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It is shown that there are no critical divergences on the commensurate side of the com-
mensurate-incommensurate transition in the two-dimensional sine-Gordon system, whereas

on the incommensurate side there are divergences of the specific heat and of the correlation

length. The critical exponents are determined. The results are explained in terms of fluctuating

domain walls between commensurate regions. This allows a generalization of some of the

results to more complex systems.

In a two-dimensional system a long-range ordered
(LRO) phase with a continuous symmetry is not pos-
sible at finite temperature due to the divergent fluc-
tuations of the Goldstone mode. ' On the other
hand, if the symmetry is discrete there is no Gold-
stone mode and therefore LRO is possible at T W 0,
the best known example being the two-dimensional
Ising model. ' A crossover between these two situa-
tions is realized by the transition from the commen-
surate (C, discrete symmetry) to the incommensurate
(IC, continuous symmetry) state. The observation of
such a transition in gas monolayers adsorbed on solid
surfaces' has lead to considerable theoretical in-
terest in the problem.

Here we investigate the critical behavior of the C-
IC transition using a simple model free energy func-
tional

F = dxdy — —5 + — + h. cosnu, (1)p v 9M
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where u is an atomic displacement field. The cosine
potential favors the commensurate state, whereas a
finite 8 favors the incommensurate state. The zero-
temperature properties" and the phase diagram of
this model have been intensively investigated: For
I5I smaller than some critical value 5, the C phase is
stable. This state is invariant under the discrete sym-
metry operation u u +2m/n and is therefore stable
at T & 0.9 On the other hand, for 151)5, an 1C

phase is realized, consisting of large commensurate
domains separated by walls parallel to the y direction.
The energy of this state is invariant under an infini-
tesimal translation of the walls, i.e., there is a con-
tinuous symmetry and no LRO can exist at T ~ 0.
We treat the statistical tnechanics of Eq. (1) using the
equivalence to the ground-state properties of a one-
dimensional quantum Hamiltonian" which in our
case reads

I Q

H, = J m'(x)+ +vcos P —y dx
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with c2= pv/T', p=v/T', v =2Jv/ph/T, and

y = 25Jc. Q and vr are a Bose field and its conjugate
momentum density, respectively. H] is the quantum
sine-Gordon system with an additional gradient term
arising from the 5 term in Eq. (1). For y =0 there is
an instability at n'/c =8m "This . corresponds to the
disordered-commensurate transition at 5 = 0 and
T = To. ' We do not consider this special point but
look rather at the C-IC transition for 5 A0, T ( To,
so that n2/c ( 8m. H~ may be transformed into a
one-dimensional interacting spinless fermion model"
using the boson representation of single fermion
operators. " From this representation it follows that
the gradient term in H| is equivalent to a chemical
potential for the fermions. The fermion Hamiltonian
equivalent to H] may then be written as

H2= X[(c'k+po)akak (c k —po)bkbk+bo/2(akb„+bkal, )]
2P k

+ sinh2rp 2 Xp|(p)p, (—p) f~ X [pl(p) p, (—p) + p, (—p—)p2(p)]
27pc
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where aq and bq are operators for right- and left-
goirig fermions, p~ and p2 the corresponding density
operators, e'+ = 4rrc/n', c' = 2c ( cosh2 p
+fi sinh2%), p, 0 = 4w5c'/n, 50 = 2rraoco, and ao is a
cutoff which may be identified with the lattice con-
stant. As the last sum in Eq. (3) is the kinetic ener-

gy represented in terms of density operators' it is

easy to see that f i may be chosen arbitrarily in Hq.
We now diagonalize the first line in Eq. (3) by a Bo-
golyubov transformation and obtain

1
+2 X (ekn + iko)cknckn + +i«

P kn 12
(4)

+ sinh2%f(k, ) Xo&(p)o&(—p)

where ek, = (—1)"(e' k +5 /4)'i and H;« is the in-
teraction term in Eq. (3) expressed in terms of the
c&„operators. If there are no particles above the gap

H;„, leads only to a gap renormalization lho b. '

For po & —5/2 the 2-states are filled'7 up to some
value k, and the interaction between the 2-particles
has to be treated properly. If one is only interested
in the long-distance properties of the system (i.e. ,
r ) k, ', c/5) the behavior is completely determined

by the 2-particles and the spectrum of these particles

may be linearized about the Fermi points +k, .
Choosing. f i

= 1/(1+ gc'~k,~/5') the Hamiltonian for
the 2-particles is

i

1 2

Optic

H3= (—p)+ (—p) (p)l
2p L p~0

are occupied, all 2-states are empty, so that the sys-
tem is commensurate. The phase boundary to the IC
state is 8, (T) =nb/(8nc'). This leads to the known
C-IC phase diagram. For small k, the interaction
strength in H3 vanishes, ' and we may thus use the
single-particle spectrum of Eq. (4) to determine k„
with the result k, =4mc~(8~ —8~)' ~/(nc'), and from
Eq. (6) we obtain I ~ sgn5(5' —8,') ' '. The square-
root dependence is in agreement with previous
results ' obtained at a special temperature so that
+=0 in our notation. The incommensurability I is
equal to the density of domain walls in the system.
As a wall changes u by +2m/n, from Eq. (6) it is na-
tural to interpret the 1-holes and 2-particles as walls
associated with a change of u by 2rr/n and 2rr/n, —
respectively. If 8 becomes larger the interactions are
no more negligible and no simple expression for k,
can be given. However, for large ~5~ the presence of
the gap is unimportant and from Eq. (3) one easily
obtains I =8, as to be expected.

The free energy density of the system [Eq. (1)] is

given by the ground-state energy of the equivalent
quantum Hamiltonian, so that the specific heat is
easily calculated. Inside the C region, i.e., for
~8~ & 8, (T), there is only a monotonic variation of
the ground-state energy if p, o or T is varied, with no
singularity for 5 5, ( T). Therefore there is no diver

gence of the specific heat as the C IC transition -is ap-
proached from the commensurate side Approa. ching
the transition from the IC side the energy of the
filled 2-states varies like k,' for k, 0. The specific
heat upon approaching the transition from the incom-
mensurate side then follows

with u, =e' k (e' k +5'/4) 'i f(k ) =v, /c' and
a.

] 2 are fermion density operators analogous to the p
operators in Eq. (3). We note that the ratio of the
interaction strength to the Fermi velocity v, vanishes
linearily with k„due to the special choice of fi.
Thus the linearization of the single-particle spectrum
is well justified. 83 is a Tomonaga-Luttinger Hamil-
tonian and is easily diagonalized by a unitary transfor-
mation. " Here we have only considered, the case
p, o & —5/2, so that 2-states are filled. However, the
treatment for p,o) LL/2 is completely analogous and
requires only the replacement of the 2-particles by
holes in the l-band.

We now use the above results to consider the C-IC
transition in our original system [Eq. (1)]. The mean
"incommensurability" is

,

~ Bu 2m

QX + Ln z„&2

where ( ) r and ( ) tt are the thermodynamic
2

average with the functional F and the ground-state
average of H~, respectively. If ~tko~ & 5/2 all 1-states

C ~ T,8, (T,)(T—T, ) 'i',

i.e., the transition has a critical exponent a = —,. We

remark however that at the transition at 5 = 0, T = To
this divergence vanishes due to the factor 8,.

The long-range behavior of the correlation function
K(x,y) =(exp[i(u(x, y) —u(0, 0))])r can be easily
calculated as u can be represented in terms of the
Bose operators o ~ 2 with the result

2 2

K(x,y) =e""k,' x'+ " ' y', q= —e't, (8)
4v2 n2

with tanh2$ = —2c sinh(29') f (k, )/u, and
w' = ti, sech2$. For large incommensurability one has
rt= T/(4rrdp, v), i.e., K shows the typical nonuniver-
sal behavior of the two-dimensional continuum XY
model. " Near the transition (k, 0) ri goes to the
universal value n

i

4ck,q= —1 — ' sinh2&
n2

Before discussing the critical behavior we remark that
the treatment given above is based on the smallness
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of ck, sinh2%/5 S.ufficiently near to the C-IC transi-
tion this is always satisfied except for T = 0 and
T = To(h =0). Therefore our results are valid inside
the whole temperature interval 0 ( T ( To.

%e now discuss our results. For large 5 the system
cannot fit into the cosine potential, thus leading to
the free-field behavior of the continuum XY model.
With decreasing 5 the system gains energy by form-
ing commensurate regions separated by walls. At
T =0 the elementary excitations of this state are
acoustic phonons, representing oscillations of the wall

positions, which are separated by a gap at q = k, from
the oscillation modes of the commensurate regions. "
As the 2-particles in H& represent the walls the spec-
trum of H3 gives the elementary excitation spectrum
of the walls leading to a longitudinal sound velocity
vanishing linearly with k, . Minimizing the free ener-

gy calculated with this sound velocity with respect to
k, leads immediately to k, ~ (5 —5, )' ' and + = —,.
This shows that the critical behavior is due to the
harmonically interacting walls.

The correlation function E shows an interesting
crossover from the nonuniversal behavior of the XY
model to a universal exponent n ' near the transi-
tion. In that region E becomes very anisotropic, re-
flecting the fact that the walls have a finite line ten-
sion acting against the deformation of a single wall,
whereas the interwall force vanishes for k, 0.
Therefore the length scale of fluctuations is k, ' in

the x direction, but proportional to k, in the y direc-
tion, leading to different critical exponents v„=—,

and v~ =1. Their mean value v = —fulfills the scal-

ing law v= 1 —n/2.
The absence of critical divergences in the com-

mensurate state may easily be understood noting that
the creation of a wall crossing the whole system re-
quires an infinite energy. Therefore the only thermo-
dynamical fluctuations of the C phase are closed loops
of walls [Fig. 1(a)]. It is easy to see that Bu/Bx in-

tegrated over such a configuration vanishes, or, phys-
ically, equal parts of the total wall length win and lose
energy by the incommensurability energy. As the en-
ergy of the fluctuations is independent of 5 there are
no critical fluctuations for 5 5, (T). The same ar-

gument applies to a system with square symmetry,

+ + +

Icj

FIG. 1, Fluctuating wall configurations in the C phase of
a system with (a) uniaxial [Eq. (1)j, (b) rectangular, and (c)
hexagonal symmetry. Plus and minus signs denote parts of
the walls gaining or losing energy due to the incommensura-
bility term, respectively.

where there are walls parallel to the y and to the x
direction [Fig. 1(b)]. On the other hand, for hexago-
nal symmetry three different directions of walls are
allowed and therefore configurations like Fig. 1(c)
give rise to critical fluctuations in the C region.

Up to now two-dimensional C-IC transitions have
been mainly observed in systems with hexagonal

symmetry,
' . so that one would expect our theory

not to apply. However, Bak et al. ~ have shown (for
T =0) that a second-order transition should occur in
these systems only if near the transition the system is
uniaxial, i.e. , if there are only walls along one direc-
tion. In this case there should therefore be the
asymmetric (and anisotropic) critical behavior of the
model treated here. It would be interesting to ob-
serve this experimentally. However, the region of
uniaxial modulation may be very narrow so that the
interaction of th'e walls with the periodic substrate
(the Peierls force) and impurity effects, neglected
here, may become important. Another interesting
point is the absence of critical behavior on the C side
of the transition in systems with rectangular (or
rhombic) symmetry. This should be observable in a
system of suitable symmetry.
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