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p-wave superconductors in magnetic fields
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The possibility of vortex solutions existing for a bulk superconductor with p-wave pairing and

isotropic normal-state properties is investigated on the basis of Gorkov's theory of weakly cou-

pled superconductors. Assuming translational symmetry in the direction of the magnetic field

only anisotropic states are found. Among these the polar state gives the highest upper critical

field. States of the Anderson-Brinkman-Morel type are also found. Apart from the absence of
Pauli paramagnetic limiting, the temperature dependence of the corresponding upper critical

fields does not differ dramatically from that obtained for s-wave superconductors. Contrary to

the predictions for the case of fast rotating superfluid He, which is closely related to the prob-

lem considered here, it appears to be impossible to construct vortex lattices without singular

vortex cores.

I. INTRODUCTION

Generalizations of the BCS theory of superconduc-
tivity including other than s-wave pairing have been
developed and applied to 'He at a very early stage. "
The discovery' of superfluidity in 'He presented an
incentive to reexamine the possibility of p-wave pair-
ing in metals. Since it is generally accepted that spin
fluctuations play an important role in providing an at-
tractive interaction between 'He atoms, ' attention
was first turned to nearly ferromagnetic materials like
palladium. The predicted transition temperature due
to spin fluctuations alone, however, turned out to be
discouragingly small, 5 and including the electron-
phonon interaction did not improve the situation
much, ' unless some anomalous phonon properties
are assumed. Thus it is not surprising that the
search for p-wave superconductivity in several transi-
tion metals has so far been unsuccessful. ' A more
promising approach might be to investigate materials
like ZrZn2 (Ref. 9) in which the electron-electron in-

teraction can be changed by varying external parame-
ters like pressure. "

We shall not pursue the question of which material
is most likely to exhibit p-wave superconductivity any
further but instead address the problem of how a p-
wave superconductor differs from an s-wave super-
conductor, and in fact, how we could recognize a ma-
terial as being a p-wave superconductor.

The most obvious difference is the presence of
equal spin pairs in p-wave superconductors, which
leads to different predictions for the Knight shift. '
But since the Knight shift in s-wave superconductors
does not always agree with the predictions of BCS
theory due to a number of complicating features

present in most materials, "measurements of the
Knight shift are hardly suitable to identify a p-wave
superconductor.

It has been pointed out by Balian and Werthamer'
(BW) that their energetically most favorable isotropic
state has the same thermodynamic and transport
properties as an s-wave state and, in particular, shows
a Meissner effect.

Some doubt has been cast on this last conclusion
by Machida and Klemm" based on the idea that the
equal spin pairs present in the p-wave. state would
benefit energetically from the magnetic field. How-
ever, the solution they suggest which has a finite
homogeneous magnetic field inside the superconduc-
tor and vanishing currents [Ref. 13, Eq. (8)] contra-
dicts the current equation [Ref. 13, Eq. (3)] from
which it was derived. We conclude, therefore, that a
p-wave superconductor in the BW state does indeed
show a complete Meissner effect.

With the magnetic field excluded from the bulk of
the sample the wealth of phenomena observed in su-
perfluid 'He would not be present in a p-wave super-
conductor. Hence, in order to detect any effects re-
lated to the presence of equal spin pairs the magnetic
field must enter the sample without destroying super-
conductivity.

One way to achieve this is the application of the
magnetic field parallel to a thin film. Thin films,
however, tend to be dirty, and nonmagnetic" as well
as magnetic ' impurity scattering reduces the transi-
tion temperature for the onset of p-wave supercon-
ductivity.

This dependence of T, on the presence of nonmag-
netic impurities is, in fact, the only property predicted
so far in which the BW state differs drastically from
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the s-wave state.
In addition to impurity scattering, diffuse surface

scattering reduces the transition temperature for any
kind of p-wave state. "' Because of these restric-
tions it appears to be unlikely that p-wave pairs would
form in a thin film.

' %e, therefore, decided to investigate the possibility
of a type-II state existing in a p-wave superconductor,
which would allow the magnetic field to penetrate the
bulk of the sample in the form of vortex lines. Since
for equal spin pairing the upper critical field is not
limited by Pauli paramagnetism" we could expect
very high critical fieids provided the effect of the or-
bital diamagnetism can be reduced.

The problem considered here is very similar to the
rotation" of superfluid 'He and a few comments will

be included.
In the following section the gap equation is derived

from which the possible vortex solutions are obtained
in Sec. III. The corresponding upper critical fields are
presented in Sec. IV.

II. GAP EQUATION

In this section we shall derive an equation for the
superconducting order parameter defined through

,(r, r ) = V(r —r )F,(r, r, 0+),

which allows for more general than s-wave pairing.
I

V( r —r ) is the attractive two-body interaction of
the weak-coupling theory. Using Gorkov's' descrip-
tion of weakly coupled superconductors it is straight-
forward to derive the equations of motion for the
normal and anomalous Green's functions

iro„— [p+ Ae(r)]~+E —F aizsH(r) G, (r, r, cu„)+X d gh e(r, g))F+, r, co„)=5(r —r )8

't

i co„—— [ p —eA ( r ) ]'+EF —o psH( r ) F+ ( r, r, ru„)+ X &
d g 6"e( r, g )G, ( g, r, cu„) = 0

P

appropriate for a charged superfluid in a magnetic field II(r), which is chosen to be parallel to the z axis. The
spin variable takes on the value +1 (or [) and —1 (or j) and e is the absolute value of the electron charge.

Using the normal-state Green's function obtainable from

ice„— [p+eA(r)]'+EF —opsH(r ) G (r, r, co„)=5(r —r )8
2m O'CT O'CT

which is diagonal with respect to spin indices, we can rewrite Eq. (2) in the form

G, (r, r, ru„) =Go, ( r, r, eo„)8 —
J d3$'d3$ XGO (r, g, ru„)A (g, ()F+, ((, r, cu„)

P

F,(r, r, co„)=~ dg'dgxG «(r, g, —co„)h (g, g )G ~(r, g, ~„)
'P

From Eqs. (1) and, (4) we obtain the gap equation

,(r, r ) = V(r —r )T Xg„d g'd3'(G o( r, g, —cu„)h, (g, ( )G e(r, g, u&„)
"n

(4)

I I
With V(r —r ) =g5(r —r ) and h, (r, r ) =ah(r)5(r —r )5, this reduces to the well-known expres-

sion for s-wave superconductors. '
Even with the simplifying assumption that the

magnetic field is homogeneous, which limits our dis-
cussion to the vicinity of the upper critical field, the
normal-state Green's function still depends on both
its position variables separately. We, therefore, de-

fine new Green's functions differing from the old
ones by the usual phase factor":

G, (r, r, co„)=e"4' e e'&G (r, r, co„), (6)

Pr
p(r, r )=J,d I A( 1 )
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Instead of Eq. (3) we now have

i ~„— [p —a( r —r ) x g] +EF —o psH
2m

x G (r —r, ru„) =5(r —r )8, . (8)

The semiclassical approximation, which we- shall
r

adopt, consists in neglecting the term ( r —r ) x A in

Eq. (8) and thereby omitting Landau levels from our
consideration. As discussed by Werthamer~o we ex-
pect this approximation to be valid if either impurity
or thermal smearing of the Landau levels is greater
than the separation of neighboring levels. Near the

zero-field transition temperature, thermal smearing
would certainly justify the semiclassical approxima-
tion, but since we want to consider pure p-wave su-
perconductors, the smearing argument does not hold
for the whole temperature range. However, the oscil-
lations of the upper critical field as calculated by
Gruenberg and Gunther" turn out to be very small
indeed provided the cyclotron frequency is much
smaller than the Fermi energy and a finite electron
lifetime is introduced, which can be assumed,
though, to be much too large to noticeably affect the
transition temperature of the p-wave superconductor.

The approximate solution of Eq. (8) with which we

shall therefore work. is'0:

G (r —r, a&„) =—,exp[ip~( r —r [ [1+(i'„—crpsH)/Eq]'i'sgnco„]
2m r —r

or in Fourier space tions for superfluid 'He, that the derivatives of

G (k, cu„) =(ice„—k /2m+EF —apsH) ' . (10)

In view of the short range of the interaction
V( r —r ) we shall regard the order parameter Eq.

I
(1) as being proportional to 8( r —r ) whenever it is
multiplied by a slowly varying function. This is clear-
ly equivalent to the assumption used by Tewordt" in
his derivation of generalized Ginzburg-Landau equa-

O'CT j crcr

(11)
with respect to k are negligible. Because the order
parameter itself is a slowly varying function of the

r

center-of-mass coordinate
~ ( r + r ) we took the li-

berty to replace this variable by r in Eq. (11). In
fact, the only dependence on position variables that
cannot be considered a slow variation is the depen-
dence of the Green's function on r —r . We can
therefore simplify Eq. (5) to

, ( r, r —r ) = V( r —r ) T X X„d'g' d3$ G, , ( r —(,—co„)

xe "~7'' '5 (g, g —
g )G e[&(r +g ), r —g, ~„] (12)

We note that

and exploit an identity first derived by Helfand and Werthamer' to write this as

(r, r —r ) = V(r —r )T X XJ d'g'd'$G, , (r —g, —co„)exp[—,'i(g —r ) 0(R)]
Ol P

[exp[ —,i(g —r ) 11(R)]h (R, g —g )]G e(R, r —$, o&„)
t

2 pa P R r

(13)

with

II (R) = —'0+2aA (R)
I

(14)
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There are (at least) three routes along which Eq. (13) can be further simplified. Two of them involve explicit
assumptions on the p-wave symmetry of the interaction and the order parameter and the third makes use of the
explicit form Eqs. (9) and (10) of the normal-state Green's function. This third approach is presented in Appen-
dix B. Here we want to briefly discuss and compare the first two methods; further details are given in Appendix
A.

From Eq. (13) we obtam the following equation for the Fourier transform Eq. (11) of the order parameter:

, (R, k) =„qV(k —k ) T

x X X ' d g'd pe'" ' G, , (g, —ru ) exp[-i) II(R)]
Ol P

x [exp[ —i g 1](R)lh, (R, k )]G F(R, $, ~„) (15)

Approximating V(k —k ) by a point interaction of p symmetry2

V(k —k ) =3gk k

and expanding the order parameter as

3

b (R, k) = Xd'~ (R) k;
i I

where k; is the ith component of the unit vector k, Eq. (15) can be reduced to

3 fo Q 3

5 ', (R) =3gT XX X J d g'd~g k;ke'"' & & G (g, —~„)exp[ —ig B(R)]"n»'
[exp[ —,'i( A(R)]h"' (R)]G,(R, g, co„) (18)

(19)

With this result we can drastically simplify Eq. (18):
35",(R) =3gT XX X J d~g((gjG (g, —co„)

p Jn

Ambegaokar er ai '5 who con.sidered the linearized version of Eq. (18) for a neutral superfluid, replaced kj by
ki/kF. This permits the introduction of (1/i)V& in place of kj. It is then possible to integrate by parts and their
Eqs. (21) and (22) are obtained without difficulty. Their expression (22) for the kernel of the gap equation has,
however, a rather unsatisfactory feature: if one simply inserts the normal-state Green's function Eq. (9) one
does not obtain their final and correct result Eq. (29) for a bulk system. The origin of this difficulty is the re-
placement of k& by kz/kF, which introduces additional singularities.

To avoid these problems we tried to evaluate the k integral in Eq. (18) directly. In Appendix A we derive the
approximate result

Jl d'k k; kje' " '& ~ '= (2m )'p; pjs(p —p )

x exp[ —ig II(R)] [exp[ —i/ H(R)]h, (R)]G F(R, g, ru„) (20)

This differs from the corresponding equation of an s-wave superconductor only by the presence of the direction
cosines g; and g~ and, of course, by the fact that we now have three coupled equations for the three orbital com-
ponents of the order parameter. From Eqs. (20) and (4) Ginzburg-Landau equations and their extensions can be
derived. '5 23

III. VORTEX SOLUTIONS

In this section we shall show that solutions of Eq. (20) can be obtained which correspond to the Abrikosov
solution" for type-II superconductors with s-wave pairing. As in the s-wave case we linearize Eq. (20) and insert
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the normal-state Green's function Eq. (9) to obtain" 20

5"i(R) = g T XX& d ( ' exp( —/[2(co„(+i sgnco„psH(o —o')]/uF}e'&'~'" 5'~', (R)
7F Qj J

(21)

Here we have expanded the square root in Eq. (9) to lowest order in rv„/EF thus neglecting the splitting of the
Fermi level due to the Pauli term. If the magnetic fields are such that this effect becomes important, one prob-
ably also needs to worry about the magnetic field dependence of the pairing interaction V( r —r ) in Eq. (1). As
was to be expected we can see from Eq. (21) that to this order Pauli paramagnetism does not affect equal spin

- pairing.
The solution of the eigenvalue problem Eq. (21) proceeds along the lines of Helfand and Werthamer2~: we in-

troduce spherical coordinates with the direction of the magnetic field as polar axis and then use

e'& 'II " g &, ( R ) = exp[( —eH/2)/~sin 0] exp(i2 ' gsin8e '~II+)

x exp(i2 ' 2( sin8e+'eII )exp(i/ cos811,)h' ' (R) (22)

with

II+(R) = [II„(R)+ iII»(K) ]

Because of the symmetry of the problem it seems reasonable to expect that the energetically most favorable
solution is independent of z =R3. For such an order parameter the operator exp(igcos811, ) reduces to the iden-

tity so that the kernel of Eq. (21) is an odd function of x =cosO whenever i =1, 2 and j =3 or vice versa. The
i = 3 component of the order parameter therefore decouples from the i = 1, 2 components.

If we, therefore, take i) "',(R) = ht2' (R) =0 and 5'3', (R) proportional to f» On( R ), where'6

—/p ~Z —Ip Y
2

f~,»,n(R)=,iz „,i, exp[ —eH(X p»/2eH)'—]H&[(2eH)' '(X p»/2eH)]— (23)

and then use

11+ (N +1)'i'
f»,»,n(R) = ~~ (2eH)' 'f»» n+, (R) (24)

we can reduce Eq. (21) to

g~ 2 ttsoo fae

1 = dg dO sin83 cos'8T Xexp( —/[2(co„(+i sgnco„psH(o. —o.') ]/~F}
2~ "n

x exp[ —(e/2)Hg'sin'8]LN(eH( sin 8) (25)

This equation determines the upper critical field. In
Eqs. (23) and (25), HN and LN are Hermite and
Laguerre polynomials, respectively, and R —= (X, Y, Z).

Since the functions Eq. (23), which form a com-
plete orthonormal set, are degenerate with respect to
p», we can choose as a solution for lent", ( R ) linear

OO

combinations such as'
' 1/4

gp n(R) = X e
"""'"f»+nk. »,N(R), (26)

eH

which again form a complete orthonorrnal set.
Choosing k = (4meH ) 'i' and kxo= 2m these func-

a = fn„(n/eH)' ', n»(rr/eH)'", a, ], n„,n» integer

according to

g, „(R+a)=e "''e '" g, n(R)

(27)

(28)

and therefore represent a square vortex lattice. For
p =0 and N =0 this is the Abrikosov solution. "

If the Pauli term is included in Eq. (21), the for-
mation of pairs with antiparallel spins is suppressed
and we expect the order-parameter matrix to be of

I

tions transform under a translation through the vec-
tor
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the form

d, „(R,k) hit(R, k)

htl(R, k) Litt(K, k )
t

—1 0
=5(2)(K)J3k3

(

In vector notation" this would read

d, (k) = 43k)

(29)

(30)

This is the so-called "polar" state. "
If the Pauli term is neglected, all three spin com-

ponents of the order parameter can occur simulta-
neously and the following unitary state can be con-
structed

Ignoring the spatial dependence Eq. (26) of
b, (2)(K) for the moment we note that this particular
p-wave state has no gap in the excitation spectrum '

for quasiparticles traveling parallel to the z axis. In
the remainder of this paper we shall omit the Pauli
term from Eq. (21). At the same time we shall con-
sider only states with equal spin pairing.

We now turn to a discussion of Eq. (21) for i =1,
2 to see whether some novel type of solution
emerges. The functions Eq. (23) are no longer solu-
tions of the eigenvalue problem Eq. (21) because,
due to the presence of the azimuthal angle $ in the
direction cosines, the operator in Eq. (21) generates

f~ p))(+2(K) when acting on f~ p)l(R). However,

inserting the expansion

—]+i 1
Z(K, k) = h(2)(R)k) (31)

X a4 'gp„,p, p, Ã( R ) (33)

or in vector notation,

d, (k) =dy(k) =d, (k) = k) (32)

and using Eqs. (24) and (26) we transform Eq. (21)
to an algebraic system of equations which can be sim-
plified to

(l2), 0
]1.2)

pp—pp—
)(.2)

a"'+Ia"'ao Iao

ao' —iao

a ' +iaa2 Ia2

2 2

a' +iaa4 Ia4

(34)

(
) ( l

Another identical system of equations is obtained for odd N. For clarity, spin indices have been suppressed. The
coefficients a)I' " and p)v are given by

a„"2)= J~ d(): „d8—, sin)8T Xexp( —2/[(»„(/2)F) exp[( —a/2)H$2sin'8]L)v(AH('sin'8)2' 0 (35)

goo

P~= &~ dg J dO
2

sin)8T Xexp( —2$)(»„)/2)F) exp[( —a/2)H$2sin28]2~ ~o o
Ol

n

( aHg2 s,
.
n2O) mP( [(N + 1)(N + 2) ] '

(m +2)! (36)

The sum in Eq. (36) could be expressed as a general-
ized Laguerre polynomial.

The simplest solution possible, which requires

This corresponds to an axial or Anderson-Brinkman-
Morel (ABM) state"

Z(K, k) =5""g (K)~f12),
evidently is

(2p(l) i(2
(2) a)i) 0 for N ) ()

(37)

(38)

—k)+ik2
x (-'))i

2 0
(39)—kg+ik2

l
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4 ' )
I g~ ~ 0 o (K ) l

(
2

) 'i d ( m ~ k + i n k ) (40)

where 5" ' is a constant. In vector notation" this
would be written as

tial dependence of the order-parameter amplitude is

concerned, is again identical to the Abrikosov vortex
lattice, "we can find a different type of solution for
any N provided

The unit vectors m and n are given by (1 ~N' ') (1 —~ki2') = Pn (42)

m=

—cosH(R) sin8(R)

sin8(R), n = cos8(K)
0 0

(41)

These solutions require

0 = IQ, 0 +2 =IQ
(43)

where 8(R) is the phase of 6 ""g~ ~ 0 0(R), which

is an oscillatory function of R. However, the third
vector of the triad, I = m x n = (0, 0, —1) remains
fixed and is uniquely determined by Eq. (38).
Hence, the freedom in the choice of l assumed by

Fujita et al. , which allowed these authors to con-
struct singularity-free vortex lattices for the case of
fast rotating superfluid 'He, does not exist.

In addition to this solution, which as far as the spa-

aM' =aM =0 if M&N or M~N+2
The two equations for ag" and a$)+)2 that remain to
be solved yield

1 —o~' '0+2=-0
N

(44)

This gives an order parameter of the ABM type Eq.
(39) which, even for N =0 has a more complex spa-
tial dependence:

(1,2)
Z(R k) a' g n(K) + g n+2(R)

(1 2) . I 0
+ gp „(R)— g„„~2(R) ik,

PN
(45)

g-„„(R)is given by Eq. (26) with p, =0.
In the following section we shall calculate the

upper critical field for the various solutions which we
have just obtained.

IV. UPPER CRITICAL FIELD

The upper critical field is obtained from Eqs. (25),
(37), or (42). Neglecting the Pauli term we define
the right-hand side of Eq. (25) as nnt2) and include
for comparison the s-wave case. %e then need to
calculate

T X& d'pe"'(g)exp[ —(e/2)H(g„'+g, ')],
(46)

where

t = T/T, (0)

h = 2aH [uF/2rt T, (0) ]

(48)

(49)

we obtain for n&"'.

QP)

g), ) gm' 1

4~2 g'
g)), 2) -'(g'+ c')

) I2

x exp( —2(10).l/u, )L, [eH(g„'+(y')1 . (47)

Taking the Fourier transform of Qg") ( g ), introduc-

ing the zero-field transition temperature T, (0) and
defining dimensionless variables

N (s)Otg

= 1+N (0)g ln —+N (0)g1

(1,2)

1+~ ~w
2 P+) ~2m dx X dp pe ~ „dx 3(1—x2) cos2)])

N~—oo —--(1-x ) cos )[)
3 3 2 2
2 2

X
(2m )! h [1—(1 —x') c s [o] 2))1 (50)

m! 2t (l2n+ll+ivhpx/t) +' l2n+ll
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For P)(( Eq. (36) an expression similar to the one for
a)(((( 2' is obtained. Expanding Eq. (50) in powers of
Jh /t we find the slopes of the upper critical fields
near T, (0):

1 4 3

dhk —'/dt, 2N+1 7((3),5,
(51)

For both s-wave and polar p-wave state [Eq. (29)] or-
der parameters of the form Eq. (26) with N =0 (and

p, =0) give the highest slope. For the ABM state
Eq. (39) we find

ho'(0) '
1 1.037

h()"'(0) = e /2 = 2.020
ho(1» (0),e '/,

,0.743
4y

(54)

The state Eq. (45) again gives for N =0 a higher
value than h ' (0):

obtained for the polar state.
The critical field at zero temperature is also easily

obtained from Eq. (50) by rewriting the sums over n

as polygamma functions and then using their asymp-
totic expansions. The results for N =0 are

—dh '2 /dt =
7~(3) 2

(52) 2

(0) —)/2 J3—1 1 545
4y

(55)

However, for the state Eq. (45) the slope is

dh)1, 2)/dt 4 5 2N + 3 + (N2 + 3N + 6) '/'

7((3) 2 3(N +3N+1)
(53)

+oo

lnt= X s()'"'(0) )—
12n +1I (56)

ho(~) (t) is calculated numerically for the whole tent-
perature range from

which for N = 0 is only slightly smaller than the value with

so(s) ( )

s()(" (~„) = 2
hS12 ( )

tan 'cx„u
goo

du e " —', [[1+(n„u) '] tan )().„u —(a u) (]

—'„([1—(a„u ) '] tan (a„u + (n„u ) '}

(57)

()(„=Jh /t ~
2n + 1 ( (58)

2.0

which is obtained from Eq. (50) by integrating with

respect to x.
For the generalized ABM state [Eq. (45)] lnt is ob-

tained from a quadratic equation with coefficients
somewhat more complicated than Eq. (57) which
shall not be given here. The results of the numerical
calculations are sho~n in Fig. 1. %e note that the
polar state Eq. (29) gives the highest critical field
with the generalized ABM state Eq. (45) a close
second. The simple ABM state Eq. (39) has the
lowest upper critical field.

A criterion for the stability of the polar vortex state
against formation of a field free configuration is ob-
tained by comparing the slope at T, (0) with the slope
of the thermodynamic critical field' of the B% state

/

1.0

0.5

dH, 2/dt

dH, /dt
(59)

The parameter ~ introduced here is the same as that
used in BCS theory. ' The criterion for type-II super-
conductivity in the presence of p-wave pairing, there-
fore, is

3 1

5

0.00.0 0.2 0.4 O. B
I I i

O. B 1.0

FIG. 1. Upper critical field in reduced units [Eq. (49)] as
a function of reduced temperature for (1) the polar state
[Eq. (29)], (2) the generalized ABM state [Eq. (45)], (3)
the s-~ave state, and (4) the ABM state [Eq, (39)).
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V-. CONCLUSIONS

We have shown that the linearized gap equation
permits a variety of solutions for the order parameter
of a p-wave superconductor which describes the pene-
tration of the magnetic field in the form of a regular
array of vortex lines. However, a state with the sym-
metries of the famous Balian-Werthamer state' is not
possible. " Among the allowed states the polar state
Eq. (29) has the highest upper critical field, which at
zero temperature is about twice as large as that of an
s-wave superconductor. Solutions of the ABM type
have also been found but there is no degeneracy that
would allow the construction of a vortex lattice
without singular vortex cores. '

The magnetic field variation associated with the
vortices is very much like that of s-wave supercon-
ductors in the vortex state and hence very small near
the transition. Also, the paramagnetism of the elec-
tron spins in a p-wave superconductor with equal spin
pairing is very similar to that of a normal metal so
that a p-wave vortex state does not predict the large
variation in internal magnetic fields necessary to ex-
plain the puzzling experiments of Tse et al. 29 A tran-
sition to an antiferromagnetic state would provide an
explanation, but we then need to understand not only
how the p-wave state and an itinerant antiferromag-
netic state can coexist, which is not inconceivable,
but why they should form simultaneously.

In summary we can say that, contrary to Leggett's'p
anticipation, the behavior of necessarily anisotropic
p-wave superconductors in a magnetic field does not
differ appreciably from that of ordinary s-wave super-
conductors.

The only qualitative difference between s-wave and
p-wave superconductors in a vortex state is the pres-
ence or absence of the Pauli paramagnetic limit of the
upper critical field. However, this difference can gain
quantitative importance only if the overwhelming ef-
fect of the orbital diamagnetism can be eliminated
without destroying p-wave superconductivity. This
could possibly be achieved in clean layered com-
pounds with the magnetic field parallel to the
layers. ""A detailed study of this problem along the
lines of the present paper is under way. '
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APPENDIX A

In this appendix we want to show that the expres-
sion given in Eq. (19) for the integral

J. —
I d/ck. /te ' 7 7 (A 1)

(A2)

For comparison, Ambegaokar et al. ' use the follow-
ing approximation:

Js= (2a)"7 7q5(g —
g ) (A3)

From Eq. (A2) we obtain

J~ ——(2m) V' V~ X „+,O($' —g)
InP

+ — o(g-g')
pl

+ 1

x X Y, (()Y,'(g)
e -I

(A4)

The gradient operator in polar coordinates can be
written as

where

+—T(g)
aq

(AS)

represents a good approximation, at least within the
context of Eq. (18). We start from the following ex-
act relation

Js = V Vg J~d'k k 'e'" '~
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—cos8(L+ —L ) —sin8sing1 8
2 8

8T(g) = —cos8(L++L ) s+i nc 8s@o
2I 8

—sinH
a

ee

(A6)

As usual, L+=L„+iL~ is defined in terms of angu-
lar momentum operators.
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Differentiating with respect to g first, the 8 func-
tions do not contribute. However, differentiating the
result with respect to g' we obtain a term proportional
to 8(g —g'). The sum over I and m then reduces to
the closure relation for the spherical harmonics and
hence the expression given on the right-hand side of
Eq. (19) is obtained. The remaining contributions
can be written most economically in terms of two sets

of operators

P(l i)= I4+T(4)
(2I+ I)' '

-(I -) —(I+l)g+T(()
(2I + I)'ll

%ith these notations we obtain

(A7)

OO +I

Ji=j, jig(g —g )+ X „„0(('—g) X [Q, (l, g)Y, (g)]'PJ(I, g)Y, (g)
I 14 m I-

oo

~el
I +I

+ X „,0(g- g') X [P, (i, j') Y,.(j') j Q, (i, j)YI.(j) .114mI- (A8)

Using formulas of the kind

(2I+ I) slnee Ylm Cl, —m Yl —1, m+1

—CI+2, m Yl+1 m+1
/

where
I 1/2
(I + m) (I + m —1)

Cl, m=
21 —1

which can be obtained from the recurrence relations
of the associated Legendre functions, we find the fol-
lowing results'.

I

sion of Eq. (18). When linearized Eq. (18) depends
on the direction of ( only through Ji. Therefore,
terms in Eq. (A8) containing Q;(l, g ) Yl (g ) van-
ish upon integrating with respect to angles and terms
containing P; (I, g ) Yl (g ) contribute only if I = l.
Hence, J, depends only on Y2 (g). Expanding
exp[i g ( K ) ] in terms of spherical Bessel functions
and integrating with respect to the direction of g the
only nonvanishing term is proportional to j2. To
prove our point we, therefore, need to consider in-
tegrals of the type

S2„~2=~
dg' g' G (g', cu„)

1/2

P Y
(I + m) (I —m)

3 I Yl —1, m (A9)
roo

x dg g'—e(g —g')Jo g3

1/2
(I + I + m) (I + I —m)

3 Im 21+3
Yl+1, m (A10)

(Al 1)

P2 Yl = ( I/2i) (cl— Yl 1, +,1+cl, Y-l 1, -
(A12)

1

Pl Ylm 2
(Cl -m Yl —1, m+1 ClmYI —1, m ,—1) Pr

3r G, , (( al )(2&+2 (A15)

n+1multiplying the operator ( II )"+'. We discuss the
case n =0 only, because higher powers of ( in the in-
tegrand do not change our argument.

Inserting the normal-state Green's function Eq. (9)
we obtain after neglecting the Pauli term and expand-
ing the square root:

3

1 g
Q1Ylm 2 (Cl+2 m Yl+I m+1 —Cl+2 m Yl+1, m —I) s, = ~ F

22r 2 [Qlz i IEF
(A 16)

(A13)

Q2YI (I/21)(el+2, Yl+1, +I+el+2, Yl+1 1)

(A14)

Because of P; Y00=0, the summation in Eq. (A8) be-
gins with 1=1.

In order to justify Eq. (19) we need to show that
the terms just derived give only negligible contribu-
tions to Eq. (18).

For simplicity we consider only the linearized ver-

3
m

2
+F

2) ~. I

I

This is larger than S2 by a factor of the order of
EF/T, which shows that Eq. (19) is an excellent ap-
proximation, at least when applied to Eq. (18).

(A17)

For comparison, the first term on the right-hand side
of (Ag) yields

raoo

S2 =„' dg f' G (g, ra„)G ((, —IJ„)$
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APPENDIX B

In this appendix we shall derive Eq. (21) from Eq. (15) without explicit use of the approximation Eq. (19).
stead, we shall employ approximations based on the properties of the normal-state Green's function in Fourier
representation Eq. (10). The treatment presented here can be applied to pairing in any I state.

We linearize Eq. (15), neglect the Pauli term to save writing, insert Eq. (10) and expand exp(i/ 0):

where

3 I

, (R, k) =J,V(k —k ) T XG (k, cu„) ~
d'ge '" ' r I(()

"n
(Bl)

1(()=J G (p, —«)„) X (ig fI)"e'"'&6,(R, k)
(2n)' ~~ ' " „«N!

, J ', e'"'r( —~ II) G, , (p, —~„)A,(R, k ) (B2)

We now use the approximation

y( )
vF(p)

(io)„—p2/2m+EF)2

This gives

(83)

(2~) „«k'/2m —EF —i cu„(k''/2m EF+i cv„)—

(B4)

Rewriting this as
t 'N

,(R, k) =w T X V(kF —kF) J dt e " X —sgncu„vF(k ) H(K) 5 (R, k )
4~ 0

N 0 +l 2i 0'0'

5

~l
we can reintroduce the vector k through

~l
k = , tvF(k)—

and thus obtain

2

(R, k) = T X„d k'k' V(k~ —kF) exp( —2~~„~k'/u~) exp[ —i sgnao„k 0(R)]h, (R, k )
77 «J

N

Assuming p-wave pairing [Eqs. (16) and (17)] this reduces to Eq. (21).
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