i\G(2)|i)=WtrG(z) ,

(=Lt 1
5@ N%z—ek—z(z)

pb(E)

=fz—:de , (3.17)

where ¢, are the Bloch state eigenenergies associated
with Ho(n) and p§(E) is the correponding density of
states per atom. Furthermore, the actual density of
states per atom is given by

pgpA(E)=—% ImG (E +i0) . (3.18a)

From the preceding equation, it is clear that the solu-
tion of the CPA equation does not involve the full
band structure €, but only the unperturbed density of
states p§(E).

A well-known consequence of the CPA is the
opening of a gap in the density of states when the
scattering potential exceeds a critical value; the gap
opening condition depends only on the product U,u
and on the unperturbed density of states p{(E). As
pointed out before, since Hy, depends on the ampli-
tude n of the deformation, we only need to account
for the part of this dependence which is due to the
hopping integral t;(n) via a suitable parametrization
of p§(E, n). Then, implementing the CPA calcula-
tion gives us

peealE) =plpalE m 1) (3.18b)

D. Model density of states
and Peierls dimerization

As regards the d) band, we know that its shape
depends primarily on coupling between adjacent
vanadium along a chain, the eight interchain hopping
terms t, being smaller than the intrachain one ¢ or, in
the distorted phase, the f; and # associated with the
short and long bounds, respectively. According to
previously given arguments, we assume that the lat-
tice distortion, acting alone, is not able to open a gap
in the d, density of states, however, it will distort it.
A simple way to account for this effect is to introduce
a model density of states under the form of an even

fourth-degree polynomial in energy:

1

1} —— -
pY(E)=
0 A(H)3(%_%b)

1 (D4 _ fa 2_ AUD2
X |ams A= E9 +5 (B2 - a0
if — A< E < AD
=0, otherwise , (3.19)

which depends on two parameters, the half-
bandwidth A" () and b(n). As stated above, we
assume that there is no density-of-states gap induced
by the Peierls dimerization alone, so one has

0=<<b =<1 with 6(p=0) =0 implying no distortion,
and b (n) =1 the onset of a gap opening. We make
contact with the hopping terms and their distortion
dependence assuming

(i) to independent of o ,
(ii) t;,=texp(2n/R) , (3.20)
t=texp(—29/R) ,

where R is a typical Slater radius for the d,, wave
function, and using the following relations

AU (n) =8t +1+1, , (3.21a)

M2(7])=f_‘2+f12+8'& , (321b)

deduced from a nearest-neighbor tight-binding ap-
proximation. M, is the second moment of the densi-
ty of states

M2=fE2p(()”)(E) dE . (3.22)

It is worth emphasizing that the knowledge of

AU (n=0) and of p§(n=0) is equivalent to the one
of tp and ¢, the values of the former quantities imply
a ratio t/ty=238.1 of the intrachain to the interchain
hopping term.

Introducing Eq. (3.20) in Eq. (3.21) and Eq. (3.19)
in Eq. (3.22) gives A"(%) and 6 (7). Note that the
strength of the electron-phonon interaction is intro-
duced via the 7 dependence of f; and 1, i.e., via the
Slater radius R. An advantage of the model density
of states Eq. (3.19) is that, for such a symmetric un-
perturbed shape the gap-opening condition may be
shown, following Ref. 25(b), to depend only on the
second moment M,, namely,

Up=2(M)V? (3.23)

so that our parametrization combines the electron-
phonon and electron correlation coupling mechan-
isms in the most direct and simplest way.

For the #* density of states pg (E) which is not dis-
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torted, we will assume the same form as in Eq. (3.19)
with b =0 and a half-bandwidth A™.

A second effect of the distortion is to shift the =*
band with respect to the d) one, this effect is intro-
duced via the % dependence of €, and e« in Eq. (3.2),
i.e., via the previously discussed deformation poten-
tial. However the n dependence of Hy, and Hy« in-
cludes, besides this explicit dependence, the implicit
one which is associated with the change in band pop-
ulations.

E. Exchange interactions

It has been made clear by several authors that,
especially as regards the thermodynamics, the basic
feature of the Hubbard problem® '° as well as of the
problem of metal magnetism?* is the formation of lo-
cal magnetic moments. However the coupling
between magnetic moments needs to be accounted
for. The specificity of the VO, problem relies on (i)
the quasi-one-dimensional character of the coupling
between vanadium ions and (ii) the electron-phonon
coupling which induces a quasidimerization of vana-
dium atoms (along a chain) which is also a quasi-
dimerization of their spins.

The magnetic coupling may be estimated in terms
of an effective coupling J; between spins, either per-
turbatively from the functional-integral formalism?> 28
or from a sophisticated alloy approximation involving
intersite correlations.'® Either of these methods
would be very difficult to implement in a situation
where hopping integrals 7; are not equivalent and
depend on the distortion parameter . We will thus
estimate this antiferromagnetic exchange interaction

Hexen= E'Iijﬂ-zeiej (3.24)
b

from a two-atom Hubbard model.> In this model,
the energy difference between the (singlet) ground
state and the first (triplet) excited one is

AE= (s U} +4) =S U=2J; . (.29

In the distorted phase, one has to distinguish
between intradimer J; and interdimer J;

Jsn(m) =[5 UR + 12 ()12 =1 U, .

In this model we have neglected the interchain ex-
change coupling, owing to the smallness of .

The onsite Hartree-Fock interaction between d
and 7~ electrons could generate an effective ex-
change interaction between the two bands, which,
however, has been discarded. Note that Eq. (3.25),
which describes some Anderson superexchange, is,
strictly speaking, only valid for a half filled band with
n — 1, which, as will be shown, corresponds to the
situation found in the insulating (M) phase of VO,.

In the metallic phase of VO,, where we shall find a
fractional occupation of the ¢, band (77, ~ 0.8) and
small moments (u ~0.3), these terms, although giv-
ing a poor description of the exchange energy, do
represent but a small correction.

Thermodynamics of the linear Ising chain may be
performed exactly using the transfer-matrix method?’
(see Appendix B), leading to a spin contribution to
the free energy

Fopin= —%kB T In(4 coshBJ;u? coshBJ;u?)

(3.26)

In Fg,,, one may separate an internal energy contri-
bution from an entropy one; at the limit J;(; — 0, the
former contribution vanishes and the latter one tends
towards the —kz T In2 term discussed in Eq. (3.2). In
other words, accounting for the exchange interactions
(i.e., for the correlations between moments) intro-
duces corrective terms which are not present in the
CPA calculations of the orbital free energy.

IV. THERMODYNAMICS OF THE MODEL

Having specified the model Hamiltonian, we are in
a position to write down the free energy F as the sum
of orbital, spin, and lattice contributions:

F=Forb+Fspin+Flan 4.1

and to define the equilibrium state at a given tem-
perature T by the values of u and n which minimize
F, subjected to the constraint Eq. (3.14). In Eq.
(4.1), Fyin=Fsin(T, m, u) has been previously de-
fined by Eq. (3.26) and Fa is reduced to the poten-
tial energy Eq. (3.24). We get F,,, from

+o00
For(T,m, u) =Ep—kgT f_m po(Em, )

BEg—E)

xIn(l+e ) dE

+AEi(n, n,T) , 4.2)

where AE, has been defined in Eq. (3.15b), the to-
tal density of states p,,(E, m, u) is

pot(Em pw)=p"(Em, w) +p"(Esm, 1) , 4.3)

and the Fermi energy Er is specified by the condition

+00
I_w ptot(E;T),,lL)f(E,EF;T)dE=1 , (44)

f being the Fermi function. The #* density of states,

normalized to four electrons is

P (E;m, ) =pi(E — Qx(n, pn)) ,
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with

5
po(x) =12a%
0, otherwise ,

(A*—x*), for |x|=A*

where the center of the 7 band, Qu(n, 1), depends
explicitly on » via the deformation potential and im-
plicitly on both n and u through the Hartree-Fock
terms. The d, density of states, normalized to two
electrons is

p"(Esm, ) =2py,cpalE — Qy(m, 1)) ,

and depends on 7 and u via (i) the dependence of
the center of the d, band Q(n, ») and (i) the
dependence of p, cpa, given in Eq. (3.18) and which
is obtained from the self-consistent calculation dis-
cussed in Sec. IIIC and III D. Let us emphasize that,
for each couple (7, u) of variational parameters, we
have first to self-consistently solve the CPA equa-
tions (3.16) and (3.17) at each energy. A second
step of self-consistently is, for a given couple (7, )
and at given temperature T, to specify Q+(n, u) and
Q,(n, n) via the dy- and 7*-band occupations given
by Egs. (4.3) and (4.4):

+o00
ﬁ(ll)"‘f_m pu(Em, w)p (E,EpT) dE | 4.5)

from
Qulm, ) = Quo+ 3 En’
+ (W=t U= 2w @V =Ny
(4.6)

and

2
Qy(m, w) = Q- TEn’

+QGU-wa GV =Ny . @D

In Egs. (4.6) and (4.7), the relative position of the
two band centers, Qo and Q«, in the Ny configura-
tion will be defined below, the second terms include
the deformation potential =, and the third terms cor-
respond to Hartree-Fock potentials. In order to
specify the model completely, we need the parame-
ters of the N, reference configuration. We first take
for convenience Qo=0, then, in keeping with the
discussion of Sec. II, we take

Ep -
f_ pa(E,m=0)dE =0.75 ,

Er

_ pO(E— Q*O) dE =025 »
and from Ref. 6, Er+A,=0.44 eV and
Ay(n=0) +Ax+ Q=2 eV. Solving these equa-
tions, we find A (n=0) =0.55, Ax=0.89, and
Qx=0.56 eV. We then take U;=1.10 eV, close to

the estimate U, =1.22 eV of the cluster calculation.?!
Note that the ratio U;/2A,(n=0) is larger than the
one which is needed to open a correlation gap within
a single-band, undistorted Hubbard system. The
scaling of Hartree-Fock terms on U, (see Appendix
A) gives Ux=0.55, Wy;=0.61, and W.x=0.49 eV.
The radius R which in Eq. (3.20) defines the strength
of the Peierls coupling is chosen so as to introduce,
for the value of n which corresponds to the distorted
phase, a significant deformation of the density of
states but no gap opening (b < 1), namely, R =0.5
A. Finally, with the previous choice of electronic
parameters, the constants C and D in Eq. (3.4) are
determined from the knowledge of the transition
temperature T, =340 K and of the distortion at the
transition n, =0.105 A; we get C =17.3 eV A2 and
D =260 eV A

The value of C is close to the one which would
have been obtained by taking the eigenfrequency of
the normal mode associated with the lattice distortion
in the calculated lattice dispersion curve of rutile,°
»=>5.10" rad sec™!, assuming the mass of this mode
to be twice that of the vanadium atom. The value of
D corresponds to a small anharmonicity, namely,
Cn?=Dx* for a value of n which corresponds to an
18% shortening of the vanadium-vanadium distance
along a chain.

This calculation scheme has been implemented and
the results are displayed in Fig. 2 which shows the
variation of the free energy F as a function of the
two variational parameters, calculated at the transi-
tion temperature T,. This diagram evidences (i) the
first-order nature of the transition, i.e., the fact that
two free-energy minima separated by a line of maxi-
ma become equal and (ii) that the transition affects

F
(eV/ Vanadium) 7
-0.23

-0.25
-0.27 4

M 02 =
, olpds foloso o1z m(A)

/
mq 25/

FIG. 2. Free energy per vanadium atom as a function of
the distortion 1 and the local-moment amplitude u, calculat-
ed at the transition temperature 7,. M and [ correspond to
the equistable metallic and insulating phases coexisting at
the first-order transition. m and m, are the coordinates of
unstable states referred to in the text.
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both the lattice distortion n and the average ampli-
tude of the local moments u which (discontinuously)
change from n=0.105 A and pm=ny;=0.99 in the
low-temperature phase to n =0 and «=0.27 (i.e.,

u < ny=0.78) in the high-temperature one. More-
over, as displayed in Fig. 3, at T < T, the distorted
local minimum is always the absolute one and its 5
coordinate continuously varies with 7, whereas u is
always equal to 7, ~ 1, at T > T,, the undistorted
minimum becomes the absolute one and u continu-
ously decreases with increasing 7, as discussed in Sec.
V below. This calculation suggests that the average
moment amplitude u vanishes at a temperature
T,~800 K. The associated changes in the d-band
shape and in the d,- and #*-band positions are
displayed in Fig. 4 which shows the density of states
of each equilibrium state at 7 =T,: the low-
temperature phase is an insulating one with a
density-of-states gap between the lower Hubbard d
band and the 7* one. The temperature dependence
of this gap is displayed in Fig. 5. At first glance, this
density of states gap Eg pos should be compared to
the thermal gap deduced from transport experi-
ments.>! There is, however, some uncertainty about
the relevant value of Eg,, whether one chooses (i)
the activation energy of the conductivity o at T < T,
namely, £, ~ 0.25 eV, (ii) the value of
dina/d(1/kgT) at T=T,, Eg ,~ 0.8 eV, or (iii) the
conductivity jump at the transition, Eg ¢, ~ 0.5 eV.
The best estimate seems to be the third one, owing

n(A)4

N ST >

t T500.--"1000T (K)
I r-

0.5¢

T

of —-
o

FIG. 3. Temperature variation of the amplitudes of the
distortion 9 and of the local magnetic moment .

F {Total DOS

Total DOS

FIG. 4. Electronic density of states calculated at the tran-
sition temperature for the metal M and the insulator /
phases, and for the intermediate states 7, and m,. Hatched
areas correspond to occupied states.

to the fact that the mobilities in both phases have
been experimentally shown to be comparable,’? and
this value is also in agreement with the (nonunambig-
uous) determination of the optical gap.’> We thus
find a gap E; pos=0.22 eV at T =T, about twice
smaller than the experimental value. It is unlikely
that either a reasonable change of U, or of the shape
of the undistorted p},', may increase Eg pos by a factor
of 2. This discrepancy may appear as a weakness of
our model, even if one keeps in mind the experimen-
tal uncertainty on Eg . However, our thermo-
dynamic approach, relying on the single-site CPA, is
better suited to give the ground-state energy, related
to the first moments of the density of states, rather

00 500 T(K)

FIG. 5. Thermal variation of the gap in the electronic
density of states.
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than the density-of-states gap related to its fine struc-
ture; moreover it is well known that the conductivity
activation energy may be larger than the density-of-
states gap, in case of Anderson localization (see the
discussion in Ref. 10).

The calculation also yields the latent heat which is
L =564 cal per VO, mole, compared to the experi-
mental one 1024 cal per VO, mole.** This calculated
value may be considered as the sum of an electronic
contribution, L =0.437L and a spin-order one
L 4in=0.536L, the phonon contribution not being in-
cluded in our calculation. It is worth pointing out
that our calculated L amounts to 55% of the experi-
mental value and corresponds to different (rough) es-
timates®® or the electronic plus spin) contribution, the
remaining part being the phonon one. In our view,
the importance of the phonon term does not come
about from the softening of a single mode but rather
from a general weakening of force constants in the
metallic phase, as suggested by a number of experi-
ments.®

It is by now well established that the lattice dynam-
ics are dominated by the structure of the dielectric
constant,’’ i.e., by the screening of interionic,Coulomb
interactions. The dielectric constant change at the in-
sulator to metal transition, which in particular affects
the g =0 screening, modifies the lattice dynamics. It
points to a general softening of the lattice and thus to
a lowering of the Debye temperature and to an in-
crease of phonon energy. Our scheme is thus quali-
tatively in agreement with experiments although we
are not able to account quantitatively for this effect.

For the sake of simplicity, we may separate our dis-
cussion of the phase transition process in two stages.
In the first place, we see that, for a single-band sys-
tem (e.g., for dy alone), the electron-phonon interac-
tion renormalizes the electron-electron one and vice
versa. Although both interactions contribute to lower
the internal energy, it appears that at a given U\, the
critical value of w which opens a Hubbard gap is an
increasing function of . The electronic energy gain
for a given distortion m, £ (u,0) — E(u, m), is a de-
creasing function of u. For a single-band system, the
combination of electron-phonon and electron-electron
interactions would lead to two distinct second-order
phase transitions, namely, a ferroelastic transition
and a metal-insulator one. In the second place, the
presence of a 7* band, coupled to the d) one by both
the deformation and the Hartree-Fock potentials,
leads to a single first-order transition associated to
both the opening of a finite gap and the onset of a
finite distortion. One may get some insight on the
transition mechanism by considering (Fig. 4)
not only the density-of-states diagrams M and /
which correspond to the two equilibrium states at 7,
but also the diagrams m, and m, (see their coordi-
nates in Fig. 2). The m, diagram shows that the
opening of a Hubbard gap does not necessarily imply

an insulating behavior and the m, diagram shows
that, as soon as the 7 band is nearly empty, the sys-
tem gains an additional energy by distorting itself,
this distortion being stabilized by the lattice energy.
This analysis clearly shows that, although 7 is the
(Landau) order parameter of the transition, its ther-
mal variation is but a consequence of a subtle cou-
pling with electron correlations [i.e, with a mechan-
ism which is not described by a (Landau) order
parameter]. Thus the leading instability, the one
which may lead to large amplitude fluctuations, is
that of the average moment u, occurring at 7',

(~ 800 K), whereas the onset of a distortion at 7, is
not expected to induce large-amplitude fluctuations
of m, i.e., to induce any soft mode associated to the
R point of the Brillouin zone. Indeed the F (), u)
diagram at T, (Fig. 2) exhibits a very small curvature
along the u axis, but a significant one along the
axis. It is worth noticing that similar conclusions
have been obtained for the so-called “‘triggered”’
phase transitions®® from a formal discussion of a
phenomenological Landau expansion; we show in
Appendix C the correspondence between our micro-
scopic model and the phenomenological one.

V. MAGNETIC PROPERTIES

As in other cases of correlation induced metal-
insulator transitions (e.g., V,03), the magnetic prop-
erties of the system and their variation at the transi-
tion are important features of the problem. In actual
fact, the average amplitude of the local moments u
enters our model as a basic parameter. However its
calculated variation cannot be compared directly to
the experimental data but to what may be inferred
from the variation of the magnetic susceptibility X.

One may expect that the thermodynamic approach
which has provided us with the ground-state energy
of the system, would lend itself to estimate the
response to an external field. Under application of a
magnetic field A, the symmetry between the two
equivalent alloys experienced by the spin-up and the
spin-down electrons is broken, the statical distribu-
tion becoming

G’(l,u;})=n[(%+8€)8(ui—u—8u)

+(5—8c)8(u +p—3p)] .
(5.1)
Besides the Zeeman energy, the free-energy change
results both from a concentration variation 8¢ and
from the difference 8 in moment amplitudes:

F=Fo+AF(T, 8¢, 3u,h) .

Minimizing F with respect to 8¢ and du and keeping
terms up to the second order in A, allows us to iden-
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tify the magnetic susceptibility X from
AFY =—2xh?
> .

This program may be implemented in the case of the
simple Hubbard model, for # =1, using the perturba-
tive method developed by Ducastelle and Gautier.2®
These calculations will be reported elsewhere; they
show that (i) in the insulating limit, for U/W >> 1
and u == 1, the susceptibility is only due to 8¢ and
tends towards a Curie-Weiss form

N
kg(T+T,) '’
with
WZ
kBTc—-4U , (5.2)

i.e., the Anderson superexchange, and that (ii) at the
metallic limit u << 1, X mainly derives from du and
exhibits an enhanced Pauli behavior

H§P(EF)

x=— (5.3)
1—- 3 Up(EF)
the density of states at the Fermi level p(Ef) being
estimated in the presence of the equilibrium value of
wn. These results are important because they show
that one passes continuously from the Curie-Weiss to
the Pauli limit and, in particular, that at the metallic
limit, the susceptibility is nor merely the addition of a
Pauli contribution due to the electrons considered as
itinerant and of a Curie contribution due to the local-
ized moments built up by the same electrons, as con-
jectured in Ref. 10.

This calculation program would be exceedingly dif-
ficult to implement for the VO, problem, owing to
the presence of the electron-phonon coupling and to
the multiband character of the electronic structure.
However, the study of the insulating limit of the
Hubbard model confirms the relevance, for the mag-
netic properties of the M| phase of VO,, of the
equivalent Ising chain introduced in Sec. II1 E; let us
notice that the J;(, of the Ising model derives from a
superexchange scheme.

For the M, phase of VO,, the spin contribution
having been included in the total free energy F which
is minimized with respect to n and w, we know at
any temperature the equilibrium value of these
parameters and thus the actual values of J; and J;
which enter the Ising-like interaction Hy [Eq.
(3.24)]. Following the same calculation technique,
namely the transfer-matrix method?® (see Appendix
B), we are able to estimate (i) the nearest-neighbor
spin-correlation functions

Jism?
<€i€i+l>l(s)=_tanh'_ka— , (5.4)

B

where the J;(5) have been given in Eq. (3.25), /(s)
standing for a long (short) bond along the vanadium
chain in the distorted phase, and (ii) the spin suscep-
tibility of the vanadium atom

2
MBH Js +J/ J. +JI
Xutom = 22 exp| 202 2k Losh |2 2
om =T ksT © /cos kT M (5.5)

The temperature dependence of the correlation func-
tion is displayed in Fig. 6, which shows that the intra-
dimer (short bond) spin correlation is as large as
0.993 close to the transition, i.e., that the spin dimer-
ization actually corresponds to a molecule, thus ac-
counting for the essentially vanishing spin susceptibil-
ity. The point we wish to emphasize is that, although
the existence of the insulating phase derives from the
onset of well-developed magnetic moments on the
vanadium sites, this local moment formation, owing
to the electron-phonon pairing of vanadium ions,
does not result in a Curie-like susceptibility in this
phase; whereas, in the M, phase, the undimerized
chain of vanadium does exhibit the paramagnetic
behavior of localized moments.?

In the R (metallic) phase of VO, where both d
and 7" electrons contribute to the magnetic suscepti-
bility one may estimate the @, contribution as an
enhanced Pauli susceptibility given by Eq. (5.3); such
an estimate gives a divergent susceptibility. The ori-
gin of this negative result has to be attributed to
three deficiencies in our description of the metallic
phase, namely (i) a local moment amplitude, u ~ 0.3
at T., which does not correspond to experiment,*® (ii)
a small curvature of the free energy versus u curve
in the whole temperature range 7 > T,, which indi-

2001500  Tu 1000
O P S U I S VU S T ST S S l\T (K)
] I
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FIG. 6. Thermal variation of the nearest-neighbor spin
correlation function (e;e; ;) along intradimer (/) and extra-
dimer (X) bounds.
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cates large fluctuations of the moment amplitude
around the equilibrium value, and (iii) a transition at
T,~ 800 K between a correlated metal and a normal
one which is likely to be an artifact of the model.
This points to the necessity to reconsider the approxi-
mations we used to deal with the functional integral,
in order to estimate the linear response of the metal-
lic phase which, being calculated perturbatively from
the ground state, demands a more accurate specifica-
tion of the latter. First, within the steepest-descent
method, one would approximate the degeneracy fac-
tor g ({u;}) in Eq. (3.8) by a gp defined from a class
of variational probability distributions different from
Eq. (3.9), for instance

_1m

2 o?

’

P"({”’})=Hmem

the width o of the distribution being variational and
the CPA average (Z,({u;})) being accordingly
modified. Second, one would go beyond the
steepest-descent approximation by accounting up to
the first order for the fluctuations of the variational
parameters in the free energy and in the associated
susceptibility calculations, that is the Brueckner ap-
proximation.* Finally, one would have to relax the
static approximation which is certainly valid in the
limit w ~ 1 but breaks down for vanishing u when
the lifetime of the local moments becomes close to
the time an electron spends on a given site; let us
point out that scattering by time-dependent spin fluc-
tuations modifies the density of states as scattering by
static moment does. In Ref. 13(b), we have begun
to improve the magnetic susceptibility calculation
along this line, and we found a X, susceptibility
enhanced by a factor of 8 which compares with the
factor of 6 needed to fit the experimental data at T,
(with our choice of band parameters). However a
comprehensive discussion of these three improve-
ments for the metallic phase of VO, would lead us
far beyond the scope of the present paper. We post-
pone the study of the ground state and of the mag-
netic susceptibility of the metallic phase of the one-
band Hubbard model to a future publication.

VI. CONCLUSION

To summarize, we have unified a number of
theoretical schemes and partial treatments which had
been put forward in the literature, in order to build
up a model of the VO, transition model which incor-
porates all the mechanisms previously thought
relevant and which quantitatively describes the transi-
tion. Our treatment, we believe, puts an end to a

long-standing controversy by carrying the theoretical
arguments parallel to the experimental ones,'? which
establish that electron-electron correlations are the
driving mechanism of the VO, transition, the onset
of a lattice distortion being but a consequence of this
primary mechanism.

Our treatment clarifies some points which deserve
comment. First, electron-electron interactions and
electron-lattice interactions are not merely additive
but combine themselves in a subtle way as seen from
the fact that, given the value of u, the correlation
gap in the dy band is smaller in presence of a Peierls
distortion than that it would be in an undistorted sys-
tem. Secondly, the multiband structure does not
merely introduce a marginal intricacy in the problem,
because the presence of both dy and 7* electrons,
mutually interacting through electrostatic interactions
and coupled via the deformation potential, make the
transition a first-order one with a rather high transi-
tion temperature, while a pure d electron correlation
mechanism would have led to a second-order transi-
tion, at a lower temperature. We stress that our
model does not rely on a too-peculiar feature of the
electronic structure and/or of the phonon spectrum;
it makes use but of a minimal number of parameters,
each of them taking accepted values discussed in the
literature and the qualitative features of our results
are preserved even for significant changes in these
parameter values.

Improvements may be introduced to the model.
They are not expected to qualitatively alter our
scheme of the transition, and the gain in the accuracy
of the description has to be put in balance with the
weight of additional computational complexity. A
first improvement would be to account for the short-
range order (i.e., antiferromagnetic order) along the
line of the Economou er al.'® discussion, the major
advantage of this procedure being to automatically in-
corporate antiferromagnetic order without resorting
to any equivalent exchange interaction. In the
second place, one may introduce a better description
of the metallic ground state and incorporate in the
free energy the effect of amplitude fluctuations of
both the local moment and the crystallographic dis-
tortion, as outlined in Sec. V. Beyond the specific
problem of the VO, system, namely, the identifica-
tion of the proper mechanism of the phase transition,
we have demonstrated that the ESW-Cyrot formalism
may actually by implemented in a complex situation,
giving a quantitative description which is in fair
agreement with experiment. Finally, our analysis
makes a large use of the specific phrasing of phase
transitions (e.g., order parameters). This in particu-
lar has enabled us to disentangle the electron-electron
and electron-lattice aspects of the transition. Howev-
er, the use of this phrasing emphasizes that, should
the electronic-structure change introduced by the
Hubbard mechanism be an electronic phase transi-
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tion, the proper order parameter and the associated
symmetry breaking are still to be identified. Such an
order-parameter specification, in terms of an irreduci-
ble representation of a given symmetry group (a cri-
terion which is not fulfilled by a bona fide order
parameter like the mean amplitude of the local mo-
ment or the value of the density-of-states gap),
would provide us with both a better understanding of
the physics of the phenomenon and a more reliable
thermodynamical treatment.

APPENDIX A: SCALING OF THE ELECTRON-
ELECTRON INTERACTION CONSTANTS

In Sec. III A we defined the electron-electron in-
teraction Hamiltonian H,.. which depends on four
constants: Uy, interaction energy between two elec-
trons d; on the same site; Usx, interaction energy
between two electrons #* of the same orbital, on the
same site; Wi, interaction energy between two elec-
trons 7" of different orbitals on the same site; and
and Wy, interaction energy between one electron d
and one electron 7* on the same site.

U ~f xp2x?ytexpl—a(x?+y?+ 22+ X2+ Y2+ 2]
“ [(x=X)2+(y=Y)+(z—-2)2

and

These coefficients are two-electron matrix elements
of the general form:

Was= f dul T 437 —L—

|7\ — Tl

x ¢B(‘r’2)¢;(r2) &rid’r,

where ¢, and ¢g are Wannier wave functions cen-
tered on the same site. In a well-chosen reference
frame, the dy-wave function behaves like a d,, orbital
with radius Ry, the 7*!, 7*? wave functions being d,,
and d,, orbitals with radius R« greater than R .

For the sake of simplicity we shall choose d orbitals
with Gaussian radial wave functions, for instance:

(20(1)7/4
|xy) = — W expl—a; (x*+y?+22)] ,
-

with
ay = —=
R{

One is thus reduced to computing

dx dy dz dX dY dZ

W fxzszzZzexp[—al(xz+y2+zz)—az(Xz-l— Y*+27?)]
“1%2 [(x=X)+(y—=Y)2+(z—2Z)%"

Using the substitution®!

+00 2.2
=r.:t
__1_=__1‘_/2.f e 1] d[ B
rij m %

one obtains after a simple but tedious calculation:

2 al/tho (4+402+30%)?

dx dy dz dX dY dZ

Ua= ;) o (444021172 o
and
W = 23 a%/zpmfho [4p+2(1+p)o?+o*ll4p+2(1 +p)o?+ 3] do
% gl il [4p+2(1+p)0'2]“/2 ’

with p=az/a|. Computation of the ratio of these two
integrals, W“l“z/U‘*l’ shows that, for R,/R| > 2 one

gets approximatively

W R,

—— =1.06— ,

U, R,

Wi U, R
~0.897, 2zt

U, and U, R,

I

Thus one obtains the scaling relations:

Vom0 Way=1.1060, "
*= R *=1. Re
and
Ry
W**=0897U*=0897U"
R
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For our model we choose R«=2R (the Wannier 7*
orbitals have a greater extension than the d, ones, as
they are hybridized with the p orbitals of the oxygen
atoms), and choosing U;=0.110 eV, we obtain
Ux=0.55, Wi =0.61, and Waix=0.49 eV.

APPENDIX B: TRANSFER-MATRIX METHOD

In our microscopic model, we simulate the ex-
change free energy using an equivalent Ising-like
‘chain with two alternate exchange interactions.
Although the transfer-matrix method used in our cal-
culations to compute exact thermodynamic quantities
is well known,2® we find it useful to recall it.

Let us consider the following Ising-like chain Ham-
iltonian:

H({ D) =3, Uspon-rpon + hipanpions) — S pphpin

where (i) J; and J, are nearest-neighbor exchange in-
teractions associated with short and long bonds, (ii)
the local momentum u; can take values +u (1 config-
uration) or —u (| configuration), and (iii) uz and A
are the Bohr magneton and the applied magnetic
field, respectively.

We suppose that the chain, being in fact a ring,
contains 2N sites, the 2N th one being a neighbor of
the first one through a long bond. The partition

“8H n,
fucntion Z is written Z = 3(, ye P where S

stands for the sum running over all the different
momentum configurations. H {u;} can be decom-
posed into

2N
Hiw) =3 Hy(pn pns)
n=1

with

Hn(l‘m I‘-n+l) =JuMntbn+1— phpn

where J, stands for J; or J; whether » is even or odd.
Thus

2N
exp(—=BH (u;}) = T expl—BH, (pn, pus)] .

n=1
Let us define the so-called transfer matrices 7,:
- 2, (Fp, ),z (Fp, —p)
"z (=, ),z (e, —p)
with
z (n, pn1) =expl=BH, (py, n+1)]
= (#n'Tn|Il-n+1> .

We are obviously dealing with only two different

transfer matrices T)=T,, and T, = T,,,,.
The partition function is written

Z= 'E'—ZI(m, w2z, w3) - o - zan (uan, py)
”’l
= (2’ <MIIT1|M2><M21T2‘IL3> (o Towlpr)
L
IN
=2<I/~1|T1T2 s Tonlpy) =tr H T,
| =)

=tr[(T, 7)1 =0)+6V ,

where O, and O_ are the eigenvalues of T =T,T;, O,
being chosen as having the larger modulus. The total
free energy is

F=ksTInZ =—kzT In(®Y+6ON)
=—kgT{In®OY+In[1+(O_/0,)"]} ,

and at the thermodynamic limit, the free energy per
site & becomes

®= lim F/2N =—=3ksT In®, . (B1)
The mean magnetization M is
dod do,
M=—"""=
o kgT i 0, (B2)

and the associated magnetic susceptibility X becomes

doe
+/®+

Explicit evaluations of Egs. (B1) and (B3) give for-
mulas (3.26) and (5.5).

" The spin-spin correlation function can be computed
using a similar method. For instance, in the 2N ring:

dh (B3)

h=0

(mim2) w 1 M2 —BH (u;)
() y=—"—== 3 —5¢ '
p? Z G W

=% 2 (p,lITlluz)__‘O‘Qsz‘#J)

X (3l Tslpa) - -+ (uan| Tonlur)
=%tr(MT,MT2T3 T
with
+1 0
1o -1

Let us define the matrices K, = MT;MT, and
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K;=MT,MT;, we obtain
1 -
(EIEZ>,‘SN=7U(KI,STN 1) .

If |[+) and |=) are the eigenvectors of T (i.e.,
T =1+)0,(+|+|-)0_(—|), we obtain

(K l+) @Y + (~| K |- ) B!
eY+eY

<€1€2>,'5N=

which leads, in the thermodynamic limit to

(ae), v=(+|Ki|+) /0, (B4)

whose explicit-evaluation gives formula (5.4).

This method, which emphasizes the importance of
the anisotropy of the coupling along the chain
(J; # J,), allows us to properly account for the influ-
ence of electron-lattice (Peierls interaction) on the
spin dimerization; another approach to this problem
is given in Person et al.*?

APPENDIX C: LANDAU EXPANSION OF
THE FREE ENERGY

The total free energy obtained from the thermo-
dynamics of our microscopic model can be expanded
in powers of the two variational parameters n and u.
As can be seen from the shape of the free-energy

surface (see Fig. 2), the simplest expansion is
1 i 1
F=—2—a(T— T“)p2+7b,u.4+7a7)2
1 |
— B+ eyt — el (cn

where the coefficients a, b, a, B, v, and g are posi-
tive and temperature independent, and where T, is
the temperature at which local moments appear
(T, ~ 800 K).

The form of free-energy expansion has been care-
fully studied by Holakowski*® who has showed that,
provided 4(%043/)'/2 > B +g?/b, two phase transitions
occur,

The high-temperature one at T =T, is second or-
der and corresponds to the building up of the local-
moment amplitude u in an undistorted phase
(n=0). The other one, occurring at the lower tem-
perature,

3 b 2 2]

T.=T,————{l4(5ay) ]2~

g
B+__
16 agy

b

is a first-order one and describes the onset of a finite
distortion n together with a jump of u. The thermal
variation of n and u are thus similar to those found
from our microscopic model (see Fig. 3). As can be
seen in Eq. (C1) the leading instability is associated
to u, the fluctuations of which are diverging at T,,.
On the contrary, the frequency of the lattice mode
associated to n is constant for T > T',. slightly de-
creasing as the temperature decreases from T, to T,
due to the growing of u, but does not vanish at T,:
the structural phase transition at 7, is not due to a
lattice instability but is triggered by the electronic
instability taking place at T,.
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