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Temperature dependence of spatial correlations in liquid 4He and the Bose-Einstein condensation
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The basis of the equation I1 —n0( T&) ] = [g (r, T &), —1]/[g (r, T2) —1] is critically examined.

Here T~ ~ Tz and T2 & Tz. This equation, which relates the condensate fraction np( T) to the
e

radial distribution function g (r, T), was proposed by F. W. Cummings, G. J. Hyland, and G.
Rowland )Phys. Konden. Mater. 12, 90 (1970)]. It is shown to be based on two assumptions.

It cannot be derived from the Frohlich decomposition of the two-particle density matrix.

The temperature dependence of the spatial order in
liquid helium-4 below the A. temperature is unique:
When the fluid is heated at constant density the
short-range order increases. This anomalous tem-
perature dependence ends near T& and with further
increase in the temperature the behavior becomes
normal; i.e., the short-range order decreases. This
behavior was observed in the early measurements' of
the structure factor S(k) of 4He. Recently, accurate
measurments of S(k, T) have been performed by x-
ray' and neutron scattering' with the specific aim of
studying the temperature dependence of S (k, T) and
the radial distribution function g(r, T).

Several years ago, it was proposed4 that this
anomalous temperature dependence of g (r, T) is due
to the existence of a Bose-Einstein condensation in

the superfluid phase of 4He. At a qualitative level
the origin of this behavior was attributed to the spa-
tial delocalization of He atoms in the condensate.
When T increases, the condensate fraction no(T) de-
creases, and consequently more particles can contri-
bute to spatial order. The oscillations in g (r, T),
which reflect the short-range order, increase in ampli-
tude until T = T„,where the condensate vanishes.
The behavior then changes over to that normal for a
fluid, and the increase of the thermal motion dimin-
ishes the short-range order.

Cummings, Hyland, and Rowlands4 (CHR) pro-
posed an explicit expression that relates np(T) to the
temperature dependence of g (r, T):

1 —no(T~) =
I [g(r, T~) —1]l[ (gr, )T—21]l', (1)

T2o T]t f ) IO

where T[ is a temperature below T&, T2 is a tempera-
ture immediately above T~ The functions g (r, .T)
and g2(r, Tq) are to be taken for r ) Io, where Io is

the distance at which the one-particle density matrix,

p, (r), has reached its asymptotic value, p~(lo) = no

Numerical computations' show that Io =4.S A, . lf
Eq. (1) is to make sense it is necessary that the
right-hand side of the equation be independent
of r; this implies that g (r, T ) must have the form

g(r, T) —1 =,f(T)F(r), r ) Io

where F(r) does not depend on T. Equation (2) im-

plies that the zeros of g (r, T) —1 are temperature in-

dependent. The CHR formula (1) implies that f(T)
depends on temperature only via no(T) and, more-
over, has the form,

f(T) = [1—
n. o(T)]' (3)

(r[lp~lr&& =noI1I+Ai(rI «)
(«r2 lp2lrlr2) = &« Ip&I«& &rz lpilr2)

+(r~ Ip&lr&&&r~lp&lr&)

+ now + (ArI2rg ', r]r2)

(4)

The recent experimental data2 3 on S(k, T) have
been analyzed in this way and found approximately
consistent with (2). Using Eq. (1), the value of no

has been deduced at different temperatures. By ex-
trapolating these results. to T =0 one finds (at zero
pressure) that no = 0.13; i.e., 13% of the particles are
in the condensate. This value is in reasonable agree-
ment with exact simulation results for the Lennard-
Jones model of helium-4. '

The purpose of the present paper is to discuss the
theoretical basis of Eq. (1). CHR start with
Frohlich's decomposition6 of p~ and p2, the one- and
two-particle density matrices, respectively. From the
known limits' of p~ and p2 when one or more argu-
ments are very far from each other, these decomposi-
tions are unique and show explicitly the cluster prop-
erties of the system. The cluster functions A~ and A2

are defined through the equations
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where N is the total number of particles. Here, for
simplicity, we have assumed the system uniform and
at rest. If the system does not have a condensate the
terms explicitly dependent on np in (4) and (5) are
absent. The functions Ai and A2 so defined have the
cluster property; they vanish when one of the argu-
ments is far apart from the others.

The diagonal part of p2 is the density-density corre-
lation function and is proportional to g (r ):

(r1r2lp2lr1r2) = N g (r1 —rq)

On the diagonal, Eq. (5) yields,

g (r1 —r2) = I —
n11 + ( (r1l p1lr2) ) /N

+ A, (r, r2, r, r2)/N',

From the definition (9) the diagonal part of A2, for
lr1 —r2l & Ip, is related to the diagonal part of Ar2 by
the simple relation

A2(r1rg', r 1r2) = N (1 rip) + A2(r1r2', r1r2)

where we have taken into account that A1(0)
= (r1lp1lr1) —npN =N(1 —np).

At this point CHR introduce a new correlation
function, gn =A2/N'(1 —np)' U.sing Eqs. (8) and
(11) one finds

gn(r1 —r2) = A2(r1r2', r1r2)/N (I —n p)

where we have taken into account the normalization
condition (r1 p1lr1) =N The one. -particle density
matrix (r1lp1 r2) approaches' an asymptotic limit of
n pN and this limit is reached when l r1 —r, l

& I =4.5
A. The two-particle correlation function g (r) has a
longer range and at least up to r —10 A oscillates
around unity. Therefore, from (7) one obtains

A2(r1r2', r1r2) =N'[g(r1 —rq) —1], r & ip ', (8)

i.e., the diagonal part of the cluster function A2F coin-
cides with g —1 when r 0 Ip. %e stress that this re-
lation is always true, when np & 0 as well as when
np= 0.

The fact that Ai and g —1 have a different range is
an observation that led CHR to suggest Eq. (1) for
np, They proceed in the following way. One substi-
tues (4) into (5) and obtains for p2 an expression
consisting of the sum of several terms, some of
which contain n p explicitly and some that do not.
CHR introduce a new function A2 that is the sum of
all the terms that do not contain explicitly np,

This function does not possess the cluster property
and, for instance, one gets A2=N'(1 —np)' when
r 1' = r1, r2 = r2 with lr1 —r2l ~. In terms of this
new function A2 the diagonal part of p~ reads

&r1r2lp~lr1r2) =N'«r1 —r2)

= n p(2 —n p) N'+ 2n pN A1(r1 —r2)

+ A2(r, r, ;r1r, ) (10)

A2( 1 "2 rlr2) A2(rlr2 r1r2) + Al(rl r1)Al(r2 r2)

lr1 —r~l & Io

f (T) = (I —n11)' (13)

where a- is some constant. In this case one can re-
peat the steps starting from Eq. (9) but with a new
function A2.'

This is a rewriting of Eq. (10) when A1(r1 —r2) = 0.
In this way the unknown function g& is related to the
measurable pair-correlation function g. For T & T&

we have g~ =g because np = 0. The key assumption
that CHR make is that g~ is independent of the tem-
perature for T ( T„.From (12) it follows that this
can be true only if Eqs. (2) and (3) hold for
g (r ) —1. If these equations are not obeyed then the
factor (1 —n p) ~, which changes with temperature at
T„,will not be canceled. If (2) and (3) hold then
(12) immediately leads to (I) for np.

The assumption that gn(r, T) does not change with
temperature is arbitrary and unrelated to Frohlich's
decomposition of p2. In fact, Frohlich's decomposi-
tion is the unique decomposition in terms of the
functions Ai and A2 that have the cluster property.
The subsequent steps (9) and (10) simply add and
subtract certain terms to Aq. These algebraic steps
are certainly legitimate but are also unmotivated un-
less one has already a theory, or a physical argument,
that tells us that the temperature dependence of g(r)
is given by Eq. (2) and (3). To emphasize this point,
suppose that g (r ) Has the form given by Eq. (2), for
r & lp, but 1n Place of (3) f ( T) is given by

1 t ty, r f

A2(rl 2 1"2) A2("1 2 r 1"2) A1(rl "1) Al("2 2) A1(r1 r2) A1(r1 r2 )
Pf 2 2 . Pf

(14)
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=1+(1—na) ' [g(rt —r2) —I] (15)

Again we find that g~ =g when T ) T&. If we now
assume that g& is independent of temperature for
T & T& the value of n~ can be obtained from the ex-
perimental g,(r) by an expression similar to (1):

tto( T&) = [ [g (r, Tt ) —1 ll [g (r, Tq) —11 }'', (16)

I &Io

If theory does not provide a fundamental basis for
Eq. (1) we may ask if there is a way to test its validi-

ty. In this respect, two points can be made. The first
is to recognize that the positions of the zeros of
g (r, T) —1 do not appear to change with T. This
behavior is consistent with Eq. (1). Equation (2)
also requires that the peaks of g (r, T) —1 change
with T by the same factor. The best experimental
data are not precise enough to permit a serious test
of this requirement.

The second step is a test of the quadratic depen-
dence, Eq. (3), of g (r, T) —1 on 1 —ntt(T). On the
basis of measurments of S (k, T ) this test cannot be
performed because the data can be interpreted equal-
ly well on the basis of (16) with any value of o.
Clearly the value of n() obtained depends on the
value of a, for instance, for cr =2 the neutron data'
give a value of 6.6% for np at 1.0 K instead of the
value 12.7% found on the basis of (1). We conclude
that from measurements of S (k, T) it is not possible
to deduce the value of np unless one is able to justify
Eq. (3), an equation that at the moment must be
considered a somewhat arbitrary assumption.

Assumption (3) would receive some form of sup-
port if the qualitative picture discussed by CHR of
"lumps" of higher density that melt into or out of
the condensate as the temperature is varied was the
only picture that could explain the observed behavior
of g (r, T). We notice that the fact that the positions
of the zeros of g(r, T) —1 do not change with tem-
perature is not at all surprising. Simple liquids like
argon also have this behavior. 8 Along an isocore the
position of the main maximum of S (k, T), and there-
fore the zeros of g (r, T) —1, is very weakly depen-
dent on temperature. The observed change is less
than 1% for a change of T of about 50% of the criti-
cal temperature.

An alternative microscopic explanation of the
anomalous behavior of S (k, T) has been given by De
Michelis et al. This is based on an explicit model of

In Eq. (11) the term (1 —na)' is now replaced by
(1 —na)2 and the assumed temperature-independent
function g& would be defined as

gtt(r~ —r2) -=A&(r~r2', r~r2)/N (1 —ttp)

the density matrix for liquid helium. ' From this
density matrix g (r, T) is calculated using Monte Car-
lo techniques. This density matrix corresponds to the
Landau picture of 4He as a gas of noninteracting exci-
tations, phonons and rotons, and these are represent-
ed by Feynman states. It is found, indeed, that the
thermal population of roton states causes an increase
of the short-range order of the fluid. This is ex-
clusively a quantum effect. An inverted T depen-
dence is found9 for g (r, T ) and its origin is quite dis-
tinct from the one suggested by CHR. These two ap-
proaches predict a completely different density depen-
dence for na(T). It is at least plausible that ntt de-
creases when the density increases. Numerical com-
putations at T =0 K indicate that, nrj at solidification
density is reduced from the value at equilibrium den-

sity for a factor of about —, From Eq. (1) we there-1

fore expect that the temperature dependence of
g (r, T), for T ~ T„,will be strongly reduced at high
density. On -the other hand, no such reduced effect
is found on the'basis of the Penrose density matrix.
On the contrary, the effect is enhanced at higher den-
sities because of the decrease of the roton energy gap
with increasing density, leading to an increased roton
population. Thus, measurements of g (r, T ) along
different isocores will provide a test of the two ap-
proaches. The data of Robkoff et al. ' along an iso-
core at density about 10% higher than the equilibri-
um density suggest no reduction in the temperature
dependence of g(r, T). An analysis of these data
based on Eq. (1) would be extremely interesting.

The Penrose density matrix does not give the re-
versal of behavior of S (k, T ) at T„Theinverted . T
dependence continues above T&. However, this den-

sity matrix is certainly not appropriate at and above
T& because it does not contain any account of the A.

transition and, more important, the roton excitations
become heavily damped at T&. It is interesting that
those modes become overdamped immediately above
T„,roughly where there is the crossover between the
inverted and the normal T dependence of S(k, T).

We conclude that the relation (1) has at present no
sound theoretical basis and should be regarded as an
assumption. Moreover, from the measured S(k, T)
at a given density there is no way to test the internal
consistency of Eq. (1). The value of nq deduced"
from experimental data is not unique unless addition-
al physical arguments are introduced. The observed'
density dependence of S (k, T ) suggests the wrong

density dependence for na if Eq. (1) is used.
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