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Structure of the static pair-correlation function in superfluid 4He
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In 1970, Hyland, Rowlands, and Cummings suggested that one could obtain the condensate
fraction no(T) from careful measurements of the static pair-correlation function g(r, T) in the

superfluid and normal phases of 4He. Their arguments are critically analyzed by going back to
the general structure of S(0) and S(0, co) predicted by the field-theoretic analysis of a Bose-
condensed 1iquid. It is sho~n that at low temperatures, the single-particle correlation functions,

which Hyland et al. argue are negligible, in fact make a major contribution to g (r, T) in the re-
0

gion r +4 A.

I. INTRODUCTION

Ten years ago, Hyland, Rowlands, and Cum-
mings' discussed how the static density correlation
function in superfluid 4He depends on the condensate
fraction n p( T). Using some assumptions on how cer-
tain static two-point correlation functions would de-
cay spatially they arrived at the foilowing formula for
4 &r &12

n'[g(r, T) —1]-[n —np(T)]'[g( r, T") —1], (1)

where g ( r, T ) is the static pair-correlation function
for liquid 4He and the temperature T' is just above
the lambda transition temperature T&=2.I7 K. If
this formula is correct, it would mean that careful
measurement of the temperature dependence of the
static pair-correlation function would enable one to
find no as a function of the temperature. Some years
ago, Raveche and Mountain' summarized the argu-
ments leading to Eq. (1) and attempted to use it to
find np(T). However the available experimental data
for g(r, T) were not very accurate and the results for
np(T) had a lot of scatter.

Very recently, Svensson, Sears, Woods, and Mar-
tel have completed very accurate neutron scattering
measurements of the static structure factor S(Q, T)
as a function of the temperature. Sears and Svens-
son' have used these results in formula (1) and claim
to have thus obtained accurate values for the tem-
perature dependence of the condensate fraction
np( T). The value of np( T, ) so obtained was about
(10—15)p/o of n at low temperatures (T —1 K);
which is similar to the value obtained by several
direct theoretical calculations as well as from an
analysis of high momentum inelastic neutron scatter-
ing studies (see, for example, Ref. 8). As the tem-
perature increased, np(T) decreased and vanished at
T

The question remains, however, as to the correct-
ness of formula (1) and in this paper, we critically re-

Sc(Q, T) = ' Z(Q)
P

(2)

where p, ( T) is the superfluid density [p, = p at T = 0
K] and Z (Q) is the weight of the quasiparticle reso-
nance in S(Q, pI) at T =0 K. A crucial argument of
HRC in deriving Eq. (1) was that, effectively, the
single-particle part of g ( r, T) could be neglected in

the range r & 4 A. However, we show that at low

temperatures [where p, (T) is appreciable], a signifi-

cant contribution in fact is associated with the single-
particle part given by Eq. (2). This effectively invali-

dates the derivation of Eq. (1) given by HRC. This
does not preclude the possibility that Eq. (1) is still

view the arguments which lead Hyland, Rowlands,
and Cummings (HRC) to Eq. (1). The original
work' of HRC was based on a theoretical study of a
condensed Bose system by Frohlich. 9 Frohlich's
analysis involved an attempt to understand how the
presence of a Bose condensate would modify the
structure of static correlation functions. Curiously,
neither Frohlich nor HRC made any contact with the
well-developed field-theoretic description of super-
fluid He initiated by Beliaev' and developed by
many workers since then (see, in particular, Refs. 11
and 12).

In this paper, we review what the field-theoretic
predictions are for the general structure of the static
[S(Q) ] and dynamic [S(Q, co) ] structure factors of a
Bose-condensed liquid. This approach gives a

rigorous basis for the type of decomposition of static
correlation functions which Frohlich tried to obtain.
However the effects of the anomalous correlation
functions characteristic of a Bose-condensed system
are now properly included.

The field-theoretic analysis shows that S (Q, T) and
hence g ( r, T ) can be separated into singular and reg-
ular parts. "'3 The singular part Sc(Q, T) is associat-
ed with the contribution arising from single quasipar-
ticles and recent work has shown that" '
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essentially correct. As discussed by Sears and Svens-
son, 5 '5 Eq. (I) appears to describe the experimental
data quite well and gives values of np(T) which are
in good agreement with independent determinations.

In Sec. II, we briefly review the results and impli-
cations of the field-theoretic analysis of the structure
of S (Q, T). In Sec. III, we discuss some simple
models for a condensed-Bose system (free particle
and the Bogoliubov model for a dilute interacting
Bose gas) and make contact with the work of
Frohlich as well as Hyland, Rowlands, and Cum-
mings. "

+(n(r)n(r )) —n' . (12)

Using the fact that the depletion n =—(n ( r ) ) = n —np,
we can write Eq. (12) in the form

S(r —r ) =Sc(r —r ) +Sn(r —r )

where we have defined

(13)

Separating out the condensate part using Eq. (7),
one finds Eq. (5) decomposes as follows:

nS(r —r ) =np +2np(n( r)) +np(%'(r)%'(r ))
+ Jn(&[(%'(r)n(r )) + (n( r )q ( r ))]

II. STRUCTURE OF STATIC CORRELATION
FUNCTIONS IN A BOSE-CONDENSED SYSTEM

nSC(r —r ) —= np(%(r)4(r ))
+Jn()[(%'(r )n(r ))

The static pair-correlation function is defined by

(n(r)n(r )) =n'g(r —r )+n8(r —r ), (3)

where (n ( r ) )
—= n and the density operator is given

in terms of quantum field operators

n(r) -=j'(r) j(r) .

The static structure factor S(Q), as measured by
neutron scattering, is the Fourier transform of

nS(r —r )—= (n(r)n(r )) —n2 (5)

In a Bose-condensed system, it is useful' to
separate out the condensate part of the field opera-
tors

j(r ) = (j(r )) + j(7),
P (r)=(P (r))+P (r),

~here the Bose field e
(i(r)) =(5 (r})=
we see that

ctation values are
Making use of Eq. (6),

n ( r ) = n p+ ~np%'( r ) + n ( r )

where we have defined the operators

q (r) -=y (r)+ j(r),
n(r)-=j (r) j(r) .

We note that n ( r ) is the density operator for the
noncondensed atoms. This is most clearly seen by
taking the Fourier transform of Eq. (9)

(7)

n (Q) =— X a~ a~~tl
1 t
Vp~o, 0

and contrasting it with the transform of n ( r ),

(10)

n (Q) =—Xa~'a~~o
P

We have defined S ( r —r ) so that S (Q) = 1 for large

+(n(r)q (r ))], (14)

nSa(r —r ) =—(n (r )n( r )) —n (15)

Clearly Sz vanishes if no=0 and we are left with S&.
The reason we have grouped the terms in Eq. (12) in
this particular way is clear from the discussion given

I
in an earlier paper. '3 S( r —r } in Eq. (5} is related.
to the static limit of the density-density correlation
function X„„.A field-theoretic diagrammatic analysis
shows that all contributions can be divided into two
categories. The contributions of one category are al-
ways proportional to the single-particle Dyson-Beliaev
Green function 6 & and form what is called the con-
densate (or singular) part of X„„."'2'6 'p One finds
that it is precisely the terms included in Eq. (14)
which form this condensate part of S( r —r ). Phys-
ically, Sc(r —r ) in Eq. (14) is the part of the static
structure factor which is related to density fluctua-
tions in which atoms are put into or taken out of the
condensate reservoir. More precisely, the first term
in Eq. (14) describes density fluctuations in which
t~o atoms with zero momentum are involved, while
the second term in Eq. (14) describes density fluctua-
tions in which only one condensate atom is involved.
It is perhaps surprising but still true that this second
term (proportional to Jnq) can be proven" "'p to
be proper in the sense that it is directly proportional
to the Dyson-Beliaev single-particle Green's function
and hence part of S~.

The second category of contributions to the
density-density correlation function constitutes the
so-called regular part. This regular part of S( r —r )
is given by Eq. (15), and has a direct physical in-
terpretation. Sn ( r —r ) is the part of the static
structure factor which arises from density fluctuations
which involve excited atoms (i.e. , with nonzero
moinentum).

The dynamic structure factor S(Q, co) can also be
decomposed into singular and regular parts. The
singular part Sc(Q, co) has been shown'3 to have a
sharp quasiparticle resonance at rp(0), with a
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temperature-dependent weight which is proportional
to the superfluid density p, (T), in agreement with
the experimental results of Woods and Svensson. '4

The regular part SR (Q, co) is composed of two kinds
of terms'9: (A) exciting two quasiparticles out of the
ground state [au=at(k)+co(k+0)] and (B) scatter-
ing from thermally excited quasiparticles [ot = cu(k)
—ot(k+ Q) ]. Contribution B is a broad continuum,
vanishes at T =0 K and is proportional to the normal
fluid density p„(T)= p —p, ( T) in the temperature
region 1 & T & T„where rotons are the dominant ex-
citations. The fact that contribution B is proportional
to p„is easily seen in a calculation based on the Bo-
goliubov model' but these features have been sug-
gested more generally by Pines and Nozieres some
years ago. We identify the B part of SR ( Q, «t) with
what Woods and Svensson' call the "normal-fluid"
part. In contrast, the A part of Stt(Q, co) corresponds
to the so-called "multiphonon" part2' of S(Q, to). It
can be shown to vanish if no= 0 and combines with
the condensate part Se(Q, at) to form what is called'4

the "superfluid" part of S (Q, at).
The static structure factor is given by

and moreover, we recall that

n'g(r, T) =n~+n e'O''S(Q, T) —nS(r)
(2n )'

l.5

=I K

I.O

0.5

'0

FIG. 1. Comparison between the full static structure fac-
tor S(Q) {based on Ref. 4) and the one-phonon contribu-
tion Z(Q) (based on Ref, 21). In addition, the momentum
distribution N& of atoms is shown (based on Ref. 8). Some
of the results are for T =1.1 K.

region r & 3 A. Figure 2 shows dramatically that a
significant part of the oscillations in g ( r ) in this
asymptotic region are associated with the one-phonon
term. As we shall explain in more detail in Sec. III,
one can phrase one key step in the argument of Ref.
1 as being equivalent to the assumption that gz( r )
= 1 in the region r & 4 A. Figure 2 shows that this
is simply not correct in superfluid 4He.

It is clear that the results of the last paragraph enable
us to decompose g ( r, T ) into contributions from:
(a) excitation of single quasiparticles (one-phonon
term); (b) excitation of two quasiparticles (multipho-
non term); and (c) scattering of thermally excited
quasiparticles. At low temperatures (& 1 K), there is
a negligible number of quasiparticles present and (c}
may be ignored. The contribution of (a) to S(Q)
has been obtained ' some years ago at T = 1.1 K.
This "one-phonon" contribution Z (Q) is shown in

Fig. 1, in addition to the full S(Q} at T = 1 K which
includes the "multiphonon" contribution Stt(Q). In
Fig. 2, we have plotted what we call the "one-
phonon" contribution to g ( r ), as defined by

l.4—

l.2-

I.O

0.8—

0.4—

I I

T=l K

----g (r)
Z

g(r)

n gz(r) —= n'+n
~

e'o''Z(Q) . (18)
(2rr )'

The multiphonon contribution to g( r ) is defined by

0.2-

0 I

5

I'{A)

I I

6 7
I I

8 9 lo

n g t( r ) =—n ~

e'O' ' [S„(Q)—1], (19)

with g ( r ) = gz ( r ) +gtt( r ). We know that g ( r )
= 0 for r & 2 A due to hard-core effects. The multi-

phonon contribution g«(7) in this region is large and
negative, effectively canceling the one-phonon contri-
bution sho~n in Fig. 2. What is of real interest is the

FIG. 2, Comparison between the full pair-correlation
function (Ref. 4) g(r ) and the one-phonon contribution

gz( r ) defined in Eq. (18). The difference is due to the

multiphonon contribution defined in Eq. (19). Strictly
speaking; the curves are g ( r, T = 1 K) and gz ( r, T = 1.1 K)
but negligible difference is expected to arise from this tem-
perature difference.
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The preceding analysis for T & 1 K can be general-
ized to higher temperatures. Using the Woods-
Svensson' two-component decomposition of
S(Q, cu), it immediately follows from Eq. (16) that"

g(r, T)= ' g(r, 1K)+ " g(r, T'), (2l)
p p

where we have made use of the identity p, +p„=p.
Both Eqs. (20) and (21) have been found to be in

good agreement with experimental data. ' We also
note that there is a fairly convincing microscopic
basis" ' to the Woods-Svensson decomposition for
S(Q, rp) and hence for Eqs. (20) and (21). The ex-
pression in Eq. (2) gives the following formula for
the temperature dependence of gz ( r, T ):

[gz(r, T) —1]= ' [gz(r, 1 K) —1]p, (T)
(22)

S(Q T) = '
. S(Q 1 K)+ " S(Q T') . (20)

p p

Using Eq. (20) in Eq. (17) gives an analogous
Woods-Svensson formula for the static pair-
correlation function

Combining Eqs. (3) and (5), we have
1

n2g(r —r ) =n'+nS(r —r ) —n8(r —r ), (24)

~ No -iP(T'- )
PV ~()

(27)

and N~~—= (a~~a~)p is the usual Bose factor. Using
these results, one finds" that g ( r, T) starts off from
a maximum at r = 0,

n'g(r =O, T) =n'+n' —n p( T)

where the condensate and regular parts are defined in
Eqs. (14) and (15). In a noninteracting Bose gas, all
anomalous correlation functions [such as

(Q( r )Q( r ) ) and (Q ( r ) n ( r ) ) ] vanish. Calcula-
tion of the remaining terms gives

nSc(r —r ) =2npAP~( r —r )+np8(r —r ), (25)

nSa(r —r ) =A~( r —r )AP~( r —r )+n8( r —r )

(26)
where the single-particle density matrix is

AP((r —r')= (y (r )y—(r ))p

or, equivalently,

gz(r T) = " + ' gz(r 1 K) . (23)
p p

nScP(Q) =2npNg~+ np, (29)

and decreases towards unity as r increases. We also
note that the equivalent results in momentum space
are

III. SOME MODEL CALCULATIONS AND THE
ANSATZ OF HYLAND, ROWLANDS,

AND CUMMINGS

In this section, we want to show how Frohlich's
analysis of static correlation functions can be
viewed in terms of simple approximations for the
singular and regular parts, defined in Eqs. (14) and
(15). We first discuss the simple case of a free Bose
gas, where Sc and S~ can be calculated exactly. "
This example not only gives a concrete illustration of
the difference between Sc and S~ but will allow us to
see the crucial changes introduced by the effect of in-
teractions. These were not adequately included in Froh-
lich's analysis or in the subsequent work of HRC. '

These combine to give

nS (Q) =—$N~ (N~q~+ I ) (31)

where the sum is now unrestricted and N~ 0
—= Vno.

We next turn to a general discussion of the second
order reduced density matrtix 02 for a Bose-
condensed system due to Frohlich and developed by
others. " Frohlich attempted to find the form of
02 by requiring that it satisfy various exact symmetry
and asymptotic conditions. The form used as the
basis of Ref. 1 is

Q2(r, r;r, r ) —= (g'( r )P'( r )P( r )P( r )) = n'g(r r)— —

=R(r —r )[n'+2npA~(r —r )+A~( r —r )A~( r —r )]+A2( r —r ) (32)

where A~(r —r ) =—(g (r)g(r )). The terms in
the square brackets form the "asymptotic part"
which was discussed by Frohlich. ' It is to be noted
that these are identical in structure to that for a free
Bose gas discussed above; i.e.,

I
n2gp(r —r ) =n2+2npA~(r —r )

+AP~(r —r )AP~( r —r ), (33)

I

except that the first-order reduced density matrix
I

A, ( r —r ) is now for an interacting Bose system.
The factor R (r —r ) in Eq. (32) was introduced

in an ad hoe way to make sure that the short-range
behavior due to hard-core effects was properly in-
cluded. The term A2F( r —r ) was added to describe
all the remaining contributions which could not be

I
written in terms of A&( r —r ). Very little is known
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At(r) =0 for r &4 A (34)

It is argued also that for r & 4 A, R ( r ) is effectively
unity. Finally, since it is found that g ( r ) = 1 for
r & 12 A, Eq. (33) implies that

about either R ( r ) or AF2( r ). On the other hand, as
emphasized by HRC, A~( r ) is the Fourier transform
of the momentum distribution [see Eq. (27)]. This
can be found by numerical calculations as well as
from inelastic neutron scattering and one finds A&

decays rapidly from the value n at r = 0, with

The momentum distribution in this case is

.(Q)+n, V(Q) -(Q)
2'�(Q)

while the condensate part of S(Q) is

Saog(Q) . 0 t(g)
n co(g)

Here the quasiparticle energy is given by

~(g) = [a'(g)+2n VO(g)e(g)]'~',

(40)

(41)

(42)

A2F(r) =0 for r & 12 A (35)

To summarize, HRC conclude that Eq. (32) can be
approximated by

n2g ( r, T ) = n '+ AFz( r, T ) (36)

in the region 4 & r & 12 A. We shall call this HRC
ansatz I. Effectively it is based on the idea that con-
tributions to g ( r, T) arising from the single-particle
contributions (unique to a Bose-condensed system)
are negligible in the region r & 4 A.

We note that Eq. (36) is exact if there is no con-
densate. HRC make the further argument that
A2F( r, T) should be similar to that for ~He just above
T&, except that only n atoms are involved. They thus
assume

2

(37a)

or, equivalently

A2F( r, T ) = n [g ( r, T') —I ] (37b)

nSc( r ) = 2noAi( r )

nSn(r ) = [A~(r )]2+A2F(r )

(38)

(39)

where we assume that we are in the asymptotic re-
gion with R ( r ) = 1. Unfortunately, when interac-
tions are included, the structure of g ( r ) is quire dif-
ferent from that of a free Bose gas as given by Eq.
(33). A key difference, according to the microscopic
theory of a Bose-condensed system, is that one must
work with a 2 x 2 single-particle density matrix, i.e.,
(p(r)p(r )) and (p (r)p (r )) are just asimpor-
tant as (Q ( r )P( r )) and (P( r )Q ( r )). This cru-
cial feature is already present in the Bogoliubov
theory of a dilute interacting Bose gas, '4 which we

now turn to.
For our purposes, it is sufficient to limit ourselves

to the Bogoliubov approximation results at T =0 I|'.

where T' is some temperature just above T&. %e
shall call Eq. (37) the HRC ansatz II. Combining Eq.
(36) with Eq. (37b) gives the HRC formula in Eq. (1).

On comparing Eq. (32) with the rigorous field-
theoretic decomposition given in Sec. II, it is clear
that Eq. (32) corresponds to the following approxi-
mations:

Sc(g ) =—(2Ng + 1) (HRC)
n

no e(g)+noV(g)
n ao(g )

(43)

Due to the presence of off-diagonal single-particle
correlation functions, the small-Q behavior of Sc(Q)
in Eq. (41) is completely different than predicted by
Eq. (43).

The completely different long wavelength behavior
of Sc( Q ) and N~ exhibited by the Bogoliubov
model also shows up in exact results of Gavoret and
Nozieres" as well as in superfluid "He. We recall
from Sec. II that at T = 1 K, Sc(Q) is given by

Z(Q). In Fig. 1, we compare the results for Z (Q)
and N~ as obtained from inelastic neutron scattering
data (this momentum distribution8 is in good agree-
ment with results of direct numerical calculations6').
The Fourier transform of Nu gives A~( r ) and this is
found to be negiigible for r & 4 A, in marked con-
trast to the result for [gz( r ) —1] shown in Fig. 2.

The preceding results show how the anomalous
correlation functions completely alter the behavior of
Sc( r ) for large r. We might note here that while

they are neglected in the Bogoliubov approximation,
the correlation functions involving three field opera-
tors in Eq. (14) are also very important in superfluid
4He. It is their presence which renormalizes the
weight of the single quasiparticle excitations from
no/n as in the dilute interacting Bose gas result [Eq.
(41)] to p, /p in Eq. (2). This is discussed in more
detail in Ref. 13.

We next consider the HRC discussion for the regu-
lar part Sn, as given in Eq. (39). When anomalous
correlation functions are properly included, the gen-
eralized version of Eq. (39) is'~

nS„(r—r ) =(y (r)y(r ))'
+(p (r)P (r ))(P( r )P(r))
+ApF(r —r ) (44)

where e(Q) =g'/2nr and V(g) is the Fourier
transform of the interatomic potential. It is easy to
see that these model results are quite incompatible
with the momentum-space equivalent of the, HRC ap-
proximation (38), namely,
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The first term on the right-hand side of Eq. (44) is

Af(r —r ), and as HRC have noted, A~( r ) is

known to be negligible for r & 4 A. in superfluid 4He.

The second term involves the square of the "off-
diagonal" sinjtle-particle density matrix A,d(r —r )
—= (Q(r)Q(r )). Unfortunately, we do not have a
direct way' of measuring A,d(r) or its Fourier
transform and therefore one cannot say whether it is

negligible in the region r & 4 A, . However, we have
already noted that the presence of A,d(r ) completely
changes the structure of Sc( r ) in the Bogoliubov ap-
proximation. One has no justification at the present
time for neglecting the second term on the right-
hand-side of Eq. (44). This may be just as important
as the contributions lumped into A2r( r ).

To summarize the preceding analysis, once one
generalizes the analysis of Frohlich to include both
diagonal and off-diagonal single-particle density ma-

trices, one is no longer justified in using the approxi-
mation (36) in the region r & 4 A. Thus the HRC

ansatz I is not valid. We have not addressed our-
selves to HRC ansatz II, namely, the validity of Eq.
(37b). Needless to say, this seems to be also very
doubtful. Indeed the importance of the contribution
from the single-particle correlation functions means
thati fEq. (37b) was valid, we would nor obtain the
HRC formula in Eq. (1). If this formula is correct,
we can only conclude that it is for reasons quite dif-
ferent from those originally advanced by Hyland,
Rowlands, and Cummings.
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